JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Solar System
.

Curiosity Mars Rover Crosses Rugged Plateau

Apr 27, 2016
This 360-degree panorama from the Mastcam on NASA's Curiosity Mars rover shows the rugged surface of "Naukluft Plateau" plus upper Mount Sharp at right and part of the rim of Gale Crater.› Full image and caption
Credit: NASA/JPL-Caltech/MSSS
This early-morning view from the Mastcam on NASA's Curiosity Mars rover on March 16, 2016, covers a portion of the inner wall of Gale Crater. At right, the image fades into glare of the rising sun.› Full image and caption
Credit: NASA/JPL-Caltech/MSSS
The team operating NASA's Curiosity Mars rover uses the MAHLI camera on the rover's arm to check the condition of the wheels at routine intervals.› Full image and caption
Credit: NASA/JPL-Caltech/MSSS

NASA's Curiosity Mars rover has nearly finished crossing a stretch of the most rugged and difficult-to-navigate terrain encountered during the mission's 44 months on Mars.

NASA's Curiosity Mars rover has nearly finished crossing a stretch of the most rugged and difficult-to-navigate terrain encountered during the mission's 44 months on Mars.

The rover climbed onto the "Naukluft Plateau" of lower Mount Sharp in early March after spending several weeks investigating sand dunes. The plateau's sandstone bedrock has been carved by eons of wind erosion into ridges and knobs. The path of about a quarter mile (400 meters) westward across it is taking Curiosity toward smoother surfaces leading to geological layers of scientific interest farther uphill.

The roughness of the terrain on the plateau raised concern that driving on it could be especially damaging to Curiosity's wheels, as was terrain Curiosity crossed before reaching the base of Mount Sharp. Holes and tears in the rover's aluminum wheels became noticeable in 2013. The rover team responded by adjusting the long-term traverse route, revising how local terrain is assessed and refining how drives are planned. Extensive Earth-based testing provided insight into wheel longevity.

The rover team closely monitors wear and tear on Curiosity's six wheels. "We carefully inspect and trend the condition of the wheels," said Steve Lee, Curiosity's deputy project manager at NASA's Jet Propulsion Laboratory, Pasadena, California. "Cracks and punctures have been gradually accumulating at the pace we anticipated, based on testing we performed at JPL. Given our longevity projections, I am confident these wheels will get us to the destinations on Mount Sharp that have been in our plans since before landing."

Inspection of the wheels after crossing most of the Naukluft Plateau has indicated that, while the terrain presented challenges for navigation, driving across it did not accelerate damage to the wheels.

On Naukluft Plateau, the rover's Mast Camera has recorded some panoramic scenes from the highest viewpoints Curiosity has reached since its August 2012 landing on the floor of Gale Crater on Mars. Examples are available online at these sites:

http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA20332

http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA20333

The scenes show wind-sculpted textures in the sandstone bedrock close to the rover, and Gale Crater's rim rising above the crater floor in the distance. Mount Sharp stands in the middle of the crater, which is about 96 miles (154 kilometers) in diameter.

The next part of the rover's route will return to a type of lake-deposited mudstone surface examined previously. Farther ahead on lower Mount Sharp are three geological units that have been key destinations for the mission since its landing site was selected. One of the units contains an iron-oxide mineral called hematite, which was detected from orbit. Just above it lies a band rich in clay minerals, then a series of layers that contain sulfur-bearing minerals called sulfates. By examining them with Curiosity, researchers hope to gain a better understanding of how long ancient environmental conditions remained favorable for microbial life, if it was ever present on Mars, before conditions became drier and less favorable.

Each of Curiosity's six wheels is about 20 inches (50 centimeters) in diameter and 16 inches (40 centimeters) wide, milled out of solid aluminum. Most of the wheel's circumference is a metallic skin that is about half the thickness of a U.S. dime. Nineteen zigzag-shaped treads, called grousers, extend about a quarter inch (three-fourths of a centimeter) outward from the skin of each wheel. The grousers bear much of the rover's weight and provide most of the traction and ability to traverse over uneven terrain.

The holes seen in the wheels so far perforate only the skin. Wheel-monitoring images obtained every 547 yards (500 meters) have not yet shown any grouser breaks on Curiosity. Earth-based testing examined long-term wear characteristics and the amount of damage a rover wheel can sustain before losing its usefulness for driving. The tests indicate that when three grousers on a wheel have broken, that wheel has reached about 60 percent of its useful mileage.

At a current odometry of 7.9 miles (12.7 kilometers) since its August 2012 landing, Curiosity's wheels are projected to have more than enough life remaining to investigate the hematite, clay and sulfate units ahead, even in the unlikely case that up to three grousers break soon. The driving distance to the start of the sulfate-rich layers is roughly 4.7 miles (7.5 kilometers) from the rover's current location.

Curiosity reached the base of Mount Sharp in 2014 after fruitfully investigating outcrops closer to its landing site and then trekking to the layered mountain. For more information about Curiosity, visit:

http://mars.jpl.nasa.gov/msl

http://mars.jpl.nasa.gov/

News Media Contact

Guy Webster

818-354-6278

guy.webster@jpl.nasa.gov

Dwayne Brown / Laurie Cantillo

202-358-1726 / 202-358-1077

dwayne.c.brown@nasa.gov / laura.l.cantillo@nasa.gov

2016-115

Related News

Solar System .

NASA’s Deep Space Network Welcomes a New Dish to the Family

Mars .

6 Things to Know About NASA’s Mars Helicopter on Its Way to Mars

Mars .

NASA to Host Virtual Briefing on February Perseverance Mars Rover Landing

Mars .

NASA InSight’s ‘Mole’ Ends Its Journey on Mars

Mars .

Mars 2020 Perseverance Rover to Capture Sounds From the Red Planet

Solar System .

NASA’s Juno Mission Expands Into the Future

Mars .

NASA’s Curiosity Rover Reaches Its 3,000th Day on Mars

Mars .

NASA Extends Exploration for Two Planetary Science Missions

Mars .

Celebrate the Perseverance Rover Landing With NASA's Student Challenge

Mars .

7 Things to Know About the NASA Rover About to Land on Mars

Explore More

Image .

Juno's Mission Goes On

Topic .

Solar System

Image .

A Hot Spot on Jupiter

Image .

Jupiter's Storm Oval BA As Viewed By An Artist

Image .

Two Views of Jupiter Hot Spot

Image .

A Jupiter Circumpolar Cyclone

Image .

Jupiter North Pole Detail

Video .

What's Up - January 2021

Image .

All Eight Northern Circumpolar Cyclones in 2020

Image .

Tracking Clouds on Jupiter

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono