Photo collage of interns who participated in JPL's HBCU/URM initiative in 2021

Five years in, a JPL initiative forging relationships with students and faculty at historically Black colleges and universities continues expanding its reach, hosting 48 interns this year.


Brandon Ethridge, a flight systems engineer at NASA’s Jet Propulsion Laboratory in Southern California, has had a year to remember. The 24-year-old got engaged, became a father, and is celebrating the one-year anniversary of starting full time at JPL – his self-described dream job.

“Definitely the most eventful year of my life,” Ethridge said.

Brandon Ethridge stands in front of a mural made to look like a blueprint on the Mechanical Design Building at JPL.

Brandon Ethridge poses in front of the Mechanical Design Center at JPL during his internship in 2019. Image credit: NASA/JPL-Caltech/Kim Orr | + Expand image

While he’s been gaining experience testing systems used to build spacecraft, Ethridge has spent minimal time at the Laboratory due to the pandemic. But the North Carolina native already had plenty of first-hand knowledge of JPL thanks to his summer 2019 internship – an opportunity that presented itself at a JPL informational session that spring at his alma mater, North Carolina A&T State University.

“That allowed me the chance to speak one-on-one with Jenny Tieu and Roslyn Soto [JPL Education project managers],” Ethridge said. “They were incredibly generous with their time and provided resume critiques, feedback, and general advice about how to get an opportunity at JPL.”

Since 2017, Tieu has been leading JPL’s Historically Black Colleges and Universities/Underrepresented Minorities, or HBCU/URM, initiative – an effort to increase and foster a more diverse workforce in technical roles at the Laboratory. It’s one of many programs facilitating the more than 550 internship opportunities offered through the Education Office this year.

Now in its fifth year, the program has seen rapid growth; from seven interns in its first year, to 24 interns in 2020. This year, JPL is welcoming 48 students interning remotely from institutions including Howard, North Carolina A&T, Tuskegee, and Prairie View A&M universities, along with underrepresented-minority students from universities including UCLA, USC, UC Riverside, Duke, Cal Poly Pomona, and more.

The initiative includes funding and support to bring in faculty from the schools to take part in research with the students, building in a cohort model that facilitates sustainable interactions with JPL.

“We’re intentional about addressing the culture shock that some of these students may experience,” Tieu said. “With the cohort model, the faculty members can provide guidance to the students while they are navigating new relationships, connections, and a new city.”

Additionally, interns are invited to participate in roundtable conversations in groups where they can share concerns and openly discuss their experiences at JPL. Tieu has also set up virtual meet-ups where students can get to know employees from outside their groups and hear talks from members of JPL’s Black Excellence Strategic Team and past HBCU alumni.

For Ethridge, being in a position to give back to the program was something he prioritized.

“I wanted to repay some of the many kindnesses that were afforded to me,” Ethridge said. “I also feel that I am in a unique position because I just recently went through the process.”

For Howard University junior Kyndall Jones, the draw to JPL came following a fellow student’s acceptance into the program.

Kyndall Jones sits in the cockpit of a plane and looks back at the camera while making the peace sign with her left hand.

Kyndall Jones at the NASA Armstrong Flight Research Center. Image courtesy: Kyndall Jones | + Expand image

“I was so amazed that he had an internship with NASA, and it really sparked my interest,” Jones said. “After doing my research on the program, I submitted my resume and heard back after a few months, landed an interview, and now here I am [virtually]!”

Despite the telework nature of this summer’s internship, Jones said that even from her home in Dayton, Ohio, she has been able to foster connections with JPL employees and gain valuable experience in her role working on software for an Earth-science instrument that will help NASA understand how different types of air pollution, which can cause serious health problems, affect human health.

And thanks to her mentor, Operations Systems Engineer Janelle Wellons, Jones was able to get the type of hands-on NASA experience that’s been hard to come by since the pandemic.

“My mentor Janelle suggested that I come visit Los Angeles for a few days this summer, and I was finally able to visit and explore the city for the first time,” Jones said. “I am also super grateful for her setting up a tour at the NASA Armstrong Flight Research Center where we were able to view, tour, and learn lots of interesting facts about NASA’s historical aircraft.”

Wellons – who splits her time operating instruments aboard several Earth-observing missions – had been involved in previous years’ roundtable discussions with HBCU interns, but this year, she had the opportunity to hire her own interns through the program. Being from the East Coast herself, Wellons remembers having little awareness of JPL as a potential career landing spot while studying at Massachusetts Institute of Technology.

“Getting visibility and actually partnering with these schools to make these internships happen is so important,” Wellons said. “Actively interacting with HBCUs is only going to do good for people we would otherwise potentially never get an application from, and it benefits JPL by broadening the talent pool and diversity of our workforce.”

As for the future, Jones sees the initiative as one step of many for her and fellow interns toward careers in engineering and science.

“I know a lot of Howard students that are interning or have interned with JPL, and the love from our College of Engineering and Architecture is especially high,” Jones said. “The info sessions, resume workshops, and networking workshops that JPL has been able to put on have been great, and the more they can do, the better for students.”

Tieu agrees, adding, "We are happy to see the growth of the initiative but look forward to making further progress. There's so much more we would like to accomplish in the years ahead."

To learn more about the HBCU/URM initiative and apply, see the Maximizing Student Potential in STEM program page. The HBCU/URM initiative resides within this program.

This Q&A is part of an ongoing series highlighting the stories and experiences of students and faculty who came to JPL as part of the laboratory's collaboration with historically black colleges and universities, or HBCUs. › Read more from the series

Explore More

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: HBCU, Internships, College Students, Faculty, Research, Careers, Earth Science, Black History Month, Engineering, Intern, Higher Education

  • Taylor Hill
READ MORE

Collage of intern photos.

Whether you're looking for a career in STEM or space exploration, this three-part series will cover everything you need to know about the world of internships at NASA's Jet Propulsion Laboratory, the skills and experience hiring managers are looking for, and how you can set yourself on the right trajectory even before you get to college.


In a typical year, NASA's Jet Propulsion Laboratory brings in about 1,000 interns from schools across the country to take part in projects that range from building spacecraft to studying climate change to developing software for space exploration. One of 10 NASA centers in the United States, the Southern California laboratory receives thousands of applications. So what can students do to stand out and set themselves on the right trajectory?

We asked interns and the people who bring them to JPL about their tips for students and anyone interested in a STEM career or working at the Laboratory. We're sharing their advice in this three-part series.

First up: Learn about the kinds of opportunities available as well as where and how to apply.

The World of JPL Internships

If you found this article, you're probably already somewhat familiar with the work that goes on at JPL. But at a place that employs more than 6,000 people across hundreds of teams, it can be hard to keep track of it all.

In a broad sense, JPL explores Earth, other planets, and the universe beyond with robotic spacecraft – meaning no humans on board. But along with the engineers and scientists who design and build spacecraft and study the data they return, there are thousands of others working on all the in-between pieces that make Earth and space exploration possible and accessible to all. This includes software developers, machinists, microbiologists, writers, video producers, designers, finance and information technology professionals, and more.

Some of the best ways to learn about the Laboratory's work – and get a sense for the kinds of internships on offer – are to follow JPL news and social media channels, take part in virtual and in-person events such as monthly talks, and keep up on the latest research. There are also a host of articles and videos online about interns and employees and the kinds of work they do.

While STEM internships make up the majority of the Laboratory's offerings, there are a handful of opportunities for students studying other subjects as well. Depending on which camp you fit into, there are different places to apply.

Education Office Internships

The largest number of internships can be found on the JPL Education website. These opportunities, for students studying STEM, are offered through about a dozen programs catered to college students of various academic and demographic backgrounds. This includes programs for students attending community college, those at minority-serving institutions, and others at Los Angeles-area schools.

Students apply to a program, or programs, rather than a specific opening. (See the program details for more information about where to apply and what you will need.) It's then up to the folks with open opportunities, the mentors, to select applicants who are the best match for their project.

It may seem odd to send an application into the void with no idea of what offer might return. But there is a good reason behind the process, says Jenny Tieu, a project manager in JPL's Education Office, which manages the Laboratory's STEM internship programs.

"Applying to a specific program allows for the applicant to be seen by a much broader group of hiring managers and mentors and be considered for more opportunities as a result," says Tieu. "We look at the resumes that come in to see what skills are compatible with open projects and then match students to opportunities they may not have even realized were available to them."

Shirin Nataneli says she wouldn't have known there was an internship for her at the Laboratory were it not for a suggestion to apply from her professor. In 2020, Nataneli graduated from UCLA with a Bachelor's degree in biology. She was on the pre-med track, studying for the MCAT, when she decided to take a couple of courses in computer science.

"I got sucked in," says the Santa Monica College student and JPL intern, who is using computer science to help her team classify extreme bacteria that can survive on spacecraft. "I didn't even know there was an intersection between computer science and biology, but somehow I found a group at JPL that does just that."

Shirin Nataneli holds out her hand, showcasing the JPL campus in the background.

Shirin Nataneli poses for a photo with the JPL campus in the background. Image courtesy: Shirin Nataneli | + Expand image

University Recruiting Opportunities

For college students who are interested in space exploration but studying other fields, such as business, communications, and finance, as well as those studying STEM, there are additional opportunities on the JPL Jobs website. Listed by opportunity, more like a traditional job opening, these internships are managed by the Laboratory's University Recruiting team, which is active on LinkedIn and Instagram and can often be found at conferences and career fairs.

The When, What, and Where

Both Education Office and University Recruiting opportunities are paid and require a minimum 3.00 GPA, U.S. citizenship or legal permanent resident status, as well as an initial commitment of 10 weeks. Applicants must be enrolled in a college undergraduate or graduate program to be eligible. (See "The Pre-College Trajectory" section of this article below to learn about what high-school and younger students can do to prepare for a future JPL internship or STEM career.)

After pivoting to fully remote internships during the COVID-19 pandemic, JPL is looking at whether to continue offering some remote or hybrid internships once the Los Angeles-area campus opens back up.

"We know that remote internships are effective," says Tieu. "Interns have said that they're able to foster connections with JPL employees and gain valuable experience even from home." She notes that while in-person internships give students maximum exposure to JPL – including visits to Laboratory attractions like mission control, the "clean room" where spacecraft are built, and a rover testing ground called the Mars Yard – remote internships have had a positive impact on students who previously weren't able to participate in person due to life constraints.

Most programs offer housing and travel allowances to students attending universities outside the 50-mile radius of JPL, so be sure to check the program details if traveling to or living in the Los Angeles area could be tricky financially.

Full-time and part-time opportunities can be found throughout the year with most openings in the summertime for full-time interns, meaning 40 hours per week. For summer opportunities, Tieu recommends applying no later than November or December. Applicants can usually expect to hear back by April if they are going to receive an offer for summer, but it's always a good idea to keep yourself in the running, as applicants may be considered for school-year opportunities.

Tieu adds, "If you haven't heard back, and you're closing in on the six-month mark of when you submitted your application, I recommend students go back in and renew their application [for the programs listed on the JPL Education website] so that it remains active in the candidate pool for consideration."

And unlike job applications, where it's sometimes frowned upon to apply to multiple positions at once, it's perfectly alright – and even encouraged – to apply to multiple internships.

You may also want to consider these opportunities, especially if you're looking for internships at other NASA centers, you're a foreign citizen, or you're interested in a postdoc position:

The most important thing is to not count yourself out, says Tieu. "If you're interested, work on that resume, get people to review your resume and provide input and feedback and apply. We don't expect students to come in knowing how to do everything. We're looking for students with demonstrated problem-solving, teamwork, and leadership skills. Software and other technical skills are an added bonus and icing on the cake."

More on that next, plus advice from JPL mentors on the skills and experience they look for from potential interns.

Skills for Space Explorers

JPL is known for doing the impossible, whether it's sending spacecraft to the farthest reaches of our solar system or landing a 2,000-pound rover on Mars. But potential applicants may be surprised to learn that reputation wasn't earned by always having the right answer on the first try – or even the second, third, or fourth.

A black and white photo shows a desert scrub area. Five men lay on the ground and behind them is a rudimentary rocket motor with hoses leading to a device proped up on a stack of sandbags.

JPL's founders, several Caltech graduate students led by Frank Malina along with rocket enthusiasts from the Pasadena area, take a break from setting up their experimental rocket motor in the Arroyo Seco, north of Pasadena, California. Image credit: NASA/JPL-Caltech | + Expand image

In fact, the Laboratory has always had a penchant for experimentation, starting with its founders, Caltech students who in the 1930s would test rockets in the stairwells at their university. They had so many colossal (and dangerous) failures that they were banished to a dry riverbed north of Pasadena, which is now the site of JPL. Eventually, their rockets were successful and the laboratory they founded went on to build and launch the first American space satellite and send dozens of spacecraft to worlds throughout the solar system. But that trial-and-error attitude still permeates the Laboratory today.

As a result, potential interns who show enthusiasm and a willingness to learn, overcome obstacles, and work as part of a team often stand out more than those with academic achievements alone.

Standing Out

In an informal survey of JPL mentors, respondents most often cited problem-solving, communication, and teamwork skills as well as passion for learning and grit as the soft skills they look for when considering potential interns. Respondents added that students who can provide specific examples of these skills on their resume – and speak to them in an interview – stand out the most.

That doesn't necessarily have to mean leading your school’s robotics club or serving as your geology professor's teaching assistant, although those things don't hurt. But also consider less traditional examples, such as how critical thinking helps you overcome challenges while rock climbing or how you used leadership and teamwork to organize your friends to create a group costume for Comic Con.

"Students who share a link to their GitHub repository or online portfolio stand out to me because it shows they took the initiative and took time to build, develop, and create something on their own," says K'mar Grant-Smith, a JPL mentor who leads a team of developers in supporting and maintaining applications for the Laboratory's missions. "That vouches for you better than saying, 'I know these [coding] languages, and I took these courses.'"

Laurie Barge is a JPL scientist who co-leads an astrobiology lab exploring the possibility of life beyond Earth. The lab annually hosts about a dozen students and postdocs. Barge says that the top qualities she looks for in an intern are an expressed interest in her research and JPL as a whole as well as teamwork skills. "I look for students who are excited about the fact that they'll be working with 10 other students and postdocs and collaborating with other people on papers and abstracts."

Barge and Flores pose for a photo in a lab with test tubes and scientific devices surrounding them.

Astrobiologist Laurie Barge, left, and former intern Erika Flores, right, pose for a photo in the Origins and Habitability Lab that Barge co-leads at JPL. Image credit: NASA/JPL-Caltech | + Expand image

Teamwork is also key for students working in engineering, software, or any other capacity across the Laboratory. When it comes to designing missions to go where nothing has gone before, collaboration between multi-disciplinary teams is a must.

In terms of technical skills, knowledge of coding languages is the most sought after, with Python, MATLAB, and C languages leading the pack. And in certain groups, like the one that helps identify where it's safe to land spacecraft on Mars, experience with specialized tools like Geographic Information Systems, or GIS, can help applicants stand out.

Still, for many mentors, enthusiasm and a willingness to learn and be proactive are far more important than any technical skill.

You don't have to be the most technically savvy person. If you have the initiative, the drive, and some experience, I find that to be more important than knowing 16 different [coding] languages," says Grant-Smith. "JPL is a unique place full of very smart people, but we're not good at what we do just because we have the know-how. We also have the drive and a passion for it."

Getting Involved

So you're a rock-climbing Red Planet enthusiast who likes to create "Dune"-inspired stillsuits when you're not busy at your part-time job making frappuccinos with your fellow baristas. How do you improve the chances this information will land on a JPL mentor's desk?

In a sentence: Build a strong network. So says Rebecca Gio of what made all the difference when she was struggling to find her academic groove right after high school. After a year spent repeating classes, changing schools, and feeling discouraged about what was next, Gio discovered what she needed to change her trajectory. She joined clubs and organizations that aligned with her career goals, formed study groups with her peers, found a mentor who could help her navigate everything from college classes to internship opportunities, and wasn't afraid to ask when she had a question.

Now, Gio is thriving – academically and on her career path. She's a junior studying computer science at Cal Poly Pomona and a first-time intern at JPL, where she's testing the software that will serve as the brains of a spacecraft designed to explore Jupiter's moon Europa.

"Being part of a community and being with people who have gone through similar experiences and can push you to do better, I think that that is just super motivating," says Gio.

JPL Education Program Manager Jenny Tieu agrees. “Along with academic achievements, we’re looking for students with diverse backgrounds, perspectives, and life experiences who can work collaboratively to learn, adapt to new situations, and solve problems.”

A new employee sits across from a program coordinator in an office setting.

Jenny Tieu catches up with Brandon Murphy, who came to the Laboratory as an intern in 2016 through a program Tieu manages, and soon after, was hired full-time. Image credit: NASA/JPL-Caltech | + Expand image

To that end, she suggests students get involved in campus STEM clubs and communities, NASA challenges and activities, and volunteer opportunities, which offer career experiences, introduce students to a network of peers and professionals, and look great on a resume.

Tieu leads a JPL internship program that partners with historically Black colleges and universities and other minority-serving institutions. She says that one way students get connected with the program is by word-of-mouth from current and former participants, who include students and faculty researchers.

"We see a lot of great allyship with interns and research fellows telling their classmates about their experience at JPL, how to apply, and what to expect," says Tieu. "We foster deep relationships with our partner campuses and their faculty as well." In other words, students may not have to look farther than their own professors, campus info sessions, or career fairs to learn about opportunities at the Laboratory.

A career fair is where Gio first connected with JPL's University Recruiting team after what she jokingly calls "stalking" them from LinkedIn to Handshake to the Grace Hopper conference – where she eventually handed over her resume. "Just get familiar with where JPL is going to be and try to make sure that you're there," says Gio.

Rebecca and her mom and sister pose for a photo in the lobby of JPL's mission control with NASA/JPL logo behind them.

Rebecca Gio (right) poses for a photo with her mom and sister (left) in the lobby of the Laboratory's mission control building during the Explore JPL event in 2019. Gio says her mom and sister are her two biggest supporters and the reason behind all of her success. Image courtesy Rebecca Gio | + Expand image

In the sciences especially, those connections can also be made through a shared interest in a particular area of research. Barge says that most of the students she brings to JPL find out about her research from a peer or professor, exploring the lab's website, or from reading papers her team has published. Then, they reach out to her directly. This way she can create a position suited to a student's skills while also finding out if their interests mesh with the team.

"I want to know why they're interested in JPL and not a different institution," says Barge. "Why do they want to work with me and not another person at JPL? Why do they want to do this research and what specifically would they like to gain from this internship experience? I'm trying to figure out who really, really wants this particular opportunity."

As Gio points out, it's often the same advice that applies whether you're looking for an internship at JPL or in STEM or a future career.

"If you really want it, if you really want to be a STEM professional, make the most of your education, and find ways to apply those skills," says Gio. "I made sure that I was a part of campus groups where I was doing extra projects outside of schoolwork. I made sure that I was talking to other students to learn what they were doing. There's a lot of opportunities now to learn online for free. If there's something that you think would interest you, just go and do it."

Next, we'll share more ways students can prepare for a future internship or career in STEM before they get to college, plus resources parents and teachers can use to get younger students practicing STEM skills.

The Pre-College Trajectory

First, let's address one of the most common questions we get when it comes to internships at JPL. As of this writing, the Laboratory does not offer an open call for high-school interns. For most of the past several years, JPL has been able to bring in just a handful of high-school students from underserved communities thanks to partnerships with local school districts.

That's not to say that there won't be an open call for high-school internships at JPL in the future. If and when opportunities become available, they'll be posted here on the JPL Education website.

That said, there's still plenty students can and should do before college or when they're just entering college to explore STEM fields, get hands-on experience, and practice the skills they'll need for a future internship or career.

Exploring STEM Fields

Ota Lutz, a former classroom teacher, leads JPL's K-12 education team, which takes the Laboratory's science, engineering, and technical work and translates it into STEM education resources for teachers, students, and families.

Other than exploring high-school internships at other organizations, Lutz says that students in grades K-12 can get hands-on experience through clubs, competitions, and camps offered in person and online.

Schools often have engineering, robotics, math, and science clubs, but if not, look for one in your community or encourage students to start their own, perhaps with the help of a teacher.

Five girls assemble their invention, decorated with a starry decale, as a crowd looks on.

JPL's Invention Challenge is an annual engineering competition for middle and high school students. In 2017, a team (pictured) traveled all the way from Ethiopia to participate. | › Read the news story

JPL hosts annual science and engineering competitions while NASA hosts a slew of other competitions, including essay contests with opportunities to interact with scientists and even name spacecraft.

If cost is an issue for camps or competitions, Lutz recommends that parents or guardians reach out to the host organization to see if scholarships are available and that they explore free events offered by groups such as NASA's Solar System Ambassadors and Night Sky Network as well as programs at museums, science centers, and libraries in their community.

NASA also offers a number of citizen science projects that give students (and adults) opportunities to contribute to real research, from identifying near-Earth asteroids to observing and cataloging clouds to searching for planets beyond our solar system.

Building Foundational Skills

All of the above can help students explore whether they might be interested in STEM, but it's also important that kids start practicing the skills they will need to succeed academically and in a future internship or career.

"Developing those foundational STEM and language arts skills are incredibly important to future success," says Lutz, adding that, generally, students should practice what are called scientific habits of mind, "learning how to think critically, problem solve and do so in a methodical way as well as learning to examine data to determine trends without personal bias."

One way students can gain skills and knowledge directly related to a future STEM internship or career is by trying these educational projects and activities offered free online from the JPL Education Office. (Teachers can explore this page to find out how to turn these activities into standards-aligned classroom lessons.) Activities include engineering projects and science experiments as well as math and coding challenges, all of which feature the latest NASA missions and science.

A group of kids stands along a railing and drops their lunar lander designs to see how they perform.

Students test their designs as part of the "Make an Astronaut Lander" activity on the JPL Education website. | + Expand image

Coding skills, in particular, will serve students well no matter what career path they take, says Lutz. "Coding is something that is applicable across a broad range of subject areas and majors, so we strongly encourage students to learn some coding."

She points to the plethora of online courses and tutorials in coding and other STEM subjects that give students a chance to explore on their own and work on projects that interest them.

Parents and guardians can also help their kids develop foundational skills by allowing them to explore and tinker at home. "In every house, there's something that needs fixing," says Lutz. "Have the kid figure out how to fix a wobbly chair, but be patient with mistakes and encourage them to keep trying." That persistence and determination in overcoming obstacles will come in handy throughout their education and career path, whether it's learning how to code, getting into a robotics club in high school, applying and reapplying for internships, or figuring out how to land a spacecraft on Mars.

Similarly, it's never too early to start learning those ever-important soft skills such as teamwork, communication, and leadership. There's no single or right place to gain these skills, rather they come from a range of experiences that can include a school project, a part-time job, or a volunteer opportunity.

Ota Lutz stands behind a tabletop Mars globe and speaks with a group of people

Ota Lutz, who leads the Laboratory's K-12 education team, speaks with a group of JPL employees during a Pi Day event. | + Expand image

Lutz grew up in a small town in Central California and says, "I was a smart kid, but these things called soft skills were beyond me, and I was the shyest kid in my class." That is until she joined her high school's service club. "Through volunteering, I ended up interacting with people from all walks of life and learned how to work with teams. My club advisor coached me, and I started taking on more leadership roles in the club and in class projects."

Later, it was that same club advisor and her youth pastor who encouraged Lutz to attend a college that would challenge her academically despite pressures to stay closer to home.

"You never know what experiences or conversations might open up opportunities for you," says Lutz, which is why she recommends that students get comfortable talking with peers and teachers – and especially asking questions. "It's really important to learn to ask questions so you build your confidence in learning and also develop relationships with people."

Launching into College

As Lutz experienced, those foundational skills can make all the difference when it comes to transitioning into college, too.

"When I got to college, I discovered I was woefully unprepared even though I had been at the top of my class in high school," says Lutz. "I never learned how to study, and I mistakenly believed that asking questions would make me look dumb. After struggling on my own for a couple of years, I learned that study groups existed and they helped me get to know my peers, build my confidence, and improve my GPA."

While building a support network is key, don't overload yourself the first year, Lutz says. But do start taking classes in the field you're interested in to see if it's the right fit. "The important thing is getting some experience in the field that you think you want to go into."

After that, internships, whether they're at JPL, NASA or elsewhere, will give you an even deeper look at what a future career might be like. When the time comes, you'll know exactly where to look to set yourself on the right trajectory – that is just above under "The World of JPL Internships" and "Skills for Space Explorers."


The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Internships, Students, Careers, Science, Computer Science, Engineering, Math, Programs, University Recruiting, Undergraduate, Graduate, College, High School, Mentors

  • Kim Orr
READ MORE

Yohn Ellis wears a JPL shirt and poses in front of a brick wall.

When Yohn Ellis got his chance to intern at NASA, he wasn't about to let it slip away, pandemic or not. Growing up and going to school in Houston, Texas, the home of NASA's Johnson Space Center, Ellis has long been a superfan of the agency. So when he was offered an internship at NASA's Jet Propulsion Laboratory in Southern California, he jumped at the chance. That was before all but a handful of JPL's essential employees were required to switch to remote work. So instead of a hands-on role, Ellis got first-hand experience in how the laboratory overcomes challenges. Returning intern Evan Kramer caught up with Ellis, a grad student studying electrical engineering at Prairie View A&M University, to learn more about his remote internship this past summer, researching how miniature devices could make their way into spacecraft of the future. Ellis talks about how he made the most of the experience while sharing a full house with his family, what it meant to be part of the JPL community, and how he hopes to pay it all forward.

What are you working on at JPL?

I am working with the radar technology team, doing research into nanotechnology [a field of study looking at miniaturized (nanoscale) materials and devices]. When my internship first started, I researched how nanotech is being used in medicine, health, business, and all these other fields. Then, I started to focus on doing simulations of nanoelectronics. I'm working on gaining new insight into nanotechnology to see how we can utilize it for future projects at JPL.

Tell me a bit more about the simulations you're doing. How might your work be applied to JPL missions and science in the future?

On nanoHUB.org, there are hundreds of tools you can use to simulate different aspects of nanotechnology and nanoelectronics. So I've looked into a lot of these tools. I've had to stick to one of the more user-friendly tools, because I honestly haven't had a lot of exposure to nanotech before. So this internship has been a great learning experience for me. Right now, I'm utilizing a simulation of a nano-transistor. So I'm applying different characteristics and settings to generate different effects to see if there are benefits to making our transistors smaller so we could fit more of them into an integrated circuit.

At the core of nanotech, you want to make things smaller and smaller. If we can make spacecraft and spacecraft instruments smaller, then we can do more science while staying within our size, mass, and power constraints. It's not always clear what the benefits of nanotechnology will be until you start experimenting. With this field, there's a lot of information that we can learn through simulations and modeling because we don't yet know about the behaviors of these new materials. That is why it's beneficial to do these simulations and this research.

What is your average day like?

Before the COVID pandemic hit, my project was going to be at JPL, doing hands-on research. But after [most JPL employees went on mandatory telework] I was fortunate enough to keep my internship and transition to a virtual experience, where I could do some research at home using the simulation software.

My average day is very interesting, working from home around the rest of my family. There are a lot of personalities going on. So it might be that the TV is on downstairs or the dog is barking or my brothers are playing a game or my dad is cooking.

But as far as what I have going on, I start my day around 8 or 9 a.m. and work until about 7 p.m. I check in to some of the virtual webinars. There are a lot of great webinars going on for interns about the cool projects people are working on at JPL. I'm also conducting research, running simulations, reading articles, and sharing what I find out with my mentors, Mohammad Ashtijou and Eric Perez. I produce presentations pretty much weekly, if not biweekly, to convey what I've learned, and then my mentors guide me and steer me in the proper direction.

So my days are pretty unique. Working from home has definitely been an adjustment, but there are some benefits to working from home, such as not having to pay as much for gas or commute anywhere. You just wake up and get yourself started for the day. I will say there are some disadvantages, like not being able to actually put your hands on the stuff you're researching, but there's some benefit to running the simulations instead.

What has the experience of a virtual internship been like?

It's a bit of an adjustment, because I'm a very hands-on person. I like going out there and being involved, especially in the workplace and networking. But there is a way to network virtually. I've met some very interesting people and have had a chance to share some of who I am with them, to kind of put myself out there. I even created a virtual newsletter. Every time I network with someone new, I send them my newsletter to bridge that networking gap and paint a picture of who I am outside of the work that I do. I enjoy getting to share that with everyone, and I get a lot of good feedback from it.

Being a virtual intern is something that I'd see myself doing again. I've loved the virtual experience. It's been great. With everything being virtual, I feel like everyone has a little bit more time to interact with you. They're more likely to take that meeting and just talk to you about how your day is going and share how things are going at home for them, too.

So the virtual experience was definitely something that I'll never forget, and I'm super appreciative of it. There was one point when JPL thought they would have to postpone the internship. With me being a full-time grad student, I desperately wanted to have this experience, because I plan to continue toward a Ph.D. Not everyone gets to say they interned with NASA.

I can honestly say that this internship, even though it's virtual, has by far been the most beneficial from an exposure standpoint. The stuff that's being done at NASA-JPL is out of this world. I'm pretty sure a lot of people use that type of verbiage when they talk about NASA, but it really is amazing some of the stuff that I've been exposed to – from the missions that are going on to some of the resources that I have had access to as an intern to develop my skills and network.

What is the most uniquely JPL or NASA experience you've had so far?

Learning about Perseverance, the Mars rover that launched this summer, and hearing first-hand about how it was built, how it's going to collect soil samples, and look into biosignatures – you would think it's science fiction. To me, it's so exciting, because as a youth, I dreamed about working at NASA, and now I'm doing it.

I've also felt a real connection to the culture at JPL. I've felt supported and comforted by JPL as an African-American man during these hardships we've been going through. It's true that JPL is making a lot of advancements in science and space, but I think it's uniquely JPL that there are people there who truly care about you as an individual. They see you, and they hear you, and they want to help you develop as a person as well as an engineer or professional. I really felt as if I was cared for as an individual this summer, and that spoke a lot to me.

I fully agree. I haven't had the life experiences that you've had, but that is certainly something that I feel as well. This is my third internship at JPL, and all the mentors that I've had have really expressed that you're not just here to contribute your labor for 10 weeks. You're here to develop as a person. And they want to help you develop.

Where do you go to school and what are you studying?

I'm wrapping up my Master's in electrical engineering at Prairie View A&M University, a historically black college and university [HBCU] in Houston, Texas. My thesis is about machine learning and artificial intelligence. I am utilizing algorithms that do regression analysis to predict ground-water levels throughout the state of Texas. I was recruited to do that research through a program at my university called CREDIT [Center of excellence in Research and Education for big military Data inTelligence.] When I graduated from undergrad and expressed that I wanted to continue to graduate school for my Master's degree, CREDIT extended the opportunity for me to join the study as a graduate research assistant. So I've been doing that for about two years now, and I'm getting ready to transition to a Ph.D. level.

What brought you to JPL for this internship?

I vividly remember being infatuated with NASA as a youth, so much so that my parents ordered me a pamphlet from Space Center Houston with posters and stickers explaining all of the cool things happening across NASA. I will never forget when I was able to visit the center during spring break in 2009. It was by far the most amazing thing I have ever witnessed as a youth.

As life goes on, you don't think as much about your childhood dreams, but every time I saw an opportunity at NASA I applied. When I saw that JPL was looking to take on interns, I was just wrapping up my Master's, and I figured, "Let me give it another shot." I spent a lot of time working on my application, making sure it looked as good as possible. Who would've thought that months later, I would've been afforded the opportunity?

What's your ultimate career goal?

My goal is to develop my career enough so that I can share my experience and passion with others in my community and communities similar to the one I grew up in. I also want to share how STEM benefits society and how a career in STEM is attainable. A lot of times, people say, "I don't like math," or, "I don't like science." Quite frankly, I see myself as someone who didn't like those subjects much either. But I knew that I wanted to work for NASA one day or work in the field of engineering, so I had to get comfortable with those subjects. So my ultimate goal is to know that my career is set so that I can give back to communities where there are people who might be unsure of what they are capable of. I would also like to give kudos to JPL, because I see that they have a lot of involvement with local communities, doing educational outreach.

I fully agree. I've been giving talks to high-school students about the Perseverance Mars rover, and it is the most rewarding thing to see younger students who don't really know what they want to do in the future get excited [about STEM]. Now they're interested, and you can give them the tools to go out and maybe pursue it.

Most definitely. And that's how you pour into the next person so that they can pour into the next person.

How do you feel you're contributing to NASA-JPL missions and science?

I remember early on in my JPL internship, in one of the webinars, they expressed how this experience is meant to ultimately give you exposure but also inspire you to develop yourself. I believe that I'm contributing in that way by being someone who is driven, motivated, and also willing to take those chances to look deeper than the basic assignment.

When you're not in school or interning, how do you like to spend your time?

I'm having a good time with my family. My brothers and I play board games together. I work out sometimes. For the most part, I've been spending time with the family, playing a video game in my free time, shopping online a little bit, and connecting with my frat brothers. I've done a lot of virtual events for people in the community, talking about COVID safety and stressing the importance of voting, with the elections coming up.

I also find myself doing a lot of internal development. So that would be reading a little bit more for pleasure, and also doing some assessments of my goals and budgeting. I like to look at this pandemic as a sort of "halftime" when I can work on some things for me to better develop myself.

My last question is a fun one: If you could have a spacecraft built to study anything you want, what would it be?

I'd like to study how to sustain or better germinate resources on Earth. If we can find a way to learn what's going on globally on a more intimate scale, I believe that would help us utilize our planet's resources more effectively – resources that could pertain to producing more crops for food, for example.

This Q&A is part of an ongoing series highlighting the stories and experiences of students and faculty who came to JPL as part of the laboratory's collaboration with historically black colleges and universities, or HBCUs. › Read more from the series

Explore More

Kim Orr contributed to this story.


The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Higher Education, Internships, STEM, College Students, Careers, Jobs, Engineering, Electrical Engineering, HBCU, Black History Month

  • Evan Kramer
READ MORE

Christine wears a scrunchy on her wrist while pointing to the 3D printer, which sits on a dresser between a rack of clothes and a flag hanging on the wall.

It sounds like a reality show: A team of six interns working remotely from their homes across the country given 10 weeks to build a prototype lunar spacecraft that can launch on a balloon over the California desert. But for Christine Yuan, a senior at Cornell University, it was just another engineering challenge.

This summer marked Yuan's second time interning with the Innovation to Flight group at NASA's Jet Propulsion Laboratory. The group brings in a collaborative team of a dozen or more interns each year. Their task is to create and test prototypes of far-flung ideas for spacecraft and space technology over the course of their internship. But this summer, with most of JPL's employees still on mandatory telework and interns required to complete their projects remotely, the team had an even bigger challenge to overcome: How could they build a spacecraft together while hundreds of miles apart?

Yuan flashed back to her days using materials from around the house to build props and costumes from her favorite TV shows and games. It was what made her want to become a mechanical engineer in the first place. She had a 3D printer and tools in the apartment she shares with a friend from school. So it was decided. She would build the spacecraft in her apartment and mail it in parts to the other interns working on electronics and software from their respective homes.

We caught up with Yuan to learn how she and the team took on the challenge of building a spacecraft from home, how her childhood hobby served as inspiration, and to find out whether the test flight was a success.

What are you working on at JPL?

I'm an intern with the Innovation to Flight group, which is a team of interns that works with JPL engineers and scientists to take ideas for new kinds of technology or spacecraft from ideation to flight in one summer. The goal is to quickly develop prototypes to see whether an idea is feasible and increase the technical readiness level of various hardware. I was part of the group last summer, too. This summer, we've been split into two groups. The group I'm working with is exploring whether we might be able to use a constellation of CubeSats [small, low-cost satellites] to support robots and astronauts on the Moon. So we're building prototypes of the CubeSats and the communications and navigation technology.

How might CubeSats support astronauts and robots on the Moon?

The goal is to have a couple of these CubeSats orbiting the Moon that can assist with various surface operations, whether it's a rover or a small robot or an astronaut trying to communicate. There are a couple parts to it. One is localization, the ability to figure out where you are on the Moon – sort of like our GPS on Earth – so different assets know where they are relative to each other. The other part is communication. If you're collecting data, the data could be sent from the surface assets to the CubeSats to another surface asset or ground station. The CubeSats could take away a lot of the onboard processing that needs to happen so assets on the Moon could use less processing power.

You're interning remotely this summer. Are you actually building the CubeSat?

Yeah. On the CubeSat team, there are six of us, so we have a couple of people working on the software and then a few of us are working on building the CubeSat itself. I have a lot of tools and a 3D printer, so I'm working on designing the structure and then prototyping it using the stuff I have at home. The team has been getting materials out to me, and I've been printing stuff on my 3D printer and building it out. Then I've been mailing out parts to our avionics people so they can load it up with all the electronics.

Wow. That's so cool. Are you building all of this at home or in your dorm room? Are the people living with you wondering what you're up to?

I spent the first half of the summer in my parents' house, so I was operating out of their garage. Now that I'm back at school, I work from my apartment. I'm living with one of my friends right now. She's also in the aerospace field so she has an idea of what I'm doing. Most of the time we're just working in our rooms, but I normally have a bit more of a "dynamic" going on in my room.

How has the team adjusted to working remotely?

Half the team is returning from last summer, so we've worked together before. But when we were at JPL, it was easier because we could walk back and forth with parts and hand things off.

When we were planning for the summer, we were talking about the different options that we had. I like to build things in my free time, so I have a bunch of different tools. I'm a mechanical engineer, so I was going to be working on the structure anyway. So I said, "I'll build the structure, ship it in pieces to the rest of the team, and give them a detailed explanation or a CAD model so they can assemble it." Our software and electronics guys are coding everything and sharing their files. Two of the team members are roommates this summer, which is really convenient. They're working on the electronics and avionics out of the basement at one of their family's homes. Then, we're just constantly messaging with each other. We talk at least once a day. It helps that we're a small team.

What's your average day like?

I'm on the East Coast, so the time difference hasn't affected me too badly. I wake up, work out, and then I start work. In the morning, I'll check in with different members of the team. I like to have a to-do list, so I normally have one for the week. Depending on what I need to do, my day ranges anywhere from trying to figure out what I need to prototype next to 3D printing something or drilling holes in this or that. I use any downtime to talk to other team members, figure out what they're doing.

How has the remote experience compared with last summer, when you were at JPL in person?

The most disappointing thing was not being able to be at JPL in person with everyone. Last summer, there were about 15 of us all working in the same room together. We'd have big brainstorming meetings, all getting together and working on the white board. It was kind of a chaotic, loud mess, but it was a lot of fun, and we got a lot of work done. I was always moving around, always talking to somebody, always building something or testing something. I really enjoyed working on a team like that. It was very fast-paced.

This summer, it's a little more difficult, because I haven't met half the team members in person, and it's just slower. We're shipping things to one another and some of us are in different time zones. It's just been a little more difficult to get things done as fast. Another big change is that at the end of last summer, we had two flight tests. We launched one of our prototypes on a tethered balloon, and then we tested some of our other projects on a high-altitude balloon. We're not going to get to do that in person this summer.

Do you feel like you still have that team comradery even though you're apart this summer?

Definitely. Half the people are returning from last summer, so we're still pretty tight, and we're all in this together. It may not be as dynamic and as fast-paced as last summer, but we're building something together pretty well and pretty quickly.

What are you studying in school, and what got you interested in that field?

I'm studying mechanical engineering. I got into mechanical engineering for a variety of reasons. When I was younger, I was a huge nerd – I still am. I would spend my summers in my parents' basement, making costumes and props from my favorite movies and TV shows. I realized that I really liked making things. I liked putting things together and seeing them work. I also think space is really cool. I want to be able to tell my future kids and grandkids, "I worked on projects that helped us discover all these things about the universe." There's so much we don't know, and I know I can't learn everything, but I want to be a part of the discovery process. So I took those two things that I'm pretty hyped about, put them together, and decided that I want to be an engineer. I want to build spaceships. I want to help advance science and make new discoveries.

What were some of the props or costumes that you designed as a kid?

I was a big fan of the "Final Fantasy" video game series, so with the little bit of money that I made from tutoring kids, I would go out and buy different materials to recreate some of the props from that game. Lightning's gunblade was one of the things I made that I thought was pretty cool. I'm also a big fan of the "Fire Emblem" series, so I recreated a couple of things from that. I also like making costumes for my friends.

I'm starting to get back into it, because I have a little bit of free time this summer. Me and my friends have plans to make our own lightsabers and just play around with what we can make and what we can do with the budget and tools we have. That's where the challenge is. As a kid, I was so limited by the materials I had available. I thought it was fun figuring out how to make stuff anyway. How can I hammer this out with what I have in my house?

What brought you to JPL for your internships?

I heard great things from friends who had interned at JPL before. It's one of the best places to be if you want to work on space missions. I'd never been to the West Coast before last summer. I'm from Maryland. I grew up in a town about 20 minutes outside of Baltimore. It was kind of scary [to travel so far from home], but I feel like life's about experiences, so I might as well just do it.

How do you feel you're contributing to NASA missions and science as an intern?

I feel like it's impossible for any one person to make an impact alone. I'm part of a team that's helping assist future lunar missions. In the grand scheme of things, it's a small piece of what humanity is going to achieve in the future, but it's rewarding to know that I'm part of it. I know I'm a small piece in the big machine, but it still feels like a lot, because if you take one piece out of the machine, it can break.

That's a great way of putting it.

When you're not in school or interning, how do you like to spend your time? What are some of your hobbies?

At school, I'm involved with a bunch of different organizations on campus. One of my main extracurriculars is that I build UAVs [unmanned aerial vehicles]. I'm also involved with a lot of the outdoorsy groups on campus.

When the weather's nice, which in Upstate New York is not always the case, I like to run. I've run some pretty crazy races – Ragnar races, If you ever heard of those – and a couple of relays around the Finger Lakes. I like to run. I like to hike. There's a lot of beautiful mountains and lakes in the Upstate New York area. I've been trying to explore them. And I like to rock climb. I have a couple of friends at school who are super involved in the rock-climbing community, so they got me into it.

When the weather's not so nice, I like to read. I also started to get back into building props and making costumes, because I finally feel like I have time again to sit down and do that. It's a pretty time-consuming hobby.

Now for a fun question: If you could build a spacecraft to go anywhere and study anything, what would it be?

Theoretically, if you had all the technology to do it, I think it would be cool to see inside a black hole. Send a spacecraft in there, and send data out.

----

Since we last talked, your team finished the CubeSat and tested it in the desert! Tell us more about that and how it went?

The tests went pretty well given the circumstances. The team performed a lot of our tests remotely. We ran simulations to test some of the software. Our mock lunar surface asset was able to drive autonomously. Some aspects of the tests were successful and others could use more work, but we laid down a good foundation for future Innovation to Flight interns to build on. Hopefully our work helped the researchers we worked with from JPL and the University of Colorado Boulder.


A novel approach to developing rapid prototypes for space exploration, the Innovation to Flight program was created in 2014 by JPL Fellow Leon Alkalai, who continues to oversee and guide activities. Coordinated by Senior Research Scientist Adrian Stoica with support over the years from Chrishma Derewa, David Atkinson, and Miles Pellazar at JPL, the program has brought in more than 50 student interns from across the country. Offering students a uniquely collaborative experience developing technology for the Moon, Mars, and beyond, Innovation to Flight has also served as a career pathway to numerous program alumni now working at JPL.

Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, College Students, Careers, Jobs, Engineering, Mechanical Engineering, Innovation to Flight, Technology Demonstration, Moon, Women at NASA, Asian Pacific American Heritage Month

  • Kim Orr
READ MORE

Students write on a glass panel inside the Team X room at JPL

When Jennifer Scully was a planetary geology grad student at UCLA in 2013, she happened upon an email that called for students to apply to something called the Planetary Science Summer School, or PSSS.

“I asked around and everybody only had positive things to say,” she says, “so I applied and I got in.”

She found herself in an immersive, 11-week program that teaches students all over the country how to formulate, design, and pitch a mission concept to a review board of NASA experts – essentially, how to bring a space mission to life from beginning to end.

“It was fabulous,” Scully says of her time in the program. “I come from a science background, and I had worked on an active planetary mission, but I didn’t have much experience with engineering. The summer school gave me my first exposure to mission-concept development and proposals. It was really illuminating.”

Seven years later, Scully is now a geologist at NASA's Jet Propulsion Laboratory in Southern California, researching the asteroid Vesta and dwarf planet Ceres. She also plays a role in planning and designing missions to explore Jupiter's moon Europa. She’s still part of the PSSS program – but, now, as one of the mentors to this year’s cohort of 36 students looking at missions to Venus and Saturn's moon Enceladus.

The first 10 weeks of the program focus on formulation and always happen remotely via webinar. The final week usually culminates with an intensive in-person experience at JPL, during which participants write their mission proposal. Participants receive mentorship from scientists and engineers with the laboratory's Team X, a group that has been helping design and evaluate mission concepts since 1985. Even though the pandemic means their “culminating week” won’t take place physically at the laboratory this year, the students are still descending virtually on the JPL community between July 20 and Aug. 7 to learn the complex dance of what does and doesn’t work when it comes to dreaming up a NASA mission.

Web meeting with the 2020 PSSS cohort

The first of two summer 2020 cohorts to arrive virtually at JPL for their culminating week in the PSSS program. While these one-week sessions are traditionally held in person, this year's group is meeting remotely. | + Expand image

“We do this for the broader planetary science mission community,” says PSSS manager Leslie Lowes, who’s been leading the program since 2010. “It’s about NASA training the next generation of scientists and engineers to do this type of work. Over 650 alumni use this model of mission design, and they’re in all kinds of leadership positions across NASA, including at JPL.”

Developed in 1989, the summer school started as a lecture series on how space missions could address the latest science discoveries and gradually shifted to a more hands-on format in 1999. Instead of hearing about the process, why not let students experience it?

“The first thing we do [when participants arrive at JPL] is help them evaluate potential architectures for their mission. Is it an orbiter or a lander? Is it a flyby?” says Alfred Nash, a mentor for the summer school and a lead engineer for Team X. “Does the science work? Do the engineering and cost work? The problem is not ‘can you make the thing,’ but ‘can you make the thing within the boundaries you have?’”

For Team X, it’s all about an integrated approach, which is one of the principal differences between how missions were developed in earlier days of exploration versus more recently. “Team X itself, its superpower is its ability to work in parallel and concurrently,” Nash says, stressing the importance of how the science should work in parallel with the engineering, the storytelling, the cost, and the project management.

A team of distinguished postdocs and graduate students learns what it's like to design a space mission in just five days as part of the 2014 session of NASA's Planetary Science Summer School at JPL. Credit: NASA/JPL-Caltech | Watch on YouTube

“What is the big thing I’m trying to do? How do all the pieces work together? What is the foundational heart of this in terms of how we’re going to change humanity’s understanding? What are the pieces we need so that happens, and what does it take to do that?” are common questions Nash says Team X asks of all its mission proposals – including the concepts developed in PSSS.

One key lesson Nash tries to impart during the culminating week: “Win [the proposal] and don't regret it when you do,” he says. “The last thing you want to do is design a mission that no one can manage.”

If the students’ answers can pass the rigorous initial hurdles and meet the requirements for a NASA proposal, then they transition to design work. At that point, each student is paired with a mentor who has expertise in a range of engineering capabilities, from mission design to the science tools that will go on a spacecraft.

While this would normally mean working together at JPL, the program has gone virtual this year.

Team X had some practice setting up a virtual experience for the summer’s incoming students, as most JPL employees have been on mandatory telework since mid-March. Currently, the students are in a “waterfall of [web meeting] rooms,” as Nash describes it, where there’s one central meeting room and then individual “stations” in separate rooms, where students and mentors can interface while moving from room to room as needed. A typical day kicks off at 8 a.m. with a daily briefing. Then, students spend half the day with Team X and half the day on their own, preparing for the next day’s tasks. Their day ends at 5 p.m. with a briefing to review what was completed, what worked well, what didn’t, and what needs to change for the next day.

“Everyone knows science, if they’re a scientist, and engineering, if they’re an engineer,” says PSSS alumna Scully. “But now, they’re really trying to understand what mission development is about. This foundation will enable them to work with NASA much more effectively.”

The cohorts that arrive every year are formidable, and this summer’s group is no different: Among the students are 26 Ph.D. candidates and eight postdoctoral researchers.

For Elizabeth Spiers – a Ph.D. candidate studying the habitability of other planets at the Georgia Institute of Technology, and one of this summer’s students examining Enceladus’ ocean – PSSS has provided her with invaluable experience in real-time mission concept problem-solving.

“The project moves quickly and some of our decisions must be made equally as fast,” Spiers says. “Oftentimes, no person on our team knows the answers, and we need to figure out what we don’t know or understand about the problem so that we can ask the correct questions swiftly.”

In addition to critical thinking, the summer school also gives its students the chance to work with a diverse group of students and mentors.

Watkins and Smythe look at a computer screen together

NASA astronaut Jessica Watkins, an alumna of the program, attending her PSSS session in 2016 with mentor Bill Smythe. Image credit: NASA/JPL-Caltech | + Expand image

“It’s really exhilarating to see all of those disparate backgrounds and expertise come together into one cohesive project,” Spiers says. “I have learned so much about not only our project and the science and engineering related to it, but also about my teammates and their individual passions.”

Over the years, the program has taught students lessons they can carry with them throughout their careers. PSSS alumna Jessica Watkins went on to become a NASA astronaut and, at JPL, two summer school alumni-led development of science instruments on the Perseverance Mars roverPIXL and SHERLOC. And this year, there’s a new star in the program, literally: The summer school is piloting a second experience called the Heliophysics Mission Design School to help strengthen hypothesis-driven science investigations when designing missions to the Sun.

Perhaps one lesson students will take away from PSSS is not only knowing what they want, but also recognizing the limits of space exploration.

“The most rewarding thing is seeing them make good decisions,” says Nash. “When they avoid trying to do something too expensive just because it’s cool. When they find a more fruitful way forward. What you want has nothing to do with it; it’s about what the world will let you do and how clever you are at navigating those boundaries.”

This feature is part of an ongoing series about the stories and experiences of JPL scientists, engineers, and technologists who paved a path to a career in STEM with the help of NASA's Planetary Science Summer School program. › Read more from the series

Explore More

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Higher Education, Internships, STEM, College Students, Virtual Internships, PSSS, Planetary Science Summer School, Ph.D. Programs, Science, Mission Design, PSSS Alumn

  • Celeste Hoang
READ MORE

Collage of intern photos that appear in this article

Most years, summertime at NASA's Jet Propulsion Laboratory arrives with an influx of more than 800 interns, raring to play a hands-on role in exploring Earth and space with robotic spacecraft.

Perhaps as exciting as adding NASA to their resumes and working alongside the scientists and engineers they have long admired is the chance to explore the laboratory's smorgasbord of science labs, spacecraft assembly facilities, space simulators, the historic mission control center and a place called the Mars Yard, where engineers test drive Mars rovers.

But this year, as the summer internship season approached with most of JPL's more than 6,000 employees still on mandatory telework, the laboratory – and the students who were offered internships at the Southern California center – had a decision to make.

"We asked the students and the mentors [the employees bringing them in] whether their projects could still be achieved remotely and provide the educational component we consider to be so crucial to these experiences," said Adrian Ponce, deputy section manager of JPL's Education Office, which runs the laboratory's STEM internship programs.

The answer was a resounding yes, which meant the laboratory had just a matter of weeks to create virtual alternatives for every aspect of the internship experience, from accessing specialized software for studying Earth and planetary science to testing and fine-tuning the movements of spacecraft in development and preparing others for launch to attending enrichment activities like science talks and team building events.

“We were able to transition almost all of the interns to aspects of their projects that are telework-compatible. Others agreed to a future start date,” said Ponce, adding that just 2% of the students offered internships declined to proceed or had their projects canceled.

Now, JPL's 600-plus summer interns – some who were part-way through internships when the stay-at-home orders went into effect, others who are returning and many who are first-timers – are getting an extended lesson in the against-the-odds attitude on which the laboratory prides itself.

We wanted to hear about their experiences as JPL's first class of remote interns. What are their routines and home offices like in cities across the country? How have their teams adapted to building spacecraft and doing science remotely? Read a collection of their responses below to learn how JPL interns are finding ways to persevere, whether it's using their engineering skills to fashion homemade desks, getting accustomed to testing spacecraft from 2,000 miles away or working alongside siblings, kids, and pets.


In the image on the left, Jennifer Brag stands in front of a series of observatories. In the image on the right, her bird is pirched on top of open laptop.

Courtesy of Jennifer Bragg | + Expand image

"I am working with an astronomer on the NEOWISE project, which is an automated system that detects near-Earth objects, such as asteroids. The goal of my project is to identify any objects missed by the automated system and use modeling to learn more about their characteristics. My average day consists of writing scripts in Python to manipulate the NEOWISE data and visually vet that the objects in the images are asteroids and not noise or stars.

My office setup consists of a table with scattered books, papers, and pencils, a laptop, television, a child in the background asking a million questions while I work, and a bird on my shoulder that watches me at times."

– Jennifer Bragg will be studying optics at the University of Arizona as an incoming graduate student starting this August. She is completing her summer internship from Pahoa, Hawaii.


Radina Yanakieva poses in front of a model of the Curiosity Mars rover at JPL

Courtesy of Radina Yanakieva | + Expand image

"I'm helping support the Perseverance Mars rover launch this summer. So far, I have been working remotely, but I'm lucky enough to have the opportunity to go to Pasadena, California, in late July to support the launch from JPL! On launch day, I will be in the testbed, where myself and a few other members of my group will be 'shadowing' the spacecraft. This means that when operators send their commands to the actual spacecraft, when it’s on the launch pad and during its first day or so in space, we'll send the same instructions to the test-bed version. This way, if anything goes wrong, we'll have a high-fidelity simulation ready for debugging.

I have a desk in my bedroom, so my office setup is decent enough. I bought a little whiteboard to write myself notes. As for my average working day, it really depends on what I'm doing. Some days, I'm writing procedures or code, so it's a text editor, a hundred internet tabs, and a messenger to ask my team members questions. Other days, I'm supporting a shift in the test bed, so I'm on a web call with a few other people talking about the test we're doing. Luckily, a large portion of my team's work can be done on our personal computers. The biggest change has been adding the ability to operate the test bed remotely. I'm often amazed that from New York, I can control hardware in California.

I was ecstatic that I was still able to help with the Perseverance Mars rover mission! I spent the second half of 2019 working on launch and cruise testing for the mission, so I'm happy to be able to see it through."

– Radina Yanakieva is an undergraduate student studying aerospace engineering at Georgia Tech and interning from Staten Island, New York.


Aditya Khuller stands with his arms outstretched and poses in front of a model Mars rover in a garage at JPL.

Courtesy of Aditya Khuller | + Expand image

"Our team is using radar data [from the European Space Agency’s Mars Express spacecraft] to find out what lies beneath the large icy deposits on Mars' south pole. My average day consists of analyzing this radar data on my computer to find and map the topography of an older surface that lies below the ice on Mars’ south pole, while my plants look on approvingly.

I was delighted to be offered the chance to work at JPL again. (This is my fourth JPL internship.) Even though it's better to be 'on lab,' it is an honor to get to learn from the coolest and smartest people in the world."

– Aditya Khuller is a graduate student working toward a Ph.D. in planetary science at Arizona State University and interning from Tempe, Arizona.


Breanna Ivey wears a Georgia Tech T-Shirt and poses in front of a river with her arms outstretched on concrete railing.

Courtesy of Breanna Ivey | + Expand image

"I am working on the Perseverance Mars rover mission [launching this summer]. As a member of the mobility team, I am testing the rover's auto-navigation behaviors. If given a specific location, flight software should be able to return data about where that location is relative to the rover. My project is to create test cases and develop procedures to verify the data returned by the flight software when this feature is used.

My average day starts with me eating breakfast with my mom who is also working from home. Then, I write a brief plan for my day. Next, I meet with my mentor to discuss any problems and/or updates. I spend the rest of my day at my portable workstation working on code to test the rover's behaviors and analyzing the data from the tests. I have a mini desk that I either set up in my bedroom in front of my Georgia Tech Buzz painting or in the dining room.

If I could visit in person, the first thing I would want to see is the Mars rover engineering model "Scarecrow." I would love to visit the Mars Yard [a simulated Mars environment at JPL] and watch Scarecrow run through different tests. It would be so cool to see a physical representation of the things that I've been working on."

– Breanna Ivey is an undergraduate student studying electrical engineering at the Georgia Institute of Technology and interning from Macon, Georgia.


Kaelan Oldani wears her graduation gown and holds her cap while posing in front of a sign that reads 'Michigan Union.'

Courtesy of Kaelan Oldani | + Expand image

"I am working on the Psyche mission as a member of the Assembly Test and Launch Operations team, also known as ATLO. (We engineers love our acronyms!) Our goal is to assemble and test the Psyche spacecraft to make sure everything works correctly so that the spacecraft will be able to orbit and study its target, a metal asteroid also called Psyche. Scientists theorize that the asteroid is actually the metal core of what was once another planet. By studying it, we hope to learn more about the formation of Earth.

I always start out my virtual work day by giving my dog a hug, grabbing a cup of coffee and heading up to my family's guest bedroom, which has turned into my office for the summer. On the window sill in my office are a number of space-themed Lego sets including the 'Women of NASA' set, which helps me get into the space-exploration mood! Once I have fueled up on coffee, my brain is ready for launch, and I log in to the JPL virtual network to start writing plans for testing Psyche's propulsion systems. While the ATLO team is working remotely, we are focused on writing test plans and procedures so that they can be ready as soon as the Psyche spacecraft is in the lab for testing. We have a continuous stream of video calls set up throughout the week to meet virtually with the teams helping to build the spacecraft."

– Kaelan Oldani is a master's student studying aerospace engineering at the University of Michigan and interning from Ann Arbor, Michigan. She recently accepted a full-time position at JPL and is starting in early 2021.


In the image on the left, Richardo Isai Melgar poses in front of a model of the Curiosity Mars rover at JPL. In the image on the right, he kneels in front of a model Mars rover in the Mars Yard at JPL.

Courtesy of Ricardo Isai Melgar | + Expand image

"NASA's Deep Space Network is a system of antennas positioned around the world – in Australia, Spain, and Goldstone, California – that's used to communicate with spacecraft. My internship is working on a risk assessment of the hydraulic system for the 70-meter antenna at the Goldstone facility. The hydraulic system is what allows the antenna and dish surrounding it to move so it can accurately track spacecraft in flight. The ultimate goal of the work is to make sure the antenna's hydraulic systems meet NASA standards.

My average day starts by getting ready for work (morning routine), accessing my work computer through a virtual interface and talking with my mentor on [our collaboration tool]. Then, I dive into work, researching hydraulic schematics, JPL technical drawings of the antenna, and NASA standards, and adding to a huge spreadsheet that I use to track every component of the antenna's hydraulic system. Currently, I'm tracking every flexible hydraulic fluid hose on the system and figuring out what dangers a failure of the hose could have on personnel and the mission."

– Ricardo Isai Melgar is an undergraduate student studying mechanical engineering at East Los Angeles College and interning from Los Angeles.


Susanna Eschbach poses in front of a mirrored background.

Courtesy of Susanna Eschbach | + Expand image

"My project this summer is to develop a network of carbon-dioxide sensors to be used aboard the International Space Station for monitoring the levels of carbon dioxide that crewmembers experience.

My 'office setup' is actually just a board across the end of my bed balanced on the other side by a small dresser that I pull into the middle of the room every day so that I can sit and have a hard surface to work on.

At first I wasn't sure if I was interested in doing a virtual engineering internship. How would that even work? But after talking to my family, I decided to accept. Online or in person, getting to work at JPL is still a really cool opportunity."

– Susanna Eschbach is an undergraduate student studying electrical and computer engineering at Northern Illinois University and interning from DeKalb, Illinois.


Izzie Torres poses in front of an ancient pyramid.

Courtesy of Izzie Torres | + Expand image

"I'm planning test procedures for the Europa Clipper mission [which is designed to make flybys of Jupiter's moon Europa]. The end goal is to create a list of tests we can perform that will prove that the spacecraft meets its requirements and works as a whole system.

I was very excited when I got the offer to do a virtual internship at JPL. My internship was originally supposed to be with the Perseverance Mars rover mission, but it required too much in-person work, so I was moved to the Europa Clipper project. While I had been looking forward to working on a project that was going to be launching so soon, Jupiter's moon Europa has always captured my imagination because of the ocean under its surface. It was an added bonus to know I had an internship secured for the summer."

– Izzie Torres is an undergraduate student studying aerospace engineering and management at MIT and interning from Seattle.


Jared Blanchard poses in front of a visualization in the VIVID lab at JPL.

Courtesy of Jared Blanchard | + Expand image

"I am investigating potential spacecraft trajectories to reach the water worlds orbiting the outer planets, specifically Jupiter's moon Europa. If you take both Jupiter and Europa into account, their gravitational force fields combine to allow for some incredibly fuel-efficient maneuvers between the two. The ultimate goal is to make it easier for mission designers to use these low-energy trajectories to develop mission plans that use very little fuel.

I'm not a gamer, but I just got a new gaming laptop because it has a nice graphics processing unit, or GPU. During my internship at JPL last summer, we used several GPUs and a supercomputer to make our trajectory computations 10,000 times faster! We plan to use the GPU to speed up my work this summer as well. I have my laptop connected to a second monitor up in the loft of the cabin where my wife and I are staying. We just had a baby two months ago, so I have to make the most of the quiet times when he's napping!"

– Jared Blanchard is a graduate student working toward a Ph.D. in aeronautics and astronautics at Stanford University.


Yohn Ellis, wearing a suit and tie, poses in front of yellow and gold balloons.

Courtesy of Yohn I. Ellis Jr. | + Expand image

"I'm doing a theory-based project on the topic of nanotechnology under the mentorship of Mohammad Ashtijou and Eric Perez.

I vividly remember being infatuated with NASA as a youth, so much so that my parents ordered me a pamphlet from Space Center Houston with posters and stickers explaining all of the cool things happening across NASA. I will never forget when I was able to visit Space Center Houston on spring break in 2009. It was by far the most amazing thing I have ever witnessed as a youth. When I was offered the internship at JPL, I was excited, challenged, and motivated. There is a great deal of respect that comes with being an NASA intern, and I look forward to furthering my experiences.

But the challenges are prevalent, too. Unfortunately, the internship is completely virtual and there are limitations to my experience. It is hard working at home with the multiple personalities in my family. I love them, but have you attempted to conduct research with a surround system of romantic comedies playing in the living room, war video games blasting grenades, and the sweet voice of your grandmother asking for help getting pans from the top shelf?"

– Yohn I. Ellis Jr. is a graduate student studying electrical engineering at Prairie View A&M University and interning from Houston.


Mina Cezairli wears a NASA hat and poses in front of a landscape of green mountains a turqoise ocean and puffy white and grey clouds.

Courtesy of Mina Cezairli | + Expand image

"This summer, I am supporting the proposal for a small satellite mission concept called Cupid’s Arrow. Cupid’s Arrow would be a small probe designed to fly through Venus’ atmosphere and collect samples. The ultimate goal of the project is to understand the “origin story” of Venus' atmosphere and how, despite their comparable sizes, Earth and Venus evolved so differently geologically, with the former being the habitable, friendly planet that we call home and the latter being the hottest planet in our solar system with a mainly carbon dioxide atmosphere.

While ordinary JPL meetings include discussions of space probes, rockets, and visiting other planets, my working day rarely involves leaving my desk. Because all of my work can be done on my computer, I have a pretty simple office setup: a desk, my computer, and a wall full of posters of Earth and the Solar System. An average day is usually a combination of data analysis, reading and learning about Venus, and a number of web meetings. The team has several different time zones represented, so a morning meeting in Pacific time accommodates all of Pacific, Eastern and European time zones that exist within the working hours of the team."

– Mina Cezairli is an undergraduate student studying mechanical engineering at Yale University and is interning from New Haven, Connecticut.


Izabella Zamora sits on steps leading up to a building with pumpkins decorating the steps to her right.

Courtesy of Izabella Zamora | + Expand image

“I'm characterizing the genetic signatures of heat-resistant bacteria. The goal is to improve the techniques we use to sterilize spacecraft to prevent them from contaminating other worlds or bringing contaminants back to Earth. Specifically, I'm working to refine the amount of time spacecraft need to spend getting blasted by dry heat as a sanitation method.

"As someone who has a biology-lab heavy internship, I was quite skeptical of how an online internship would work. There was originally supposed to be lab work, but I think the project took an interesting turn into research and computational biology. It has been a really cool intersection to explore, and I have gained a deeper understanding of the math and analysis involved in addition to the biology concepts."

– Izabella Zamora is an undergraduate student studying biology and computer science at the Massachusetts Institute of Technology and interning from Brimfield, Massachusetts.


Leilani Trautman poses for a photo at an outside table. The back of her open laptop has dozens of stickers attached to it, including a NASA meatball.

Courtesy of Leilani Trautman | + Expand image

"I am working on the engineering operations team for the Perseverance Mars rover. After the rover lands on Mars, it will send daily status updates. Every day, an engineer at JPL will need to make sure that the status update looks healthy so that the rover can continue its mission. I am writing code to make that process a lot faster for the engineers.

When I was offered the internship back in November, I thought I would be working on hardware for the rover. Once the COVID-19 crisis began ramping up and I saw many of my friends' internships get cancelled or shortened, I was worried that the same would happen to me. One day, I got a call letting me know that my previous internship wouldn't be possible but that there was an opportunity to work on a different team. I was so grateful to have the opportunity to retain my internship at JPL and get the chance to work with my mentor, Farah Alibay, who was once a JPL intern herself."

– Leilani Trautman is an undergraduate student studying electrical engineering and computer science at MIT and interning from San Diego, California.


Kathryn Chamberlin poses for an outdoor photo in front of a green hedge.

Courtesy of Kathryn Chamberlin | + Expand image

"I am working on electronics for the coronagraph instrument that will fly aboard the Nancy Grace Roman Space Telescope. The Roman Space Telescope will study dark energy, dark matter, and exoplanets [planets outside our solar system]. The science instrument I'm working on will be used to image exoplanets. It's also serving as a technology demonstration to advance future coronagraphs [which are instruments designed to observe objects close to bright stars].

I was both nervous and excited to have a virtual internship. I’m a returning intern, continuing my work on the coronagraph instrument. I absolutely love my work and my project at JPL, so I was really looking forward to another internship. Since I’m working with the same group, I was relieved that I already knew my team, but nervous about how I would connect with my team, ask questions, and meet other 'JPLers.' But I think my team is just as effective working virtually as we were when working 'on lab.' My mentor and I have even figured out how to test hardware virtually by video calling the engineer in the lab and connecting remotely into the lab computer."

– Kathryn Chamberlin is an undergraduate student studying electrical engineering at Arizona State University and interning from Phoenix.


Daniel Stover is shown in a screengrab from a web meeting app pointing to an illustration of the Perseverance Mars rover.

Courtesy of Daniel Stover | + Expand image

"I am working on the flight system for the Perseverance Mars rover. The first half of my internship was spent learning the rules of the road for the entire flight system. My first task was updating command-line Python scripts, which help unpack the data that is received from the rover. After that, I moved on to testing a part of the flight software that manages which mechanisms and instruments the spacecraft can use at a certain time. I have been so grateful to contribute to the Perseverance Mars rover project, especially during the summer that it launches!

I have always been one to be happy with all the opportunities I am granted, but I do have to say it was hard to come to the realization that I would not be able to step foot on the JPL campus. However, I was truly grateful to receive this opportunity, and I have been so delighted to see the JPL spirit translate to the online video chats and communication channels. It's definitely the amazing people who make JPL into the place that everybody admires. Most important, I would like to thank my mentor, Jessica Samuels, for taking the time to meet with me every day and show me the true compassion and inspiration of the engineers at JPL."

– Daniel Stover is an undergraduate student studying electrical and computer engineering at Virginia Tech and interning from Leesburg, Virginia.


In the image on the left, Sophia Yoo poses for a selfie. In the image on the right, her laptop, mouse, headphones and open notebook are shown at a table outside surrounded by a wooden porch and a green landscape.

Courtesy of Sophia Yoo | + Expand image

"I'm working on a project called the Multi-Angle Imager for Aerosols, or MAIA. It's an instrument that will go into lower Earth orbit and collect images of particulate matter to learn about air pollution and its effects on health. I'm programming some of the software used to control the instrument's electronics. I'm also testing the simulated interface used to communicate with the instrument.

I was ecstatic to still have my internship! I'm very blessed to be able to do all my work remotely. It has sometimes proven to be a challenge when I find myself more than four layers deep in virtual environments. And it can be confusing to program hardware on the West Coast with software that I wrote all the way over here on the East Coast. However, I've learned so much and am surprised by and grateful for the meaningful relationships I've already built."

– Sophia Yoo is an incoming graduate student studying electrical and computer engineering at Princeton University and is interning from Souderton, Pennsylvania.


Natalie Maus can be seen in the right corner of the image as she looks at a graph on her laptop.

Courtesy of Natalie Maus | + Expand image

"My summer research project is focused on using machine-learning algorithms to make predictions about the density of electrons in Earth’s ionosphere [a region of the planet's upper atmosphere]. Our work seeks to allow scientists to forecast this electron density, as it has important impacts on things such as GPS positioning and aircraft navigation.

Despite the strangeness of working remotely, I have learned a ton about the research process and what it is like to be part of a real research team. Working alongside my mentors to adapt to the unique challenges of working remotely has also been educational. In research, and in life, there will always be new and unforeseen problems and challenges. This extreme circumstance is valuable in that it teaches us interns the importance of creative problem solving, adaptability, and making the most out of the situation we are given."

– Natalie Maus is an undergraduate student studying astrophysics and computer science at Colby College and interning from Evergreen, Colorado.


Lucas Lange wears hiking gear and poses next to an American Flag at the top of a mountain with a valley visible in the background.

Courtesy of Lucas Lange | + Expand image

"I have two projects at JPL. My first project focuses on the Europa Clipper mission [designed to make flybys of Jupiter's moon Europa]. I study how the complex topography on the icy moon influences the temperature of the surface. This work is crucial to detect 'hot spots,' which are areas the mission (and future missions) aim to study because they might correspond to regions that could support life! My other work consists of studying frost on Mars and whether it indicates the presence of water-ice below the surface.

JPL and NASA interns are connected through social networks, and it's impressive to see the diversity. Some talks are given by 'JPLers' who make themselves available to answer questions. When I came to JPL, I expected to meet superheroes. This wish has been entirely fulfilled. Working remotely doesn't mean working alone. On the contrary, I think it increases our connections and solidarity."

– Lucas Lange is an undergraduate student studying aerospace engineering and planetary science at ISAE-SUPAERO [aerospace institute in France] and interning from Pasadena, California.


Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, College Students, Virtual Internships, Telework, Mars 2020 interns, Mars 2020, Perseverance, DSN, Deep Space Network, Mars, Asteroids, NEOWISE, Science, Technology, Engineering, Computer Science, Psyche, International Space Station, ISS, Europa, Jupiter, Europa Clipper, trajectory, nanotechnology, Cupid's Arrow, Proposal, Venus, Planetary Protection, Biology, Nancy Grace Roman Space Telescope, Dark Matter, Exoplanets, Multi-Angle Imager for Aerosols, MAIA, Earth, Earth science, air pollution, Hispanic Heritage Month, Black History Month, Asian Pacific American Heritage Month, Earth Science, Earth, Climate Change, Sea Level Rise

  • Kim Orr
READ MORE

Farah Alibay, wearing a white lab coat, poses for a photo in front of an engineering model of the Curiosity rover

It only takes minutes into a conversation with Farah Alibay about her job at NASA's Jet Propulsion Laboratory to realize there's nowhere else she'd rather be. An engineer working on the systems that NASA's next Mars rover will use to maneuver around a world millions of miles away, Alibay got her start at JPL as an intern. In the six years since being hired at the Laboratory, she's worked on several projects destined for Mars and even had a couple of her own interns. Returning intern Evan Kramer caught up with Alibay to learn more about her current role with the Mars 2020 Perseverance rover, how her internships helped pave her path to JPL and how she hopes interns see the same "beauty" in the work that she does.

What do you do at JPL?

I’m a systems engineer. I have two jobs on the Mars 2020 Perseverance rover mission right now. One is the systems engineer for the rover's attitude positioning and pointing. It's my job to make sure that once it's on the surface of Mars, the rover knows where it's pointed, and as it's moving, it can update its position and inform other systems of where it is. So we use things like a gyroscope and imagery to figure out where the rover is pointed and where it's gone as it's traveling.

My other job is helping out with testing the mast [sometimes called the "head"] on the rover. I help make sure that all of the commands and movements are well understood and well tested so that once the rover gets to Mars, we know that the procedures to deploy the mast and operate all of the instruments are going to work properly.

This is probably a tough question to answer, but what is an average day like for you?

Right now, I spend a lot of time testing – either developing procedures, executing procedures in the test bed or reviewing data from the procedures to make sure we're testing all of our capabilities. We start off from requirements of what we think we should be able to do, and then we write our procedures to test out those requirements. We test them out with software, and then we come to the test bed to execute them on hardware. Things usually go wrong, so we'll repeat the procedures a few times. Eventually, once we think we've had a successful run, we have a review.

Most of my testing is on the mobility side. However, it hasn't really started in earnest yet since we're waiting for the rover's "Earth twin" [the engineering model] to be built. Once that happens, later this summer, I will be spending a good chunk of my time in the Mars Yard [a simulated Mars environment at JPL], driving the rover around and actually using real data to figure out whether the software is behaving properly.

Watch the latest video updates and interviews with NASA scientists and engineers about the Mars 2020 Perseverance rover, launching to the Red Planet in summer 2020. | Watch on YouTube

What's the ultimate goal of your work at JPL?

All the work that I do right now is in support of the Perseverance rover mission. On the mobility team, we work on essential functions that are going to be used as the rover drives around on Mars.

One of the really neat things about Perseverance is that it can do autonomous driving. So the rover is able to drive up to 200 meters on its own, without us providing any directional information about the terrain. Working on this new ability has been the bulk of testing we're doing on the mobility team. But this new capability should speed up a lot of the driving that we do on Mars. Once we get smart in planning rover movements, we'll be able to plan a day's worth of activity and then tell the rover, "Just keep going until you're done."

You came to JPL as an intern. What was that experience like and how did it shape what you're doing now?

I spent two summers as an intern at JPL during my Ph.D. The first one was in 2012, which was the summer that the Curiosity Mars rover landed. That was a pretty incredible experience. As someone who had only spent one summer at NASA before, seeing the excitement around landing a spacecraft on Mars, well, I think it's hard not to fall in love with JPL when you see that happen. During that summer, I worked on the early days of the A-Team [JPL's mission-concept study team], where I was helping out with some of the mission studies that were going on.

My second summer, I worked in the Mars Program Office, looking at a mission concept to return samples from Mars. I was helping define requirements and look at some of the trade studies. We were specifically looking at designs for orbiters that could bring back samples from Mars. A lot of that fed into my graduate research. It's pretty cool to be able to say that I applied my research and research tools to real problems to help JPL's Mars sample return studies.

What brought you to JPL for your internship? Was working at JPL always a dream for you?

Yeah, working at NASA was always a dream, but going into my Ph.D., I became more and more interested in robotics and planetary exploration. I have a Ph.D. in aerospace engineering, but I also have a minor in planetary science. There are very few places on Earth that really put those two together besides JPL, and it's the only place that has successfully landed a spacecraft on Mars. So, given my passions and my interests, JPL emerged at the top of my list very, very quickly. Once I spent time here, I realized that I fit in. My work goals and my aspirations fit into what people were already doing here.

What moments or memories from your internships stand out the most?

The Curiosity landing was definitely one of the highlights of my first internship.

Another one of the highlights is that JPL takes the work that interns do really seriously. I was initially surprised by that, and I think that's true of every intern I've met. Interns do real work that contributes to missions or research. I remember, for example, presenting some of my work to my mentor, who was super-excited about some of the results I was getting. For me, that was quite humbling, because I saw my research actually helping a real mission. I think I'll always remember that.

How do you think your internship shaped your career path and led to what you're doing now?

My internships definitely opened a lot of doors for me. In particular, during my second internship, I also participated in the Planetary Science Summer School at JPL. Throughout the summer, we met with experts in planetary science to develop a mission concept, and then we came together as a team to design the spacecraft in one week! It was an intense week but also an extremely satisfying one. The highlight was being able to present our work to some of the leading engineers and scientists at JPL. We got grilled, and they found a whole lot of holes in our design, but I learned so much from it. How often do you get to have your work reviewed by experts in the field?

Through these experiences, I made a lot of connections and found mentors who I could reach out to. Since I knew JPL is where I wanted to be, I took it upon myself to knock on every single door and make my case as to why JPL should hire me. I actually never interviewed, because by then, they decided that I had done my own interviews!

My internships and the summer school also gave me an idea of what I wanted to do and what I didn't want to do. So I was a step ahead of other applicants. I always tell interns who come to JPL that if they're not particularly liking their work in the first few weeks, they should take the opportunity to go out and explore what else JPL has to offer. I believe that there's a place for everyone here.

Have you had your own interns before?

I had interns my first two summers working at JPL. Two of my interns are now also full-time employees, and I always remind them that they were my interns when I see them! I also have an intern this summer who I'm extremely excited to work with, as she'll be helping us prepare some of the tools we'll need for operating the Perseverance rover on Mars.

What is your mentorship style with interns?

My goal for interns is mostly for them to learn something new and discover JPL, so I usually let my interns drive in terms of what they want to achieve. Normally, I sit down with them at the start of summer and define a task, because we want them to be doing relevant work. But I encouraged them to take time off from what they're doing and explore JPL, attend events that we have organized for interns and decide whether this is a place for them or not.

It's kind of a dual mentorship. I mentor them in terms of doing their work, but also mentor them in terms of helping them evolve as students and as early career engineers.

What do you hope they take away from their experience?

I hope they take advantage of this unique place and that they fall in love with it the way I did. Mostly, though, I'm hoping they discover whether this is a place for them or not. Whatever it is, I want them to be able to find their passion.

What would be your advice for those looking to intern or work at JPL one day?

I think the way into JPL, or whatever career that you're going to end up in, is to be 100% into what you're doing. If you're in school, studying aerospace engineering or mechanical engineering, do hands-on projects. The way I found opportunities was through the Planetary Science Summer School and the Caltech Space Challenge, which were workshops. I also did something called RASC-AL, which is a different workshop from the National Institute of Aerospace. Do all of those extracurricular things that apply your skills and develop them.

If you have the opportunity to attend talks, or if your advisor gives you extra work that requires you to reach out to potential mentors, take the time to do it.

My other piece of advice is to knock on doors and talk to people who do something in your field that you're interested in. Don't be shy, and don't wait for opportunities to come to you. Especially if you're already at JPL, or if you have mentors that are. Leverage that network.

Last question: If you could play any role in NASA's mission to send humans back to the Moon and eventually on to Mars, what would it be?

I chose to come to JPL because I like working on robotic missions. However, a lot of these robotic missions are precursors to crewed lunar and Mars missions. So I see our role here as building up our understanding of Mars and the Moon [to pave the way for future human missions].

I've worked on different Mars missions, and every one has found unexpected results. We're learning new things about the environment, the soil and the atmosphere with every mission. So I already feel like my work is contributing to that. And especially with the Perseverance rover mission, one of its main intentions is to pave the way for eventually sending humans to Mars.

This story is part of an ongoing series about the career paths and experiences of JPL scientists, engineers, and technologists who got their start as interns at the Southern California laboratory. › Read more from the series

Explore More

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Mars, Mars Rover, Perseverance, Mars 2020, Mars 2020 Interns, PSSS, Planetary Science Summer School, Internships, Workshops, Career Advice, Mentors, Where Are They Now, Women at NASA

  • Evan Kramer
READ MORE

Catherine Elder poses in front of a brown-colored mural of the planets.

Catherine Elder's office is a small, cavernous space decorated with pictures of the Moon and other distant worlds she studies as a research scientist at NASA's Jet Propulsion Laboratory. Elder has been interested in space science since she was young, but she didn't always imagine she'd be working at one of the few places that builds robotic spacecraft designed to venture to mysterious worlds. A doctorate in planetary science – the study of the evolution of planets and other bodies in space – first brought her to JPL five years ago for research into the geologic history of the Moon. She planned to eventually become a professor, but a sort of gravitational pull has kept her at the laboratory, where in addition to lunar science, she's now involved in projects studying asteroids, Jupiter's moon Europa and future missions. We met up with her earlier this year to talk about her journey, how a program at JPL helped set her career in motion and how she's paying it forward as a mentor to interns.

What do you do at JPL?

A lot of what I do is research science. So that involves interpreting data from spacecraft and doing some modeling to understand the physical properties of places like the Moon, asteroids and Jupiter's moon Europa.

I am also working on mission formulation. So in that case, my role is to work with the engineers to make sure that the missions we're designing will actually be able to obtain the data that we need in order to answer the science questions that we have.

Tell us about some of the projects you're working on.

A lot of my work right now is looking at the Moon. I'm on the team for the Diviner instrument on the Lunar Reconnaissance Orbiter. That instrument observes the Moon in infrared, which we can use to understand the geologic history, such as how rocks break down over time. We can also look at specific features, like volcanoes, and understand their material properties. I do similar work on the OSIRIS-REx mission [which aims to return a sample from the asteroid Bennu].

I'm on the Europa Clipper team right now. I'm the investigation scientist for the cameras on the mission [which is designed to make flybys of Jupiter's moon Europa]. So I serve as a liaison between the camera team and other parts of the project.

I'm also working on a project modeling the convection in the rocky portion of Europa, underneath the liquid-water layer. Our goal is to understand how likely it is that there are volcanoes on the seafloor of Europa. A lot of scientists in their previous work have suggested that life could originate in these volcanoes. So we're going back and looking at how likely it is that they exist.

Sounds like fascinating work and like you're keeping busy! What is your average day like?

When I'm analyzing the data and doing modeling, I'm usually at my computer. I do a lot of computer coding and programming. We do a lot of modeling to help interpret the data that we get. For example, if we think we know the physical properties of a surface, how are those going to affect how the surface heats up or cools down over the course of a day? I compare what we find to the observations [from spacecraft] and circle back and forth until we have a better idea of what those surface materials are like.

Then, for the mission work, it's a lot more meetings. I'm in meetings with the engineers and with other scientists, talking about mission requirements, observation plans and things like that.

Tell us a bit about your background and what brought you to JPL.

I have wanted to be an astronomer since I was nine years old. So I was an astronomy major at Cornell University in New York. I didn't really realize planetary science existed, but luckily Cornell is one of the few universities where planetary science is in the astronomy department. A lot of times it's in the geology department. I started to learn more about planetary science by taking classes and realized that was what I was really interested in. So I went to the University of Arizona for grad school and got a Ph.D. in planetary science.

I thought I eventually wanted to be a professor somewhere. A postdoc position is kind of a stepping stone between grad school and faculty positions or other more permanent positions. So I was looking for a postdoc, and I found one at JPL. It was pretty different from what my thesis work had been on, but it sounded really interesting. I didn't think I was going to stay at JPL, but I ended up really liking it, and I got hired as a research scientist.

You also took part in the Planetary Science Summer School at JPL, working on a simulated mission design project. What made you want to apply for that program and what was the experience like?

I've always been interested in missions. I began PSSS when I was a postdoc at JPL, so I was already working with mission data from the Lunar Reconnaissance Orbiter. But by the time I joined the team, LRO had been orbiting the Moon for more than five years, so it was a well oiled machine.

I was interested in thinking about future missions and how you design one. So PSSS was a really great experience. They gave us a couple targets that we could pick between, and we picked Uranus. We had to come up with all the science objectives we would want to have if we visited Uranus [with a robotic spacecraft]. We had a mix of scientists and engineers, but none of us had studied Uranus, so we had to do a lot of background reading and figure out the big outstanding questions about the planet and its moons. We came up with a ton of them. When we did our first session with Team X, which is JPL's mission formulation team, we realized that we had way too many objectives, and we were never going to be able to achieve all of them in the budget that we had. It was a big wake up call. We had to narrow the scope of what we wanted to do a lot.

Then we had two more sessions with Team X, and we eventually came up with a concept where we were within the budget and we had a couple of instruments that could answer some science questions. Then we presented the mission idea to scientists and engineers at JPL and NASA headquarters who volunteered as judges.

Participants in the Planetary Science Summer School are assigned various roles that are found on real mission design teams. What role did you play?

I had the role of principal investigator [which is the lead scientist for the mission].

How did that experience shape what you're doing today?

Actually, quite a bit. Learning how you develop a science objective and thinking through it, you start with goals like, "I want to understand the formation and evolution of the solar system." That's a huge question. You're never going to answer it in one mission. So the next step is to come up with a testable hypothesis, which for Uranus could be something like, "Is Uranus' current orbit where it originally formed?" And then you have to come up with measurement objectives that can address that hypothesis. Then you have to think about which instruments you need to make those measurements. So learning about that whole process has helped a lot, and it's similar to what I'm doing on the Europa mission now.

Catherine Elder wears a purple shirt and sits in an office chair surrounded by images of the Moon and other worlds

Elder sits in her office in the "science building" at JPL surrounded by images of the places she's working to learn more about. More than just pretty pictures, the images from spacecraft are also one of the key ways she and her interns study moons and planets from afar. Image credit: NASA/JPL-Caltech | + Expand image

I also got really interested in the Uranus system, specifically the moons, because they show a lot of signs of recent geologic activity. They might be just as interesting as the moons of Saturn and Jupiter. But Voyager 2 is the only spacecraft that has visited them. At that time, only half of the moons were illuminated, so we've only seen half of these moons. I really want a mission to go back and look at the other half.

Recently, me and a few friends at JPL – two who also did PSSS and one who did a very similar mission formulation program in Europe – got really interested in the Uranus system. So now, in our free time, we're developing a mission concept to study the Uranus system and trying to convince the planetary science community that it’s worth going back to it.

Are there any other moments or memories from PSSS that stand out?

Actually, one I was thinking about recently is that I was in the same session as Jessica Watkins, who recently became a NASA astronaut. I remember I was super stressed out because we had to give this presentation, and me and the project manager, who is a good friend of mine, were disagreeing on some things. But I talked to Jess, and she was just so calm and understanding. So when she got selected as an astronaut, I was like, "That makes sense," [laughs].

But the other thing that stands out is we worked so hard that week. We were at JPL during the day. And in the evening, we would meet again and work another four hours. Now that I'm working on mission development for actual missions, I realize there's so much more that actually goes into a mission, but PSSS gives you a sense of how planetary missions are such a big endeavor. You really need to work as a team.

You've also served as a mentor, bringing interns to JPL. Tell us a bit about that experience and what made you interested in being a mentor?

I've worked with five students at this point, all undergrads. I've always been interested in being a mentor. I was a teaching assistant for a lot of grad school, and I really enjoyed that. I like working one-on-one with students. I find it really rewarding, too, because it helps you remember how cool the stuff you're doing really is. The interns are learning it for the first time, so being able to explain exciting things about the solar system to them for the first time is pretty fun.

What do you usually look for when choosing an intern?

Enthusiasm is a big one. At the undergrad level, most people haven't specialized that much yet; they have pretty similar backgrounds. So I think enthusiasm is usually what I use to identify candidates. Is this what they really want to be doing? Are they actually interested in the science of planets?

What kinds of things do you typically have interns do?

It varies. It can sometimes be repetitive, like looking at a lot of images and looking for differences between them. One of the projects I have a lot of students working on right now is looking at images of craters on the Moon. There's this class of craters on the Moon that we know are really young. By comparing the material excavated by them, we can actually learn about the Moon's subsurface. So I have students going through and looking at how rocky those craters are. We're basically trying to map the subsurface rocks on the Moon. So that can get a little repetitive, but I find that some students actually end up really liking it, and find it kind of relaxing [laughs].

For students who intern with me longer, I try to tailor it to their interests and their skill set. One student, Jose Martinez-Camacho, was really good at numerical modeling and understanding thermodynamics, so he was developing his own models to understand where ice might be stable near the lunar poles.

What's your mentorship philosophy? What do you want students to walk away with?

I think mentors are usually biased in that they want their students to turn out like them. So I'm always excited when my students decide they want to go to grad school, but grad school is not the path for everyone.

One of the important things to learn from doing research is how to solve a problem on your own. A lot of times coursework can be pretty formulaic, and you're learning how to solve one type of problem so that you can solve a similar problem. But with research, unexpected things come up, and you have to learn how to troubleshoot on your own. I think you learn a little bit about that as an intern.

What's the value of JPL internships and fellowships from your perspective?

We're lucky at JPL that we're working on really exciting things. I think we should share that with as many people as possible, and internships are a good way to do that.

Then, for me personally, participating in PSSS solidified that I was on the right path. I knew I wanted to continue to be involved in mission formulation, and that was a big part of why I decided to stay at JPL, to be really deeply involved in the formulation of space missions. There's only a handful of places in the world where you can do that.

This feature is part of an ongoing series about the stories and experiences of JPL scientists, engineers, and technologists who paved a path to a career in STEM with the help of NASA's Planetary Science Summer School program. › Read more from the series

Explore More

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Higher Education, Internships, STEM, Mentors, Science, Moon, Lunar Reconnaissance Orbiter, PSSS, Planetary Science Summer School, Careers, Research, Science, Women at NASA

  • Kim Orr
READ MORE

Adrien Dias-Ribiero stands in the gallery above the clean room at JPL and points down at engineers in building the Mars 2020 rover.

Adrien Dias-Ribiero poses for a photo in the gallery above the clean room at JPL with the Mars 2020 rover behind him.

With microbes capable of living in the harshest environments and life-affirming chemical compounds that can arise from the right mixture of heat and materials, the job of keeping spacecraft as contamination-free as possible is not an easy one. This was the task of French aerospace engineering student Adrien Dias-Ribeiro this past summer when he joined the team building the Perseverance Mars rover as a contamination-control engineering intern. With the rover set to collect the first samples of Martian rock and soil for a possible return to Earth, the team at NASA's Jet Propulsion Laboratory has to ensure the sample-collection system stays "clean" throughout its journey to Mars. We caught up with Dias-Ribeiro to find out how he's contributing to the mission and what brought him to JPL from France.

What are you working on at JPL?

I'm working in contamination control engineering for the Perseverance Mars rover mission. I am working, specifically, on the part of Perseverance that is designed to collect samples that could eventually be returned to Earth one day.

Perseverance is looking to measure the presence of organic carbons, like methane, and search for evidence of past microbial life on Mars, so our job is to be sure that contamination on the rover doesn't interfere with what it's trying to study. All the material [used to build the science instruments on the rover] naturally emits some carbons, so we just try to reduce them as much as possible. We've done several tests on the materials used in the science instruments on the rover. My job is to take the results of the tests and make models to predict whether we're meeting the requirements that are needed. We cannot go above a certain level of contamination or the mission will not meet its requirements.

Watch the latest video updates and interviews with NASA scientists and engineers about the Mars 2020 Perseverance rover, launching to the Red Planet in summer 2020. | Watch on YouTube

What is your average day like?

It's mostly coding. I take some measurements and I read them in Python [a programming language]. I also read articles about people doing this kind of work and try to improve their models or produce the models at JPL.

Where do you go to school, and what are you studying?

I go to ISAE-SUPAERO, the aerospace university in Toulouse, France. I'm studying space engineering.

What brought you to JPL for this internship?

I've done another internship in a similar area at the European Space Agency, but I was really interested to be part of the kinds of projects we have at JPL, like the Perseverance rover and Europa Clipper. I also really wanted to work internationally with a different culture than I'm used to. So I got some contacts with my previous supervisors. They knew people working here, so they recommended me.

I feel really lucky to be at JPL as a French person. One year ago, it was not imaginable that I would be at JPL, so I feel really grateful to be here.

What is the most uniquely JPL or NASA experience you've had so far?

I think it's when I was in the clean room [where the Perseverance rover is being built]. I was able to be one meter away from the rover and the descent vehicle [that will help land the rover on Mars].

Some people on my team had to do some measurements in the clean room and asked if I wanted to go with them, and so I did. I wasn't able to touch anything [laughs]. I just looked. I'm working on models of the rover, so it was really interesting to go closer to the hardware and the real spacecraft. I'd also never been inside the clean room before.

How do you feel you are contributing to the mission and making it a success?

I feel really lucky because the job I'm doing now will be directly applied to ensuring that the mission meets its requirements, which is to not go above the limit of organic carbon emitted by the hardware in charge of collecting the samples.

What is your ultimate career goal?

I'm really interested in systems engineering, so I'm trying to learn as much as possible about different types of engineering, modeling and how to manage projects.

If you could play any role in NASA's plans to send humans back to the Moon or on to Mars, what would you want to do?

I guess a lot of people would say, "Be an astronaut," but I really like living here on Earth, so I think I wouldn't really want to be an astronaut. If I could ensure the safety of the astronauts going to the Moon or Mars, that's the kind of job I would like to do.

This Q&A is part of an ongoing series telling the story of what it takes to design, build, land, and operate a rover on Mars, told from the perspective of students interning with NASA's Perseverance Mars rover mission. › Read more from the series

Explore More

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Robotics, Mars, Rover, Mars 2020, Coding, Computer Science, Mars 2020 Interns, Perseverance

  • Kim Orr
READ MORE