JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Technology
.

5 Things to Know About NASA’s New Mineral Dust Detector

June 1, 2022

Dust swirls over the Arabian Peninsula in this image captured by the Suomi NPP satellite in July 2018. NASA’s upcoming Earth Surface Mineral Dust Source Investigation (EMIT) will help scientists better understand the role of airborne dust in heating and cooling the atmosphere.

Credit: NASA Earth Observatory

Called EMIT, the Earth Surface Mineral Dust Source Investigation will analyze dust carried through the atmosphere from dry regions to see what effects it has on the planet.

Each year, strong winds carry more than a billion metric tons – or the weight of 10,000 aircraft carriers – of mineral dust from Earth’s deserts and other dry regions through the atmosphere. While scientists know that the dust affects the environment and climate, they don’t have enough data to determine, in detail, what those effects are or may be in the future – at least not yet.

Launching to the International Space Station on June 9, NASA’s Earth Surface Mineral Dust Source Investigation (EMIT) instrument will help fill in those knowledge gaps. EMIT’s state-of-the-art imaging spectrometer, developed by the agency’s Jet Propulsion Laboratory in Southern California, will collect more than a billion dust-source-composition measurements around the globe over the course of a year – and in doing so, significantly advance scientists’ understanding of dust’s influence across the Earth system.

Here are five things to know about EMIT:

1. It will identify the composition of mineral dust from Earth’s arid regions.

Desert regions produce most of the mineral dust that makes its way into the atmosphere. They’re also largely remote, making it difficult for scientists to collect soil and dust samples over these vast areas by hand.

From its perch on the space station, EMIT will map the world’s mineral dust source regions. The imaging spectrometer will also provide information on the color and composition of dust sources globally for the first time. This data will help scientists understand which kinds of dust dominate each region and advance their understanding of dust’s impact on climate and the Earth system today and in the future.

Using image spectrometer technology developed at JPL, EMIT will map the surface composition of minerals in Earth’s dust-producing regions, helping climate scientists better understand the impact of airborne dust particles in heating and cooling Earth’s atmosphere.

Credit: NASA/JPL-Caltech

2. It will clarify whether mineral dust heats or cools the planet.

Right now, scientists don’t know whether mineral dust has a cumulative heating or cooling effect on the planet. That’s because dust particles in the atmosphere have different properties. For instance, some particles may be dark red, while others may be white.

The color matters because it determines whether the dust will absorb the Sun’s energy, as dark-colored minerals do, or reflect it, as light-colored minerals do. If more of the dust absorbs the Sun’s energy than reflects it, it’ll warm the planet, and vice versa.

EMIT will provide a detailed picture of how much dust comes from dark versus light minerals. That information will allow scientists to determine whether dust heats or cools the planet overall, as well as regionally and locally.

3. It will help scientists understand how dust affects different Earth processes.

Officials from NASA and JPL oversee vibration testing of the EMIT science instrument, including its telescope and imaging spectrometer.

Credit: NASA/JPL-Caltech

Mineral dust particles vary in color because they’re made of different substances. Dark red mineral dust gets its color from iron, for example. The composition of dust particles affects how they interact with many of Earth’s natural processes.

For instance, mineral dust plays a role in cloud formation and atmospheric chemistry. When mineral dust is deposited in the ocean or forests, it can provide nutrients for growth, acting like fertilizer. When it falls on snow or ice, the dust accelerates melting, leading to more water runoff. And for humans, mineral dust can be a health hazard when inhaled.

EMIT will collect information on 10 important dust varieties, including those that contain iron oxides, clays, and carbonates. With this data, scientists will be able to assess precisely what effects mineral dust has on different ecosystems and processes.

Teachable Moment: Learn More About NASA’s Mission to Study Dust in Earth’s Atmosphere

4. Its data will improve the accuracy of climate models.

In the absence of more specific data, scientists currently characterize mineral dust in climate models as yellow – a general average of dark and light. Because of this, the effects that mineral dust may have on climate – and that climate may have on mineral dust – are not well represented in computer models.

Color and composition information gathered by EMIT will change that. When the instrument’s data is incorporated, the accuracy of climate models is expected to improve.

Get the Latest JPL News

SUBSCRIBE TO THE NEWSLETTER

5. It will help scientists predict how future climate scenarios will affect the type and amount of dust in our atmosphere.

As global temperatures rise, arid regions may become even drier, possibly resulting in larger (and dustier) deserts. To what extent this might happen depends on several factors, including how much temperatures rise, how land use changes, and how rainfall trends change.

By incorporating EMIT’s global dust source composition data into models and predictions, scientists will gain a better understanding of how the amount and composition of dust in arid regions may change under different climate and land-use scenarios. They’ll also gain a better understanding of how these changes may impact climate in the future.

More About the Mission

EMIT is being developed at NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech in Pasadena, California. It will launch from Kennedy Space Center in Florida to the International Space Station aboard SpaceX’s 25th commercial resupply services mission for NASA. Once EMIT begins operation, its data will be delivered to the NASA Land Processes Distributed Active Archive Center (DAAC) for use by other researchers and the public.

To learn more about the mission, visit:

https://earth.jpl.nasa.gov/emit/

EMIT media reel

News Media Contact

Andrew Wang

Jet Propulsion Laboratory, Pasadena, Calif.

626-379-6874

andrew.wang@jpl.nasa.gov

Written by Esprit Smith, NASA’s Earth Science News Team

Related News

Technology .

NASA Spinoffs Bolster Climate Resilience, Improve Medical Care, More

Earth .

NASA Measures Underground Water Flowing From Sierra to Central Valley

Earth .

NASA Scientists and Satellites Make Sense of Earth’s Subtle Motions

Climate Change .

NASA Space Missions Pinpoint Sources of CO2 Emissions on Earth

Earth .

Watch the Latest Water Satellite Unfold Itself in Space

Technology .

Moon Water Imager Integrated With NASA’s Lunar Trailblazer

Earth .

NASA Awards Launch Services Contract for Sentinel-6B Mission

Earth .

NASA Launches International Mission to Survey Earth’s Water

Climate Change .

NASA Sensors to Help Detect Methane Emitted by Landfills

Earth .

Latest International Water Satellite Packs an Engineering Punch

Explore More

Image .

London, England Parks

Mission .

Surface Water and Ocean Topography

Image .

Potosi, Bolivia

Image .

California Atmospheric River Storms Captured by NASA's AIRS

Image .

Eriskay Island, Scotland

Image .

Airborne NASA Radar Maps Mauna Loa Lava Changes in Hawaii

Image .

Satellite Data Shows Ground Motion From Mauna Loa Volcano Eruption

Mission .

Lunar Flashlight

Image .

Takawangha Volcano, Alaska

Image .

NASA's AIRS Instrument Tracks Volcanic Sulfur Dioxide Plume from Mauna Loa Eruption

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Directions and Maps
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono
CL#: 21-0018