JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Technology
.

Gecko Grippers Moving On Up

Aug 12, 2015
This artist's concept shows how a future robot called LEMUR (Limbed Excursion Mechanical Utility Robot) could inspect and maintain installations on the International Space Station. The robot would stick to the outside using a gecko-inspired gripping system.
Credit: NASA/JPL-Caltech
JPL researchers were inspired by gecko feet, such as the one shown here, in designing a gripping system for space. Just as a gecko's foot has tiny adhesive hairs, the JPL devices have small structures that work in similar ways.
Credit: Wikimedia Commons
The gecko grippers could one day be used to mount objects on the inside of the International Space Station. This image shows a gripper attaching a clipboard to a spare panel -- the same kind found inside the United States' modules of the station.
Credit: NASA/JPL-Caltech

Geckos have inspired a technology to make things stick together in space.

A piece of tape can only be used a few times before the adhesion wears off and it can no longer hold two surfaces together. But researchers at NASA's Jet Propulsion Laboratory in Pasadena, California, are working on the ultimate system of stickiness, inspired by geckos.

Thanks to tiny hairs on the bottom of geckos' feet, these lizards can cling to walls with ease, and their stickiness doesn't wear off with repeated usage. JPL engineer Aaron Parness and colleagues used that concept to create a material with synthetic hairs that are much thinner than a human hair. When a force is applied to make the tiny hairs bend, that makes the material stick to a desired surface.

"This is how the gecko does it, by weighting its feet," Parness said.

Behind this phenomenon is a concept called van der Waals forces. A slight electrical field is created because electrons orbiting the nuclei of atoms are not evenly spaced, so there are positive and negative sides to a neutral molecule. The positively charged part of a molecule attracts the negatively charged part of its neighbor, resulting in "stickiness." Even in extreme temperature, pressure and radiation conditions, these forces persist.

"The grippers don't leave any residue and don't require a mating surface on the wall the way Velcro would," Parness said.

The newest generation of grippers can support more than 150 Newtons of force, the equivalent of 35 pounds (16 kilograms).

In a microgravity flight test last year through NASA's Space Technology Mission Directorate's Flight Opportunities Program, the gecko-gripping technology was used to grapple a 20-pound (10 kilogram) cube and a 250-pound (100 kilogram) person. The gecko material was separately tested in more than 30,000 cycles of turning the stickiness "on" and "off" when Parness was in graduate school at Stanford University in Palo Alto, California. Despite the extreme conditions, the adhesive stayed strong.

Researchers have more recently made three sizes of hand-operated "astronaut anchors," which could one day be given to astronauts inside the International Space Station. The anchors are made currently in footprints of 1 by 4 inches (2.5 by 10 centimeters), 2 by 6 inches (5 by 15 centimeters) and 3 by 8 inches (7.6 by 20 centimeters). They would serve as an experiment to test the gecko adhesives in microgravity for long periods of time and as a practical way for astronauts to attach clipboards, pictures and other handheld items to the interior walls of the station. Astronauts would simply attach the object to the mounting post of the gripper by pushing together the two components of the gripper. Parness and colleagues are collaborating with NASA's Johnson Space Center in Houston on this concept.

Parness and his team are also testing the Lemur 3 climbing robot, which has gecko-gripper feet, in simulated microgravity environments. The team thinks possible applications could be to have robots like this on the space station conducting inspections and making repairs on the exterior. For testing, the robot maneuvers across mock-up solar and radiator panels to emulate that environment.

There are numerous applications beyond the space station for this technology.

"We might eventually grab satellites to repair them, service them, and we also could grab space garbage and try to clear it out of the way," Parness said.

The California Institute of Technology in Pasadena manages JPL for NASA.

News Media Contact

Elizabeth Landau

Headquarters, Washington

202-358-0845

elandau@nasa.gov

2015-268

Related News

Climate Change .

NASA-Built Instrument Will Help to Spot Greenhouse Gas Super-Emitters

Stars and Galaxies .

Telescopes Unite in Unprecedented Observations of Famous Black Hole

Earth .

NASA Satellites Detect Signs of Volcanic Unrest Years Before Eruptions

Technology .

NASA Selects Innovative, Early-Stage Tech Concepts for Continued Study

Technology .

POINTER: Seeing Through Walls to Help Locate Firefighters

Mars .

Sensors Collect Crucial Data on Mars Landings With Arrival of Perseverance

Solar System .

NASA’s Europa Clipper Builds Hardware, Moves Toward Assembly

Asteroids and Comets .

NASA Begins Final Assembly of Spacecraft Destined for Asteroid Psyche

Earth .

NASA Data Powers New USDA Soil Moisture Portal

Technology .

Futuristic Space Technology Concepts Selected by NASA for Initial Study

Explore More

Topic .

Technology

Video .

Working Remotely: How Astronauts Upgraded a Complex Experiment in Space

Infographic .

Caltech (Verma,Akhil phD. Planetary Science)

Video .

NASA Climbing Robot Scales Cliffs and Looks for Life

Infographic .

Voyager 2: By the Numbers

Infographic .

Grand Challenge Initiative

Video .

OnSight: Virtual Visit to Mars

Infographic .

Pi in the Sky 5

Infographic .

Understanding the Ionosphere: NASA's ICON Mission

Infographic .

2018 Poker Flat Sounding Rocket Campaign Quick Look

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Visions of the Future
Slice of History
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Universe Newsletter
Social Media
RSS
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono