JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

Giant Asteroid's Troughs Suggest Stunted Planet

Sep 26, 2012
This full view of the giant asteroid Vesta was taken by NASA's Dawn spacecraft, as part of a rotation characterization sequence on July 24, 2011, at a distance of 3,200 miles (5,200 kilometers). A rotation characterization sequence helps the scientists and engineers by giving an initial overview of the character of the surface as Vesta rotated underneath the spacecraft.› Full image and caption
Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Data from NASA's Dawn spacecraft suggest troughs sculpted around Vesta's middle are likely dropped blocks of terrain bounded by faults.

Enormous troughs that wrap around the giant asteroid Vesta may actually be dropped blocks of terrain bounded by fault lines, suggesting a geologic complexity beyond that of most asteroids. Since the discovery of the troughs last year in data from NASA's Dawn spacecraft, scientists have been working to determine the story behind these unusual features. The research reinforces the claim that Vesta has a core, mantle and crust, a structure normally reserved for larger bodies, such as planets and large moons.

An extensive system of troughs encircles Vesta's equatorial region. The biggest of those troughs, named Divalia Fossa, surpasses the size of the Grand Canyon. It spans 289 miles (465 kilometers) in length, 13.6 miles (22 kilometers) in width and 3 miles (5 kilometers) in depth. The complexity of the troughs' morphology can't be explained by small collisions. New measurements from Dawn indicate that a large collision could have created the asteroid's troughs, said Debra Buczkowski, a Dawn participating scientist based at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., who is the lead author of a new paper in Geophysical Research Letters, a journal of the American Geophysical Union. The crustal layer at the surface appeared to stretch to the breaking point and large portions of the crust dropped down along two faults on either side of the downward-moving block, leaving the giant troughs we see today.

The scale of the fracturing would only have been possible if the asteroid is differentiated - meaning that it has a core, mantle and crust. "By saying it's differentiated," said Buczkowski, "we're basically saying Vesta was a little planet trying to happen."

For more information on the paper, see http://www.agu.org/news/press/pr_archives/2012/2012-42.shtml .

News Media Contact

Jia-Rui Cook

818-354-0724

jccook@jpl.nasa.gov

2012-304

Related News

Mars .

NASA to Reveal New Video, Images From Mars Perseverance Rover

Mars .

NASA's Mars Perseverance Rover Provides Front-Row Seat to Landing, First Audio Recording of Red Planet

Mars .

NASA’s Perseverance Rover Sends Sneak Peek of Mars Landing

Mars .

NASA’s Mars Helicopter Reports In

Mars .

Touchdown! NASA’s Mars Perseverance Rover Safely Lands on Red Planet

Mars .

Searching for Life in NASA’s Perseverance Mars Samples

Mars .

The Mars Relay Network Connects Us to NASA’s Martian Explorers

Mars .

NASA Invites Public to Share Thrill of Mars Perseverance Rover Landing

Mars .

InSight Is Meeting the Challenge of Winter on Dusty Mars

Mars .

Where Should Future Astronauts Land on Mars? Follow the Water

Explore More

Image .

Deep Jet Streams in Jupiter's Atmosphere

Image .

Power On: Psyche Spacecraft

Video .

What's Up - February 2021

Image .

Juno's Mission Goes On

Topic .

Solar System

Image .

Jupiter's Storm Oval BA As Viewed By An Artist

Image .

Jupiter North Pole Detail

Image .

A Hot Spot on Jupiter

Image .

A Jupiter Circumpolar Cyclone

Image .

Two Views of Jupiter Hot Spot

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Universe Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono