JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

Earth-based Views of Jupiter to Enhance Juno Flyby

Jun 30, 2017
This animation shows Jupiter as revealed by a powerful telescope and a mid-infrared filter sensitive to the giant planet's tropospheric temperatures and cloud thickness. It combines observations made on Jan. 14, 2017, using the Subaru Telescope in Hawaii.› Full image and caption
Credit: NAOJ/NASA/JPL-Caltech
This composite, false-color infrared image of Jupiter reveals haze particles over a range of altitudes, as seen in reflected sunlight. It was taken using the Gemini North telescope in Hawaii on May 18, 2017, in collaboration with observations of Jupiter by NASA's Juno mission.› Full image and caption
Credit: Gemini Observatory/AURA/NSF/NASA/JPL-Caltech
This false-color image of Jupiter was taken on May 18, 2017, with the Subaru Telescope in Hawaii, using a mid-infrared filter centered at a wavelength of 8.8 microns. The Great Red Spot appears at the lower center of the planet as a cold region with a thick cloud layer.› Full image and caption
Credit: NAOJ/NASA/JPL-Caltech

Telescopes in Hawaii have obtained new images of Jupiter and its Great Red Spot, which will assist the first-ever close-up study of the Great Red Spot, planned for July 10.

Telescopes in Hawaii have obtained new images of Jupiter and its Great Red Spot, which will assist the first-ever close-up study of the Great Red Spot, planned for July 10. On that date, NASA's Juno spacecraft will fly directly over the giant planet's most famous feature at an altitude of only about 5,600 miles (9,000 kilometers).

Throughout the Juno mission, numerous observations of Jupiter by Earth-based telescopes have been acquired in coordination with the mission, to help Juno investigate the giant planet's atmosphere. On May 18, 2017, the Gemini North telescope and the Subaru Telescope, both on Hawaii's Mauna Kea peak, simultaneously examined Jupiter in very high resolution at different wavelengths. These latest observations supplement others earlier this year in providing information about atmospheric dynamics at different depths at the Great Red Spot and other regions of Jupiter.

The Great Red Spot is a swirling storm, centuries old and wider than the diameter of Earth. Juno will use multiple instruments to study this feature when it flies over it about 12 minutes after the spacecraft makes the closest approach to Jupiter of its current orbit at 6:55 p.m. on July 10, PDT (9:55 p.m. on July 10, EDT; 1:55 a.m. on July 11, Universal Time). Juno entered orbit around Jupiter on July 4, 2016.

"Observations with Earth's most powerful telescopes enhance the spacecraft's planned observations by providing three types of additional context," said Juno science team member Glenn Orton of NASA's Jet Propulsion Laboratory, Pasadena, California. "We get spatial context from seeing the whole planet. We extend and fill in our temporal context from seeing features over a span of time. And we supplement with wavelengths not available from Juno. The combination of Earth-based and spacecraft observations is a powerful one-two punch in exploring Jupiter."

Orton collaborated with researchers at Gemini; Subaru; the University of California, Berkeley; Tohoku University, Japan; and elsewhere in planning the recent observations.

The observers used Gemini North on May 18 to examine Jupiter through special near-infrared filters. The filters exploit specific colors of light that can penetrate the upper atmosphere and clouds of Jupiter, revealing mixtures of methane and hydrogen in the planet's atmosphere. These observations showed a long, fine-structured wave extending off the eastern side of the Great Red Spot.

On the same night, researchers used Subaru's Cooled Mid-Infrared Camera and Spectrometer (COMICS), with filters sensitive to temperatures at different layers of Jupiter's atmosphere. These mid-infrared observations showed the Great Red Spot "had a cold and cloudy interior increasing toward its center, with a periphery that was warmer and clearer," Orton said. "A region to its northwest was unusually turbulent and chaotic, with bands that were cold and cloudy, alternating with bands that were warm and clear."

For more information about the National Astronomical Observatory of Japan's Subaru Telescope, visit:

https://subarutelescope.org/

For more information about the Gemini Observatory, a partnership of the United States, Canada, Brazil, Argentina and Chile, visit:

https://www.gemini.edu/

JPL manages the Juno mission for the principal investigator, Scott Bolton, of Southwest Research Institute in San Antonio. The Juno mission is part of the New Frontiers Program managed by NASA's Marshall Space Flight Center in Huntsville, Alabama, for the Science Mission Directorate. Lockheed Martin Space Systems, Denver, built the spacecraft. JPL is a division of Caltech in Pasadena, California. More information on the Juno mission is available at:

https://www.nasa.gov/juno

http://missionjuno.org

News Media Contact

DC Agle

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-9011

agle@jpl.nasa.gov

Guy Webster

818-354-6278

guy.webster@jpl.nasa.gov

Deb Schmid

Southwest Research Institute, San Antonio

210-522-2254

dschmid@swri.org

Yuko Kakazu

808-934-5960

kakazu@naoj.org

Peter Michaud

808-974-2510

pmichaud@gemini.edu

Dwayne Brown

202-358-1726

dwayne.c.brown@nasa.gov

Laurie Cantillo

202-358-1077

laura.l.cantillo@nasa.gov

2017-185

Related News

Mars .

NASA’s Perseverance Drives on Mars’ Terrain for First Time

Mars .

NASA Awards Mars Ascent Propulsion System Contract for Sample Return

Mars .

NASA to Provide Update on Perseverance ‘Firsts’ Since Mars Landing

Mars .

NASA to Reveal New Video, Images From Mars Perseverance Rover

Mars .

NASA's Mars Perseverance Rover Provides Front-Row Seat to Landing, First Audio Recording of Red Planet

Mars .

NASA’s Perseverance Rover Sends Sneak Peek of Mars Landing

Mars .

NASA’s Mars Helicopter Reports In

Mars .

Touchdown! NASA’s Mars Perseverance Rover Safely Lands on Red Planet

Mars .

Searching for Life in NASA’s Perseverance Mars Samples

Mars .

The Mars Relay Network Connects Us to NASA’s Martian Explorers

Explore More

Video .

What's Up - March 2021

Image .

Deep Jet Streams in Jupiter's Atmosphere

Image .

Power On: Psyche Spacecraft

Video .

What's Up - February 2021

Image .

Juno's Mission Goes On

Topic .

Solar System

Image .

Jupiter's Storm Oval BA As Viewed By An Artist

Image .

Jupiter North Pole Detail

Image .

A Hot Spot on Jupiter

Image .

A Jupiter Circumpolar Cyclone

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Visions of the Future
Slice of History
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Universe Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono