JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Stars and Galaxies
.

Investigating the Mystery of Migrating 'Hot Jupiters'

March 28, 2016
The turbulent atmosphere of a hot, gaseous planet known as HD 80606b is shown in this simulation based on data from NASA's Spitzer Space Telescope.› Full image and caption
Credit: NASA/JPL-Caltech/MIT/Principia College
Astronomers watched an exoplanet called HD 80606b heat up and cool off during its sizzling-hot orbit around its star.› Full image and caption
Credit: NASA/JPL-Caltech/MIT

How do some gas giant planets end up so feverishly close to their stars? NASA's Spitzer Space Telescope finds new clues.

The last decade has seen a bonanza of exoplanet discoveries. Nearly 2,000 exoplanets -- planets outside our solar system -- have been confirmed so far, and more than 5,000 candidate exoplanets have been identified. Many of these exotic worlds belong to a class known as "hot Jupiters." These are gas giants like Jupiter but much hotter, with orbits that take them feverishly close to their stars.

At first, hot Jupiters were considered oddballs, since we don't have anything like them in our own solar system. But as more were found, in addition to many other smaller planets that orbit very closely to their stars, our solar system started to seem like the real misfit.

"We thought our solar system was normal, but that's not so much the case," said astronomer Greg Laughlin of the University of California, Santa Cruz, co-author of a new study from NASA's Spitzer Space Telescope that investigates hot Jupiter formation.

As common as hot Jupiters are now known to be, they are still shrouded in mystery. How did these massive orbs form, and how did they wind up so shockingly close to their stars?

The Spitzer telescope found new clues by observing a hot Jupiter known as HD 80606b, situated 190 light-years from Earth. This planet is unusual in that it has a wildly eccentric orbit almost like that of a comet, swinging very close to its star and then back out to much greater distances over and over again every 111 days. One side of the planet is thought to become dramatically hotter than the other during its harrowing close approaches. In fact, when the planet is closest to its host star, the side facing the star quickly heats up to more than 2,000 degrees Fahrenheit (1,100 degrees Celsius).

"As the planet gets closer to the star, it feels a burst of starlight, or radiation. The atmosphere becomes a cauldron of chemical reactions, and the winds ramp up far beyond hurricane force," said Laughlin, a co-author on the Spitzer study, which is accepted for publication in The Astrophysical Journal Letters.

HD 80606b is thought to be in the process of migrating from a more distant orbit to a much tighter one typical of hot Jupiters. One of the leading theories of hot-Jupiter formation holds that gas giants in distant orbits become hot Jupiters when the gravitational influences from nearby stars or planets drive them into closer orbits. The planets start out in eccentric orbits, then, over a period of hundreds of millions of years, are thought to gradually settle down into tight, circular orbits.

"This planet is thought to be caught in the act of migrating inward," said Julien de Wit of the Massachusetts Institute of Technology, Cambridge, lead author of the new study. "By studying it, we are able to test theories of hot Jupiter formation."

Spitzer previously studied HD 80606b in 2009. The latest observations are more detailed, thanks to a longer observing time -- 85 hours -- and improvements in Spitzer's sensitivity to exoplanets.

"The Spitzer data are pristine," said de Wit. "And we were able to observe the planet for much longer this time, giving us more insight into its coldest temperature and how fast it heats up, cools down and rotates."

A key question addressed in the new study is: How long is HD 80606b taking to migrate from an eccentric to a circular orbit? One way to assess this is to look at how "squishy" the planet is. When HD 80606b whips closely by its star, the gravity of the star squeezes it. If the planet is squishier, or more pliable, it can better dissipate this gravitational energy as heat. And the more heat that is dissipated, the faster the planet will transition to a circular orbit, a process known as circularization.

"If you take a Nerf ball and squeeze it a bunch of times really fast, you'll see that it heats up," said Laughlin. "That's because the Nerf ball is good at transferring that mechanical energy into heat. It's squishy as a result."

The Spitzer results show that HD 80606b does not dissipate much heat when it is squeezed by gravity during its close encounters - and thus is not squishy, but rather stiffer as a whole. This suggests the planet is not circularizing its orbit as fast as expected, and may take another 10 billion years or more to complete.

"We are starting to learn how long it may take for hot Jupiter migration to occur," said de Wit. "Our theories said it shouldn't take that long because we don't see migrating hot Jupiters very often."

"The long time scales we are observing here suggest that a leading migration mechanism may not be as efficient for hot Jupiter formation as once believed," said Laughlin.

The Spitzer study suggests that competing theories for hot Jupiter formation -- in which gas giants form "in situ," or close to their stars, or smoothly spiral inward with the help of planet-forming disks -- may be preferred.

The new study is also the first to measure the rotation rate of an exoplanet orbiting a sun-like star. Spitzer observed changes in the planet's brightness as the planet spun on its axis, finding a rotation period of 90 hours.

"Fifty years ago, we were measuring the rotation rates of planets in our own solar system for the first time. Now we are doing the same thing for planets orbiting other stars. That's pretty amazing," said Laughlin.

A rotation rate of 90 hours is much slower than what is predicted for HD 80606b, puzzling astronomers, and adding to the enduring mystique of hot Jupiters.

Additional study authors are: Nikole Lewis of the Space Telescope Science Institute in Baltimore; Jonathan Langton of Principia College, Elsah, Illinois; Drake Deming of University of Maryland, College Park; Konstantin Batygin of the California Institute of Technology, Pasadena; and Jonathan Fortney of the University of California, Santa Cruz.

NASA's Jet Propulsion Laboratory, Pasadena, California, manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at Caltech. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA.

For more information about Spitzer, visit:

http://spitzer.caltech.edu

http://www.nasa.gov/spitzer

Technical journal article:
http://iopscience.iop.org/article/10.3847/2041-8205/820/2/L33

News Media Contact

Whitney Clavin

Caltech

626-395-1944

wclavin@caltech.edu

2016-087

Related News

Stars and Galaxies .

Webb Captures Stellar Gymnastics in the Cartwheel Galaxy

Stars and Galaxies .

NASA Reveals Webb Telescope’s First Images of Unseen Universe

Stars and Galaxies .

President Biden Reveals First Image From NASA’s Webb Telescope

Stars and Galaxies .

NASA Shares List of Cosmic Targets for Webb Telescope’s First Images

Stars and Galaxies .

NASA Helps Decipher How Some Distant Planets Have Clouds of Sand

Stars and Galaxies .

NASA Updates Coverage for Webb Telescope’s First Images Reveal

Stars and Galaxies .

NASA’s Stratospheric Balloon Mission Gets Telescope With Giant Mirror

Stars and Galaxies .

New Images Using Data From Retired Telescopes Reveal Hidden Features

Stars and Galaxies .

NASA’s NuSTAR Mission Celebrates 10 Years Studying the X-Ray Universe

Stars and Galaxies .

NASA Supports Event Horizon Telescope in Studying Milky Way’s Black Hole

Explore More

Video .

What's Up - August 2022

Mission .

SPHEREx

Video .

What's Up - July 2022

Mission .

ASTHROS

Image .

Rains of Terror

Event May 26, 2022 .

NuStar - Studying the Universe in X-Ray

Video .

What's Up - June 2022

Mission .

NuSTAR

Image .

Flares of Fury

Image .

Dark Matter

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018