JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Stars and Galaxies
.

Haunting Portrait: NASA’s Webb Reveals Dust, Structure in Pillars of Creation

Oct. 28, 2022
Many layers and pillars of semi-opaque gas and dust overlay one another. These regions appear light blue and dark gray-blue. There are only several dozen tiny bright white and blue stars in this overall scene.

Layers of gas and dust are the centerpiece of this view of the Pillars of Creation taken by Webb’s Mid-Infrared Instrument. Thousands of stars exist in this region – 6,500 light-years from Earth – but are not visible in the image since stars typically do not emit much mid-infrared light. Credit: NASA, ESA, CSA, STScI; Joseph DePasquale (STScI), Alyssa Pagan (STScI) Full Image Details

The observatory’s Mid-Infrared Instrument (MIRI) provides a different view of the famous pillars, revealing young stars that have not yet cast off their dusty “cloaks.”

This is not an ethereal landscape of time-forgotten tombs. Nor are these soot-tinged fingers reaching out. These pillars, flush with gas and dust, enshroud stars that are slowly forming over many millennia. NASA’s James Webb Space Telescope has snapped this eerie, extremely dusty view of the Pillars of Creation in mid-infrared light – showing us a new view of a familiar landscape.

Why does mid-infrared light set such a somber, chilling mood in Webb’s Mid-Infrared Instrument (MIRI) image? Interstellar dust cloaks the scene. And while mid-infrared light specializes in detailing where dust is, the stars aren’t bright enough at these wavelengths to appear. Instead, these looming, leaden-hued pillars of gas and dust gleam at their edges, hinting at the activity within.

Thousands and thousands of stars have formed in this region. This is made plain when examining Webb’s recent Near-Infrared Camera (NIRCam) image. In MIRI’s view, the majority of the stars appear missing. Why? Many newly formed stars are no longer surrounded by enough dust to be detected in mid-infrared light. Instead, MIRI observes young stars that have not yet cast off their dusty “cloaks.” These are the crimson orbs toward the fringes of the pillars. In contrast, the blue stars that dot the scene are aging, which means they have shed most of their layers of gas and dust.

Get the Latest JPL News

SUBSCRIBE TO THE NEWSLETTER

Mid-infrared light excels at observing gas and dust in extreme detail. This is also unmistakable throughout the background. The densest areas of dust are the darkest shades of gray. The red region toward the top, which forms an uncanny V, like an owl with outstretched wings, is where the dust is diffuse and cooler. Notice that no background galaxies make an appearance – the interstellar medium in the densest part of the Milky Way’s disk is too swollen with gas and dust to allow their distant light to penetrate.

How vast is this landscape? Trace the topmost pillar, landing on the bright red star jutting out of its lower edge like a broomstick. This star and its dusty shroud are larger than the size of our entire solar system.

This scene was first captured by NASA’s Hubble Space Telescope in 1995 and revisited in 2014, but many other observatories, like NASA’s Spitzer Space Telescope, have also gazed deeply at the Pillars of Creation. With every observation, astronomers gain new information, and through their ongoing research build a deeper understanding of this star-forming region. Each wavelength of light and advanced instrument delivers far more precise counts of the gas, dust, and stars, which inform researchers’ models of how stars form. As a result of the new MIRI image, astronomers now have higher-resolution data in mid-infrared light than ever before, and will analyze its far more precise dust measurements to create a more complete 3D landscape of this distant region.

The Pillars of Creation is set within the vast Eagle Nebula, which lies 6,500 light-years away.

More About the Mission

The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

MIRI was developed through a 50-50 partnership between NASA and ESA. NASA’s Jet Propulsion Laboratory led the U.S. efforts for MIRI, and a multinational consortium of European astronomical institutes contributed for ESA. George Rieke with the University of Arizona is the MIRI U.S. science team lead. Gillian Wright with the UK Astronomy Technology Centre is the MIRI European principal investigator. Alistair Glasse with UK ATC is the MIRI instrument scientist, and Michael Ressler is the U.S. project scientist at JPL. Laszlo Tamas with UK ATC manages the European Consortium. The MIRI cryocooler development was led and managed by JPL, in collaboration with NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and Northrop Grumman in Redondo Beach, California. Caltech manages JPL for NASA.

For more information about the Webb mission, visit:

https://www.nasa.gov/webb

News Media Contact

Laura Betz

Goddard Space Flight Center, Greenbelt, Md.

laura.e.betz@nasa.gov

Calla Cofield

Jet Propulsion Laboratory, Pasadena, Calif.

626-808-2469

calla.e.cofield@jpl.nasa.gov

2022-165

Related News

Stars and Galaxies .

NASA’s Webb Telescope Captures Rarely Seen Prelude to Supernova

Stars and Galaxies .

NASA’s Webb Reveals Intricate Networks of Gas, Dust in Nearby Galaxies

Stars and Galaxies .

NASA Gets Unusually Close Glimpse of Black Hole Snacking on Star

Stars and Galaxies .

VP Harris, French President Get First Look at Galactic Get-Together

Stars and Galaxies .

Baby Star ‘Burps’ Tell Tales of Frantic Feeding, NASA Data Shows

Stars and Galaxies .

NASA, ESA Reveal Tale of Death, Dust in Orion Constellation

Stars and Galaxies .

NASA Telescope Takes 12-Year Time-Lapse Movie of Entire Sky

Stars and Galaxies .

Star Duo Forms ‘Fingerprint’ in Space, NASA’s Webb Finds

Stars and Galaxies .

A Cosmic Tarantula, Caught by NASA’s Webb

Stars and Galaxies .

NASA’s Webb Detects Carbon Dioxide in Exoplanet Atmosphere

Explore More

Mission .

ASTHROS

Video .

What's Up - March 2023

Mission .

Euclid

Video .

What's Up - February 2023

Mission .

The Nancy Grace Roman Space Telescope

Video .

What's Up - January 2023

Video .

What's Up - December 2022

Video .

What's Up - November 2022

Video .

What's Up - October 2022

Video .

What's Up - September 2022

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018