JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

How NASA’s Deep Space Network Supports the Agency’s Missions

Nov. 15, 2022
Shown at center is one of the DSN’s antennas that supports dozens of other deep space missions.

The DSN will prioritize communications during key mission events for Artemis I (pictured left), as it did for the approach and asteroid impact of the DART mission (illustrated right). Shown at center is one of the DSN’s antennas that supports dozens of other deep space missions.

Credit: NASA/JPL-Caltech/Johns Hopkins APL

The DSN will enable NASA to track and communicate with Artemis I while working to provide coverage across dozens of other missions throughout the solar system.

Over 50 years ago, NASA captured the world’s imagination and inspired generations with the Apollo 11 Moon landing. NASA’s then-young Deep Space Network (DSN) was crucial to tracking and communicating with that mission, as it will also be essential to NASA’s next push to the Moon: Artemis. In the half-century between those two lunar efforts, the network has expanded to support dozens of robotic spacecraft exploring the solar system, requiring complex coordination throughout the space agency.

Managed by NASA’s Jet Propulsion Laboratory in Southern California, with the oversight of NASA’s Space Communications and Navigation (SCaN) Program, the DSN will support a constant flow of data with Artemis I’s uncrewed Orion capsule beyond low-Earth orbit after launch. This includes the mission’s outbound journey and return, plus all the mission’s trajectory maneuvers in between, ensuring commands can be sent to the spacecraft and data can be returned to Earth.

The DSN will work in tandem with NASA’s Near Space Network, managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with the oversight of the SCaN Program. Together, the networks help to create a foundation for future crewed Artemis launches to the lunar surface.

To make sure the DSN can keep up with demand, it is undergoing a series of improvements to increase capacity. Also crucial to managing that demand, the network relies on a robust scheduling system to ensure the interplanetary switchboard can maximize coverage between so many missions. Schedulers with each mission negotiate with one another, working with DSN team members to make sure they will have network support for critical operations.

“There are different types of data that require different commitments, depending on what phase the mission is in,” said JPL’s Michael Levesque, DSN project manager. “Certain mission events, such as launches, landings, and planetary maneuvers, require constant contact with the DSN, so planning the network’s schedule typically begins 12 to 15 weeks ahead.”

Some missions – such as NASA’s Double Asteroid Redirection Test (DART) mission, which impacted the small asteroid Dimorphos in September – require transmitting a lot more data. The DART mission received round-the-clock DSN coverage surrounding the asteroid impact, with commands being transmitted to the spacecraft and data being sent back to Earth about the spacecraft’s health and the effects of the impact. “This can tie up DSN resources,” said Levesque, “but as the schedulers plan for events many months in advance, the effect on other missions can be well managed.”

You can check which spacecraft the Deep Space Network’s antennas are currently communicating with via the online application DSN Now. Click on a dish to learn more about the live connection between the spacecraft and the ground.

When urgent situations arise that throw off predetermined schedules, real-time discussions take place between missions to make adjustments. Demands on the network wax and wane, and there are other factors that can help make scheduling less complex. Should key mission events overlap, spacecraft may use onboard data storage and processing, allowing valuable science data to be transmitted at a later time, when communication demands are lower.

The network’s configuration also comes into play: The DSN consists of multiple giant antenna dishes arrayed in three complexes evenly spaced around the world at the Goldstone complex near Barstow, California; in Madrid, Spain; and in Canberra, Australia. This ensures they can trade off communicating with spacecraft to provide constant coverage as Earth rotates.

Get the Latest JPL News

SUBSCRIBE TO THE NEWSLETTER

More About the Deep Space Network

The forerunner to the DSN was established in 1958 when JPL was contracted by the U.S. Army to deploy portable radio tracking stations in California, Nigeria, and Singapore to receive telemetry of the first successful U.S. satellite, Explorer 1. Shortly after JPL was transferred to NASA later that year, the newly formed U.S. civilian space program established the DSN to communicate with all deep space missions. It has been in continuous operation since 1963 and remains the backbone of deep space communications for NASA and international missions.

JPL is a division of Caltech in Pasadena, California. The DSN and Near Space Network receive programmatic oversight from NASA’s Space Communications and Navigation (SCaN) program office within the Space Operations Mission Directorate at NASA Headquarters in Washington.

For more about the DSN, listen to the 2022 season of NASA’s Invisible Network Podcast. The SCaN Now app allows users to see which antennas are communicating with which spacecraft in real time.

News Media Contact

Ian J. O’Neill

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-2649

ian.j.oneill@jpl.nasa.gov

2022-176

Related News

Solar System .

NASA’s Magellan Data Reveals Volcanic Activity on Venus

Mars .

Engineers Keep an Eye on Fuel Supply of NASA’s Oldest Mars Orbiter

Solar System .

Study Finds Ocean Currents May Affect Rotation of Europa’s Icy Crust

Solar System .

Study Finds Venus’ ‘Squishy’ Outer Shell May Be Resurfacing the Planet

Solar System .

NASA’s NuSTAR Telescope Reveals Hidden Light Shows on the Sun

Mars .

NASA’s Perseverance Rover Completes Mars Sample Depot

Solar System .

NASA’s Juno Team Assessing Camera After 48th Flyby of Jupiter

Solar System .

NASA’s Psyche Mission Continues Preparation for Launch in 2023

Solar System .

NASA’s Lunar Flashlight Team Assessing Spacecraft’s Propulsion System

Mars .

NASA Explores a Winter Wonderland on Mars

Explore More

Mission .

Lunar Trailblazer

Image .

Radar Observations of Elongated Near-Earth Asteroid 2011 AG5

Image .

Three-Telescope View of the Sun

Mission .

Cooperative Autonomous Distributed Robotic Exploration

Image .

NASA's Psyche: Picking up Launch Prep for 2023

Event Feb. 16, 2023 .

Perseverance: Two Years on Mars

Mission .

Ranger 1

Image .

Lunar Flashlight's Trajectory Correction Maneuver (Illustration)

Image .

NASA's Lunar Flashlight Spotted From Earth on Its Way to the Moon

Image .

NEO Surveyor in an Infrared Starfield Filled With Asteroids (Illustration)

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018