JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

Curiosity Surveys a Mystery Under Dusty Skies

Sep 06, 2018
This 360-degree panorama was taken on Aug. 9 by NASA's Curiosity rover at its location on Vera Rubin Ridge.› Full image and caption
Credit: NASA/JPL-Caltech/MSSS

After snagging a new rock sample on Aug. 9, NASA's Curiosity rover surveyed its surroundings on Mars, producing a 360-degree panorama of its current location on Vera Rubin Ridge.

After snagging a new rock sample on Aug. 9, NASA's Curiosity rover surveyed its surroundings on Mars, producing a 360-degree panorama of its current location on Vera Rubin Ridge.

The panorama includes umber skies, darkened by a fading global dust storm. It also includes a rare view by the Mast Camera of the rover itself, revealing a thin layer of dust on Curiosity's deck. In the foreground is the rover's most recent drill target, named "Stoer" after a town in Scotland near where important discoveries about early life on Earth were made in lakebed sediments.

The new drill sample delighted Curiosity's science team, because the rover's last two drill attempts were thwarted by unexpectedly hard rocks. Curiosity started using a new drill method earlier this year to work around a mechanical problem. Testing has shown it to be as effective at drilling rocks as the old method, suggesting the hard rocks would have posed a problem no matter which method was used.

There's no way for Curiosity to determine exactly how hard a rock will be before drilling it, so for this most recent drilling activity, the rover team made an educated guess. An extensive ledge on the ridge was thought to include harder rock, able to stand despite wind erosion; a spot below the ledge was thought more likely to have softer, erodible rocks. That strategy seems to have panned out, but questions still abound as to why Vera Rubin Ridge exists in the first place.

The rover has never encountered a place with so much variation in color and texture, according to Ashwin Vasavada, Curiosity's project scientist at NASA's Jet Propulsion Laboratory in Pasadena, California. JPL leads the Mars Science Laboratory mission that Curiosity is a part of.

"The ridge isn't this monolithic thing -- it has two distinct sections, each of which has a variety of colors," Vasavada said. "Some are visible to the eye and even more show up when we look in near-infrared, just beyond what our eyes can see. Some seem related to how hard the rocks are."

The best way to discover why these rocks are so hard is to drill them into a powder for the rover's two internal laboratories. Analyzing them might reveal what's acting as "cement" in the ridge, enabling it to stand despite wind erosion. Most likely, Vasavada said, groundwater flowing through the ridge in the ancient past had a role in strengthening it, perhaps acting as plumbing to distribute this wind-proofing "cement."

Much of the ridge contains hematite, a mineral that forms in water. There's such a strong hematite signal that it drew the attention of NASA orbiters like a beacon. Could some variation in hematite result in harder rocks? Is there something special in the ridge's red rocks that makes them so unyielding?

For the moment, Vera Rubin Ridge is keeping its secrets to itself.

Two more drilled samples are planned for the ridge in September. After that, Curiosity will drive to its scientific end zone: areas enriched in clay and sulfate minerals higher up Mt. Sharp. That ascent is planned for early October.

http://mars.nasa.gov

News Media Contact

Andrew Good

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-2433

andrew.c.good@jpl.nasa.gov

2018-209

Related News

Mars .

NASA’s Perseverance Drives on Mars’ Terrain for First Time

Mars .

NASA Awards Mars Ascent Propulsion System Contract for Sample Return

Mars .

NASA to Provide Update on Perseverance ‘Firsts’ Since Mars Landing

Mars .

NASA to Reveal New Video, Images From Mars Perseverance Rover

Mars .

NASA's Mars Perseverance Rover Provides Front-Row Seat to Landing, First Audio Recording of Red Planet

Mars .

NASA’s Perseverance Rover Sends Sneak Peek of Mars Landing

Mars .

NASA’s Mars Helicopter Reports In

Mars .

Touchdown! NASA’s Mars Perseverance Rover Safely Lands on Red Planet

Mars .

Searching for Life in NASA’s Perseverance Mars Samples

Mars .

The Mars Relay Network Connects Us to NASA’s Martian Explorers

Explore More

Video .

What's Up - March 2021

Image .

Deep Jet Streams in Jupiter's Atmosphere

Image .

Power On: Psyche Spacecraft

Video .

What's Up - February 2021

Image .

Juno's Mission Goes On

Topic .

Solar System

Image .

Jupiter's Storm Oval BA As Viewed By An Artist

Image .

Jupiter North Pole Detail

Image .

A Hot Spot on Jupiter

Image .

A Jupiter Circumpolar Cyclone

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Visions of the Future
Slice of History
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Universe Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono