Yohn Ellis wears a JPL shirt and poses in front of a brick wall.

When Yohn Ellis got his chance to intern at NASA, he wasn't about to let it slip away, pandemic or not. Growing up and going to school in Houston, Texas, the home of NASA's Johnson Space Center, Ellis has long been a superfan of the agency. So when he was offered an internship at NASA's Jet Propulsion Laboratory in Southern California, he jumped at the chance. That was before all but a handful of JPL's essential employees were required to switch to remote work. So instead of a hands-on role, Ellis got first-hand experience in how the laboratory overcomes challenges. Returning intern Evan Kramer caught up with Ellis, a grad student studying electrical engineering at Prairie View A&M University, to learn more about his remote internship this past summer, researching how miniature devices could make their way into spacecraft of the future. Ellis talks about how he made the most of the experience while sharing a full house with his family, what it meant to be part of the JPL community, and how he hopes to pay it all forward.

What are you working on at JPL?

I am working with the radar technology team, doing research into nanotechnology [a field of study looking at miniaturized (nanoscale) materials and devices]. When my internship first started, I researched how nanotech is being used in medicine, health, business, and all these other fields. Then, I started to focus on doing simulations of nanoelectronics. I'm working on gaining new insight into nanotechnology to see how we can utilize it for future projects at JPL.

Tell me a bit more about the simulations you're doing. How might your work be applied to JPL missions and science in the future?

On nanoHUB.org, there are hundreds of tools you can use to simulate different aspects of nanotechnology and nanoelectronics. So I've looked into a lot of these tools. I've had to stick to one of the more user-friendly tools, because I honestly haven't had a lot of exposure to nanotech before. So this internship has been a great learning experience for me. Right now, I'm utilizing a simulation of a nano-transistor. So I'm applying different characteristics and settings to generate different effects to see if there are benefits to making our transistors smaller so we could fit more of them into an integrated circuit.

At the core of nanotech, you want to make things smaller and smaller. If we can make spacecraft and spacecraft instruments smaller, then we can do more science while staying within our size, mass, and power constraints. It's not always clear what the benefits of nanotechnology will be until you start experimenting. With this field, there's a lot of information that we can learn through simulations and modeling because we don't yet know about the behaviors of these new materials. That is why it's beneficial to do these simulations and this research.

What is your average day like?

Before the COVID pandemic hit, my project was going to be at JPL, doing hands-on research. But after [most JPL employees went on mandatory telework] I was fortunate enough to keep my internship and transition to a virtual experience, where I could do some research at home using the simulation software.

My average day is very interesting, working from home around the rest of my family. There are a lot of personalities going on. So it might be that the TV is on downstairs or the dog is barking or my brothers are playing a game or my dad is cooking.

But as far as what I have going on, I start my day around 8 or 9 a.m. and work until about 7 p.m. I check in to some of the virtual webinars. There are a lot of great webinars going on for interns about the cool projects people are working on at JPL. I'm also conducting research, running simulations, reading articles, and sharing what I find out with my mentors, Mohammad Ashtijou and Eric Perez. I produce presentations pretty much weekly, if not biweekly, to convey what I've learned, and then my mentors guide me and steer me in the proper direction.

So my days are pretty unique. Working from home has definitely been an adjustment, but there are some benefits to working from home, such as not having to pay as much for gas or commute anywhere. You just wake up and get yourself started for the day. I will say there are some disadvantages, like not being able to actually put your hands on the stuff you're researching, but there's some benefit to running the simulations instead.

What has the experience of a virtual internship been like?

It's a bit of an adjustment, because I'm a very hands-on person. I like going out there and being involved, especially in the workplace and networking. But there is a way to network virtually. I've met some very interesting people and have had a chance to share some of who I am with them, to kind of put myself out there. I even created a virtual newsletter. Every time I network with someone new, I send them my newsletter to bridge that networking gap and paint a picture of who I am outside of the work that I do. I enjoy getting to share that with everyone, and I get a lot of good feedback from it.

Being a virtual intern is something that I'd see myself doing again. I've loved the virtual experience. It's been great. With everything being virtual, I feel like everyone has a little bit more time to interact with you. They're more likely to take that meeting and just talk to you about how your day is going and share how things are going at home for them, too.

So the virtual experience was definitely something that I'll never forget, and I'm super appreciative of it. There was one point when JPL thought they would have to postpone the internship. With me being a full-time grad student, I desperately wanted to have this experience, because I plan to continue toward a Ph.D. Not everyone gets to say they interned with NASA.

I can honestly say that this internship, even though it's virtual, has by far been the most beneficial from an exposure standpoint. The stuff that's being done at NASA-JPL is out of this world. I'm pretty sure a lot of people use that type of verbiage when they talk about NASA, but it really is amazing some of the stuff that I've been exposed to – from the missions that are going on to some of the resources that I have had access to as an intern to develop my skills and network.

What is the most uniquely JPL or NASA experience you've had so far?

Learning about Perseverance, the Mars rover that launched this summer, and hearing first-hand about how it was built, how it's going to collect soil samples, and look into biosignatures – you would think it's science fiction. To me, it's so exciting, because as a youth, I dreamed about working at NASA, and now I'm doing it.

I've also felt a real connection to the culture at JPL. I've felt supported and comforted by JPL as an African-American man during these hardships we've been going through. It's true that JPL is making a lot of advancements in science and space, but I think it's uniquely JPL that there are people there who truly care about you as an individual. They see you, and they hear you, and they want to help you develop as a person as well as an engineer or professional. I really felt as if I was cared for as an individual this summer, and that spoke a lot to me.

I fully agree. I haven't had the life experiences that you've had, but that is certainly something that I feel as well. This is my third internship at JPL, and all the mentors that I've had have really expressed that you're not just here to contribute your labor for 10 weeks. You're here to develop as a person. And they want to help you develop.

Where do you go to school and what are you studying?

I'm wrapping up my Master's in electrical engineering at Prairie View A&M University, a historically black college and university [HBCU] in Houston, Texas. My thesis is about machine learning and artificial intelligence. I am utilizing algorithms that do regression analysis to predict ground-water levels throughout the state of Texas. I was recruited to do that research through a program at my university called CREDIT [Center of excellence in Research and Education for big military Data inTelligence.] When I graduated from undergrad and expressed that I wanted to continue to graduate school for my Master's degree, CREDIT extended the opportunity for me to join the study as a graduate research assistant. So I've been doing that for about two years now, and I'm getting ready to transition to a Ph.D. level.

What brought you to JPL for this internship?

I vividly remember being infatuated with NASA as a youth, so much so that my parents ordered me a pamphlet from Space Center Houston with posters and stickers explaining all of the cool things happening across NASA. I will never forget when I was able to visit the center during spring break in 2009. It was by far the most amazing thing I have ever witnessed as a youth.

As life goes on, you don't think as much about your childhood dreams, but every time I saw an opportunity at NASA I applied. When I saw that JPL was looking to take on interns, I was just wrapping up my Master's, and I figured, "Let me give it another shot." I spent a lot of time working on my application, making sure it looked as good as possible. Who would've thought that months later, I would've been afforded the opportunity?

What's your ultimate career goal?

My goal is to develop my career enough so that I can share my experience and passion with others in my community and communities similar to the one I grew up in. I also want to share how STEM benefits society and how a career in STEM is attainable. A lot of times, people say, "I don't like math," or, "I don't like science." Quite frankly, I see myself as someone who didn't like those subjects much either. But I knew that I wanted to work for NASA one day or work in the field of engineering, so I had to get comfortable with those subjects. So my ultimate goal is to know that my career is set so that I can give back to communities where there are people who might be unsure of what they are capable of. I would also like to give kudos to JPL, because I see that they have a lot of involvement with local communities, doing educational outreach.

I fully agree. I've been giving talks to high-school students about the Perseverance Mars rover, and it is the most rewarding thing to see younger students who don't really know what they want to do in the future get excited [about STEM]. Now they're interested, and you can give them the tools to go out and maybe pursue it.

Most definitely. And that's how you pour into the next person so that they can pour into the next person.

How do you feel you're contributing to NASA-JPL missions and science?

I remember early on in my JPL internship, in one of the webinars, they expressed how this experience is meant to ultimately give you exposure but also inspire you to develop yourself. I believe that I'm contributing in that way by being someone who is driven, motivated, and also willing to take those chances to look deeper than the basic assignment.

When you're not in school or interning, how do you like to spend your time?

I'm having a good time with my family. My brothers and I play board games together. I work out sometimes. For the most part, I've been spending time with the family, playing a video game in my free time, shopping online a little bit, and connecting with my frat brothers. I've done a lot of virtual events for people in the community, talking about COVID safety and stressing the importance of voting, with the elections coming up.

I also find myself doing a lot of internal development. So that would be reading a little bit more for pleasure, and also doing some assessments of my goals and budgeting. I like to look at this pandemic as a sort of "halftime" when I can work on some things for me to better develop myself.

My last question is a fun one: If you could have a spacecraft built to study anything you want, what would it be?

I'd like to study how to sustain or better germinate resources on Earth. If we can find a way to learn what's going on globally on a more intimate scale, I believe that would help us utilize our planet's resources more effectively – resources that could pertain to producing more crops for food, for example.

This Q&A is part of an ongoing series highlighting the stories and experiences of students and faculty who came to JPL as part of the laboratory's collaboration with historically black colleges and universities, or HBCUs. › Read more from the series

Explore More

Kim Orr contributed to this story.


The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Higher Education, Internships, STEM, College Students, Careers, Jobs, Engineering, Electrical Engineering, HBCU, Black History Month

  • Evan Kramer
READ MORE

Christine wears a scrunchy on her wrist while pointing to the 3D printer, which sits on a dresser between a rack of clothes and a flag hanging on the wall.

It sounds like a reality show: A team of six interns working remotely from their homes across the country given 10 weeks to build a prototype lunar spacecraft that can launch on a balloon over the California desert. But for Christine Yuan, a senior at Cornell University, it was just another engineering challenge.

This summer marked Yuan's second time interning with the Innovation to Flight group at NASA's Jet Propulsion Laboratory. The group brings in a collaborative team of a dozen or more interns each year. Their task is to create and test prototypes of far-flung ideas for spacecraft and space technology over the course of their internship. But this summer, with most of JPL's employees still on mandatory telework and interns required to complete their projects remotely, the team had an even bigger challenge to overcome: How could they build a spacecraft together while hundreds of miles apart?

Yuan flashed back to her days using materials from around the house to build props and costumes from her favorite TV shows and games. It was what made her want to become a mechanical engineer in the first place. She had a 3D printer and tools in the apartment she shares with a friend from school. So it was decided. She would build the spacecraft in her apartment and mail it in parts to the other interns working on electronics and software from their respective homes.

We caught up with Yuan to learn how she and the team took on the challenge of building a spacecraft from home, how her childhood hobby served as inspiration, and to find out whether the test flight was a success.

What are you working on at JPL?

I'm an intern with the Innovation to Flight group, which is a team of interns that works with JPL engineers and scientists to take ideas for new kinds of technology or spacecraft from ideation to flight in one summer. The goal is to quickly develop prototypes to see whether an idea is feasible and increase the technical readiness level of various hardware. I was part of the group last summer, too. This summer, we've been split into two groups. The group I'm working with is exploring whether we might be able to use a constellation of CubeSats [small, low-cost satellites] to support robots and astronauts on the Moon. So we're building prototypes of the CubeSats and the communications and navigation technology.

How might CubeSats support astronauts and robots on the Moon?

The goal is to have a couple of these CubeSats orbiting the Moon that can assist with various surface operations, whether it's a rover or a small robot or an astronaut trying to communicate. There are a couple parts to it. One is localization, the ability to figure out where you are on the Moon – sort of like our GPS on Earth – so different assets know where they are relative to each other. The other part is communication. If you're collecting data, the data could be sent from the surface assets to the CubeSats to another surface asset or ground station. The CubeSats could take away a lot of the onboard processing that needs to happen so assets on the Moon could use less processing power.

You're interning remotely this summer. Are you actually building the CubeSat?

Yeah. On the CubeSat team, there are six of us, so we have a couple of people working on the software and then a few of us are working on building the CubeSat itself. I have a lot of tools and a 3D printer, so I'm working on designing the structure and then prototyping it using the stuff I have at home. The team has been getting materials out to me, and I've been printing stuff on my 3D printer and building it out. Then I've been mailing out parts to our avionics people so they can load it up with all the electronics.

Wow. That's so cool. Are you building all of this at home or in your dorm room? Are the people living with you wondering what you're up to?

I spent the first half of the summer in my parents' house, so I was operating out of their garage. Now that I'm back at school, I work from my apartment. I'm living with one of my friends right now. She's also in the aerospace field so she has an idea of what I'm doing. Most of the time we're just working in our rooms, but I normally have a bit more of a "dynamic" going on in my room.

How has the team adjusted to working remotely?

Half the team is returning from last summer, so we've worked together before. But when we were at JPL, it was easier because we could walk back and forth with parts and hand things off.

When we were planning for the summer, we were talking about the different options that we had. I like to build things in my free time, so I have a bunch of different tools. I'm a mechanical engineer, so I was going to be working on the structure anyway. So I said, "I'll build the structure, ship it in pieces to the rest of the team, and give them a detailed explanation or a CAD model so they can assemble it." Our software and electronics guys are coding everything and sharing their files. Two of the team members are roommates this summer, which is really convenient. They're working on the electronics and avionics out of the basement at one of their family's homes. Then, we're just constantly messaging with each other. We talk at least once a day. It helps that we're a small team.

What's your average day like?

I'm on the East Coast, so the time difference hasn't affected me too badly. I wake up, work out, and then I start work. In the morning, I'll check in with different members of the team. I like to have a to-do list, so I normally have one for the week. Depending on what I need to do, my day ranges anywhere from trying to figure out what I need to prototype next to 3D printing something or drilling holes in this or that. I use any downtime to talk to other team members, figure out what they're doing.

How has the remote experience compared with last summer, when you were at JPL in person?

The most disappointing thing was not being able to be at JPL in person with everyone. Last summer, there were about 15 of us all working in the same room together. We'd have big brainstorming meetings, all getting together and working on the white board. It was kind of a chaotic, loud mess, but it was a lot of fun, and we got a lot of work done. I was always moving around, always talking to somebody, always building something or testing something. I really enjoyed working on a team like that. It was very fast-paced.

This summer, it's a little more difficult, because I haven't met half the team members in person, and it's just slower. We're shipping things to one another and some of us are in different time zones. It's just been a little more difficult to get things done as fast. Another big change is that at the end of last summer, we had two flight tests. We launched one of our prototypes on a tethered balloon, and then we tested some of our other projects on a high-altitude balloon. We're not going to get to do that in person this summer.

Do you feel like you still have that team comradery even though you're apart this summer?

Definitely. Half the people are returning from last summer, so we're still pretty tight, and we're all in this together. It may not be as dynamic and as fast-paced as last summer, but we're building something together pretty well and pretty quickly.

What are you studying in school, and what got you interested in that field?

I'm studying mechanical engineering. I got into mechanical engineering for a variety of reasons. When I was younger, I was a huge nerd – I still am. I would spend my summers in my parents' basement, making costumes and props from my favorite movies and TV shows. I realized that I really liked making things. I liked putting things together and seeing them work. I also think space is really cool. I want to be able to tell my future kids and grandkids, "I worked on projects that helped us discover all these things about the universe." There's so much we don't know, and I know I can't learn everything, but I want to be a part of the discovery process. So I took those two things that I'm pretty hyped about, put them together, and decided that I want to be an engineer. I want to build spaceships. I want to help advance science and make new discoveries.

What were some of the props or costumes that you designed as a kid?

I was a big fan of the "Final Fantasy" video game series, so with the little bit of money that I made from tutoring kids, I would go out and buy different materials to recreate some of the props from that game. Lightning's gunblade was one of the things I made that I thought was pretty cool. I'm also a big fan of the "Fire Emblem" series, so I recreated a couple of things from that. I also like making costumes for my friends.

I'm starting to get back into it, because I have a little bit of free time this summer. Me and my friends have plans to make our own lightsabers and just play around with what we can make and what we can do with the budget and tools we have. That's where the challenge is. As a kid, I was so limited by the materials I had available. I thought it was fun figuring out how to make stuff anyway. How can I hammer this out with what I have in my house?

What brought you to JPL for your internships?

I heard great things from friends who had interned at JPL before. It's one of the best places to be if you want to work on space missions. I'd never been to the West Coast before last summer. I'm from Maryland. I grew up in a town about 20 minutes outside of Baltimore. It was kind of scary [to travel so far from home], but I feel like life's about experiences, so I might as well just do it.

How do you feel you're contributing to NASA missions and science as an intern?

I feel like it's impossible for any one person to make an impact alone. I'm part of a team that's helping assist future lunar missions. In the grand scheme of things, it's a small piece of what humanity is going to achieve in the future, but it's rewarding to know that I'm part of it. I know I'm a small piece in the big machine, but it still feels like a lot, because if you take one piece out of the machine, it can break.

That's a great way of putting it.

When you're not in school or interning, how do you like to spend your time? What are some of your hobbies?

At school, I'm involved with a bunch of different organizations on campus. One of my main extracurriculars is that I build UAVs [unmanned aerial vehicles]. I'm also involved with a lot of the outdoorsy groups on campus.

When the weather's nice, which in Upstate New York is not always the case, I like to run. I've run some pretty crazy races – Ragnar races, If you ever heard of those – and a couple of relays around the Finger Lakes. I like to run. I like to hike. There's a lot of beautiful mountains and lakes in the Upstate New York area. I've been trying to explore them. And I like to rock climb. I have a couple of friends at school who are super involved in the rock-climbing community, so they got me into it.

When the weather's not so nice, I like to read. I also started to get back into building props and making costumes, because I finally feel like I have time again to sit down and do that. It's a pretty time-consuming hobby.

Now for a fun question: If you could build a spacecraft to go anywhere and study anything, what would it be?

Theoretically, if you had all the technology to do it, I think it would be cool to see inside a black hole. Send a spacecraft in there, and send data out.

----

Since we last talked, your team finished the CubeSat and tested it in the desert! Tell us more about that and how it went?

The tests went pretty well given the circumstances. The team performed a lot of our tests remotely. We ran simulations to test some of the software. Our mock lunar surface asset was able to drive autonomously. Some aspects of the tests were successful and others could use more work, but we laid down a good foundation for future Innovation to Flight interns to build on. Hopefully our work helped the researchers we worked with from JPL and the University of Colorado Boulder.


A novel approach to developing rapid prototypes for space exploration, the Innovation to Flight program was created in 2014 by JPL Fellow Leon Alkalai, who continues to oversee and guide activities. Coordinated by Senior Research Scientist Adrian Stoica with support over the years from Chrishma Derewa, David Atkinson, and Miles Pellazar at JPL, the program has brought in more than 50 student interns from across the country. Offering students a uniquely collaborative experience developing technology for the Moon, Mars, and beyond, Innovation to Flight has also served as a career pathway to numerous program alumni now working at JPL.

Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, College Students, Careers, Jobs, Engineering, Mechanical Engineering, Innovation to Flight, Technology Demonstration, Moon, Women at NASA, Asian Pacific American Heritage Month

  • Kim Orr
READ MORE