JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

Dawn Identifies Age of Ceres' Brightest Area

Mar 08, 2017
The bright spots in the center of Occator Crater on Ceres are shown in enhanced color in this view from NASA's Dawn spacecraft.› Full image and caption
Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI/LPI

The bright central area of Ceres' Occator Crater, known as Cerealia Facula, is approximately 30 million years younger than the crater in which it lies, according to a new study in the Astronomical Journal.

The bright central area of Ceres' Occator Crater, known as Cerealia Facula, is approximately 30 million years younger than the crater in which it lies, according to a new study in the Astronomical Journal. Scientists used data from NASA's Dawn spacecraft to analyze Occator's central dome in detail, concluding that this intriguing bright feature on the dwarf planet is only about 4 million years old -- quite recent in terms of geological history.

Researchers led by Andreas Nathues at the Max Planck Institute for Solar System Research (MPS) in Gottingen, Germany, analyzed data from two instruments on board NASA's Dawn spacecraft: the framing camera, and the visible and infrared mapping spectrometer.

The new study supports earlier interpretations from the Dawn team that this reflective material -- comprising the brightest area on all of Ceres -- is made of carbonate salts, although it did not confirm a particular type of carbonate previously identified. The secondary, smaller bright areas of Occator, called Vinalia Faculae, are comprised of a mixture of carbonates and dark material, the study authors wrote.

New evidence also suggests that Occator's bright dome likely rose in a process that took place over a long period of time, rather than forming in a single event. They believe the initial trigger was the impact that dug out the crater itself, causing briny liquid to rise closer to the surface. Water and dissolved gases, such as carbon dioxide and methane, came up and created a vent system. These rising gases also could have forced carbonate-rich materials to ascend toward the surface. During this period, the bright material would have erupted through fractures, eventually forming the dome that we see today.

Read more from MPS

The spacecraft is currently on its way to a high-altitude orbit of 12,400 miles (20,000 kilometers), and to a different orbital plane. In late spring, Dawn will view Ceres in "opposition," with the sun directly behind the spacecraft. By measuring details of the brightness of the salt deposits in this new geometry, scientists may gain even more insights into these captivating bright areas.

The Dawn mission is managed by JPL for NASA's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital ATK Inc., in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team. For a complete list of mission participants, visit:

http://dawn.jpl.nasa.gov/mission

More information about Dawn is available at the following sites:

http://www.nasa.gov/dawn

http://dawn.jpl.nasa.gov

News Media Contact

Elizabeth Landau

Headquarters, Washington

202-358-0845

elandau@nasa.gov

2017-059

Related News

Mars .

NASA’s Perseverance Mars Rover Extracts First Oxygen From Red Planet

Mars .

NASA’s Ingenuity Mars Helicopter Succeeds in Historic First Flight

Mars .

NASA to Attempt First Controlled Flight on Mars As Soon As Monday

Mars .

NASA’s Mars Helicopter to Make First Flight Attempt

Mars .

NASA’s Odyssey Orbiter Marks 20 Historic Years of Mapping Mars

Solar System .

Probing for Life in the Icy Crusts of Ocean Worlds

Mars .

NASA’s First Weather Report From Jezero Crater on Mars

Mars .

NASA Invites Public to Take Flight With Ingenuity Mars Helicopter

Mars .

NASA’s Mars Helicopter Survives First Cold Martian Night on Its Own

Mars .

Sensors Collect Crucial Data on Mars Landings With Arrival of Perseverance

Explore More

Image .

Apollo Footprint

Image .

Goldstone Radar Observations of Asteroid 2001 FO32

Video .

What's Up - April 2021

Image .

Europa Clipper's Europa Imaging System in the Works

Image .

Europa Clipper REASON Testing on the Mesa

Image .

Europa Imaging System Narrow Angle Camera

Image .

Europa Imaging System Wide Angle Camera

Image .

Faraday Cups Up Close: NASA's Europa Clipper

Image .

Preparing NASA's Europa Clipper's Plasma Instrument

Image .

Europa Clipper's Thermal Tubing

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Visions of the Future
Slice of History
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Universe Newsletter
Social Media
RSS
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono