JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo

Galaxy Clusters Reveal New Dark Matter Insights

Jan 25, 2016
This comparison of galaxy clusters from the Sloan Digital Sky Survey DR8 galaxy catalog shows a spread-out cluster (left) and a more densely-packed cluster (right). A new study shows that these differences are related to the surrounding dark-matter environment.
Credit: Sloan Digital Sky Survey
This image from NASA's Hubble Space Telescope shows the inner region of Abell 1689, an immense cluster of galaxies. Scientists say the galaxy clusters we see today have resulted from fluctuations in the density of matter in the early universe.› Full image and caption
Credit: NASA/ESA/JPL-Caltech/Yale/CNRS

A new study finds connections between properties of galaxy clusters and their surrounding dark-matter environment.

Dark matter is a mysterious cosmic phenomenon that accounts for 27 percent of all matter and energy. Though dark matter is all around us, we cannot see it or feel it. But scientists can infer the presence of dark matter by looking at how normal matter behaves around it.

Galaxy clusters, which consist of thousands of galaxies, are important for exploring dark matter because they reside in a region where such matter is much denser than average. Scientists believe that the heavier a cluster is, the more dark matter it has in its environment. But new research suggests the connection is more complicated than that.

"Galaxy clusters are like the large cities of our universe. In the same way that you can look at the lights of a city at night from a plane and infer its size, these clusters give us a sense of the distribution of the dark matter that we can't see," said Hironao Miyatake at NASA's Jet Propulsion Laboratory, Pasadena, California.

A new study in Physical Review Letters, led by Miyatake, suggests that the internal structure of a galaxy cluster is linked to the dark matter environment surrounding it. This is the first time that a property besides the mass of a cluster has been shown to be associated with surrounding dark matter.

Researchers studied approximately 9,000 galaxy clusters from the Sloan Digital Sky Survey DR8 galaxy catalog, and divided them into two groups by their internal structures: one in which the individual galaxies within clusters were more spread out, and one in which they were closely packed together. The scientists used a technique called gravitational lensing -- looking at how the gravity of clusters bends light from other objects -- to confirm that both groups had similar masses.

But when the researchers compared the two groups, they found an important difference in the distribution of galaxy clusters. Normally, galaxy clusters are separated from other clusters by 100 million light-years on average. But for the group of clusters with closely packed galaxies, there were fewer neighboring clusters at this distance than for the sparser clusters. In other words, the surrounding dark-matter environment determines how packed a cluster is with galaxies.

"This difference is a result of the different dark-matter environments in which the groups of clusters formed. Our results indicate that the connection between a galaxy cluster and surrounding dark matter is not characterized solely by cluster mass, but also its formation history," Miyatake said.

Study co-author David Spergel, professor of astronomy at Princeton University in New Jersey, added, "Previous observational studies had shown that the cluster's mass is the most important factor in determining its global properties. Our work has shown that 'age matters': Younger clusters live in different large-scale dark-matter environments than older clusters."

The results are in line with predictions from the leading theory about the origins of our universe. After an event called cosmic inflation, a period of less than a trillionth of a second after the big bang, there were small changes in the energy of space called quantum fluctuations. These changes then triggered a non-uniform distribution of matter. Scientists say the galaxy clusters we see today have resulted from fluctuations in the density of matter in the early universe.

"The connection between the internal structure of galaxy clusters and the distribution of surrounding dark matter is a consequence of the nature of the initial density fluctuations established before the universe was even one second old," Miyatake said.

Researchers will continue to explore these connections.

"Galaxy clusters are remarkable windows into the mysteries of the universe. By studying them, we can learn more about the evolution of large-scale structure of the universe, and its early history, as well as dark matter and dark energy," Miyatake said.

News Media Contact

Elizabeth Landau

Headquarters, Washington

202-358-0845

elandau@nasa.gov

2016-020

Latest News

Mars .

NASA to Host Virtual Briefing on February Perseverance Mars Rover Landing

Mars .

NASA InSight’s ‘Mole’ Ends Its Journey on Mars

Stars and Galaxies .

Citizen Scientists Help Create 3D Map of Cosmic Neighborhood

Solar System .

NASA’s Juno Mission Expands Into the Future

Mars .

Mars 2020 Perseverance Rover to Capture Sounds From the Red Planet

Mars .

NASA’s Curiosity Rover Reaches Its 3,000th Day on Mars

JPL Life .

Explore NASA’s Jet Propulsion Laboratory With the New Virtual Tour

Stars and Galaxies .

Gravitational Wave Search Finds Tantalizing New Clue

Mars .

Celebrate the Perseverance Rover Landing With NASA's Student Challenge

Mars .

NASA Extends Exploration for Two Planetary Science Missions

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono