JPL
Careers
Education
Science & Technology
JPL Logo
JPL Logo
Image

Utopia Planitia

June 4, 2002
This image by NASA's Mars Odyssey spacecraft shows Utopia Planitia, a large plain in the northern hemisphere of Mars. It is believed that this basin is the result of a large impact.


(Released 15 May 2002)
The Science
This image is located in Utopia Planitia, a large plain in the northern hemisphere. It is believed that this basin is the result of a large impact. On the right side of the image is a partially imaged crater with a well-preserved ejecta blanket. The morphology of the ejecta implies that the crater is young relative to the surrounding material and has not undergone extensive deposition or erosion. Surrounding the crater are polygonal troughs in the smooth surface material. This polygon pattern is relatively common in the northern plains of Mars, and are primarily located in Acidalia Planitia, Elysium Planitia, and Utopia Planitia. These troughs are believed to be small grabbens, however, scientist are currently debating the origin of these features. The two most accepted hypotheses are that these grabbens either form as volcanic material cools and contracts, or are produced as sediment shrinks as a result of compaction.

The Story
When you think of Utopia, you probably don't think of a large Martian plain, riddled with troughs and pockmarked by craters. Of course, it may actually be a more fitting name than you think. When Sir Thomas More wrote his book about a fictitiously optimal place guided and governed by reason, he made up the word utopia from Greek words meaning "nowhere."

Utopia Planitia became "somewhere" for the first time, however, when its first visitor, the Viking 2 lander, settled down and analyzed the area. And scientists today are using their own reasoning and logic to discern even more about how this northern Martian plain developed geologically.

Right now, scientists have two hypotheses for how the troughs seen here were formed. Because Utopia Planitia is a volcanic region of Mars, these rifts in the surface could have formed when volcanic material cooled and then contracted. Alternatively, this area might be made up of a lot of sediments - small particles of rock, soil, and dust deposited in the area. Just like any loose material, it could have compacted together in places or "shrunk down" to create the lowered rifts in the terrain.

The polygonal patterns of these troughs can be seen more widely in the context image to the right. On Earth, we can sometimes see this pattern occurring in the Arctic and subarctic, where permafrost creates polygonal, "frozen-soil wedges" that form an almost honeycomb pattern throughout the terrain. We know from Viking 2 pictures that it can be pretty cold in this area, as a thin layer of white ground frost was observed there during a few of the Martian winters.

The whiter, brighter material near the crater, however, isn't frost or snow, but instead the record of all of the material that was once ejected from the crater at the left-hand-side of the image. You can see by the smoothness of the crater rim and the clarity of where the ejected material landed that there hasn't been much erosion. That means this crater is fairly young.

Download JPG
Download TIFF
Mission
Target
  • Mars
Spacecraft
  • 2001 Mars Odyssey
Instrument
  • Thermal Emission Imaging System
Credit
NASA/JPL/Arizona State University

Keep Exploring

Jezero Crater

Ascraeus Mons

Tharsis Lava Flows

Stege Crater - Maja Valles

Vichada Valles

Margaritifer Chaos

Gale Crater

Nili Fossae

Mamers Valles

Ceti Mensa - Western Candor Chasma

Related Topic

News .

NASA’s Ingenuity Mars Helicopter Captures Video of Record Flight

Event July 21, 2022 .

Curiosity – A Decade on Mars

Event June 23, 2022 .

Spacecraft Assembly, Test, and Launch Operations (ATLO)

Mars .

Media Teleconference - May 17, 2022

News .

NASA’s InSight Still Hunting Marsquakes as Power Levels Diminish

News .

NASA to Provide Update on InSight Mars Lander

News .

NASA’s InSight Records Monster Quake on Mars

News .

Science at Sunrise: Solving the Mystery of Frost Hiding on Mars

News .

NASA’s Mars Helicopter Scouts Ridgeline for Perseverance Science Team

News .

NASA’s Mars Helicopter Spots Gear That Helped Perseverance Rover Land

About JPL
Who We Are
Executive Council
Directors
Careers
Internships
The JPL Story
JPL Achievements
Documentary Series
Annual Reports
Missions
Current
Past
Future
All
News
All
Earth
Solar System
Stars and Galaxies
Subscribe to JPL News
Galleries
Images
Videos
Audio
Podcasts
Apps
Visions of the Future
Slice of History
Robotics at JPL
Events
Lecture Series
Team Competitions
Speakers Bureau
Calendar
Visit
Public Tours
Virtual Tour
Topics
JPL Life
Solar System
Mars
Earth
Climate Change
Exoplanets
Stars and Galaxies
Robotics
More
Asteroid Watch
NASA's Eyes Visualizations
Universe - Internal Newsletter
Social Media
Get the Latest from JPL
Follow Us

JPL is a federally funded research and development center managed for NASA by Caltech.

More from JPL
Careers Education Science & Technology Acquisitions JPL Store
Careers
Education
Science & Technology
Acquisitions
JPL Store
Related NASA Sites
Basics of Spaceflight
Climate Kids
Earth / Global Climate Change
Exoplanet Exploration
Mars Exploration
Solar System Exploration
Space Place
NASA's Eyes Visualization Project
Voyager Interstellar Mission
NASA
Caltech
Privacy
Image Policy
FAQ
Feedback
Site Managers: Veronica McGregor, Randal Jackson
Site Editors: Tony Greicius, Naomi Hartono