JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo

Carbon Worlds May be Waterless, Finds NASA Study

Oct 25, 2013
This artist's concept illustrates the fate of two different planets: the one on the left is similar to Earth, made up largely of silicate-based rocks with oceans coating its surface. The one on the right is rich in carbon -- and dry. Chances are low that life as we know it, which requires liquid water, would thrive under such barren conditions.› Full image and caption
Credit: NASA/JPL-Caltech

New theoretical research has so-called diamond planets coming up dry.

Planets rich in carbon, including so-called diamond planets, may lack oceans, according to NASA-funded theoretical research.

Our sun is a carbon-poor star, and as result, our planet Earth is made up largely of silicates, not carbon. Stars with much more carbon than the sun, on the other hand, are predicted to make planets chock full of carbon, and perhaps even layers of diamond.

By modeling the ingredients in these carbon-based planetary systems, the scientists determined they lack icy water reservoirs thought to supply planets with oceans.

"The building blocks that went into making our oceans are the icy asteroids and comets," said Torrence Johnson of NASA's Jet Propulsion Laboratory in Pasadena, Calif, who presented the results Oct. 7 at the American Astronomical Society Division of Planetary Sciences meeting in Denver. Johnson, a team member of several NASA planetary missions, including Galileo, Voyager and Cassini, has spent decades studying the planets in our own solar system.

"If we keep track of these building blocks, we find that planets around carbon-rich stars come up dry," he said.

Johnson and his colleagues say the extra carbon in developing star systems would snag the oxygen, preventing it from forming water.

"It's ironic that if carbon, the main element of life, becomes too abundant, it will steal away the oxygen that would have made water, the solvent essential to life as we know it," said Jonathan Lunine of Cornell University, Ithaca, N.Y., a collaborator on the research.

One of the big questions in the study of planets beyond our solar system, called exoplanets, is whether or not they are habitable. Researchers identify such planets by first looking for those that are situated within the "habitable zone" around their parent stars, which is where temperatures are warm enough for water to pool on the surface. NASA's Kepler mission has found several planets within this zone, and researchers continue to scrutinize the Kepler data for candidates as small as Earth.

But even if a planet is found in this so-called "Goldilocks" zone, where oceans could, in theory, abound, is there actually enough water available to wet the surface? Johnson and his team addressed this question with planetary models based on measurements of our sun's carbon-to-oxygen ratio. Our sun, like other stars, inherited a soup of elements from the Big Bang and from previous generations of stars, including hydrogen, helium, nitrogen, silicon, carbon and oxygen.

"Our universe has its own top 10 list of elements," said Johnson, referring to the 10 most abundant elements in our universe.

These models accurately predict how much water was locked up in the form of ice early in the history of our solar system, billions of years ago, before making its way to Earth. Comets and/or the parent bodies of asteroids are thought to have been the main water suppliers, though researchers still debate their roles. Either way, the objects are said to have begun their journey from far beyond Earth, past a boundary called the "snow line," before impacting Earth and depositing water deep in the planet and on its surface.

When the researchers applied the planetary models to the carbon-rich stars, the water disappeared. "There's no snow beyond the snow line," said Johnson.

"All rocky planets aren't created equal," said Lunine. "So-called diamond planets the size of Earth, if they exist, will look totally alien to us: lifeless, ocean-less desert worlds."

The computer model results supporting these conclusions were published in the Astrophysical Journal last year (http://arxiv.org/abs/1208.3289). The implications for habitability in these systems were the focus of the Division of Planetary Sciences meeting.

The California Institute of Technology, Pasadena, manages JPL for NASA.

› PlanetQuest

News Media Contact

Whitney Clavin

626-395-1856

wclavin@caltech.edu

2013-308

Latest News

Mars .

NASA to Attempt First Controlled Flight on Mars As Soon As Monday

Climate Change .

NASA-Built Instrument Will Help to Spot Greenhouse Gas Super-Emitters

Stars and Galaxies .

Telescopes Unite in Unprecedented Observations of Famous Black Hole

Earth .

NASA Satellites Detect Signs of Volcanic Unrest Years Before Eruptions

Mars .

NASA’s Mars Helicopter to Make First Flight Attempt

Technology .

NASA Selects Innovative, Early-Stage Tech Concepts for Continued Study

Mars .

NASA’s Odyssey Orbiter Marks 20 Historic Years of Mapping Mars

Stars and Galaxies .

Trio of Fast-Spinning Brown Dwarfs May Reveal a Rotational Speed Limit

Mars .

Say Cheese on Mars: Perseverance’s Selfie With Ingenuity

Solar System .

Probing for Life in the Icy Crusts of Ocean Worlds

About JPL
Who We Are
Executive Council
Directors of JPL
JPL History
Documentary Series
Virtual Tour
Annual Reports
Missions
All
Current
Past
Future
News
All
Earth
Mars
Solar System
Universe
Technology
Galleries
Images
Videos
Audio
Podcasts
Infographics
Visions of the Future
Slice of History
Engage
JPL and the Community
Lecture Series
Public Tours
Events
Team Competitions
JPL Speakers Bureau
Topics
Solar System
Mars
Earth
Climate Change
Stars and Galaxies
Exoplanets
Technology
JPL Life
For Media
Contacts and Information
Press Kits
More
Asteroid Watch
Robotics at JPL
Subscribe to Newsletter
Universe Newsletter
Social Media
RSS
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Manager: Veronica McGregor
Site Editors: Tony Greicius, Randal Jackson, Naomi Hartono