Pi in the Sky 5 promo graphic

Update: March 15, 2018 – The answers to the 2018 NASA Pi Day Challenge are here! View the illustrated answer key


In the News

Pi in the Sky 5

The 2018 NASA Pi Day Challenge

Can you solve these stellar mysteries with pi? Click to get started.

Pi Day, the annual celebration of one of mathematics’ most popular numbers, is back! Representing the ratio of a circle’s circumference to its diameter, pi has many practical applications, including the development and operation of space missions at NASA’s Jet Propulsion Laboratory.

The March 14 holiday is celebrated around the world by math enthusiasts and casual fans alike – from memorizing digits of pi (the current Pi World Ranking record is 70,030 digits) to baking and eating pies.

JPL is inviting people to participate in its 2018 NASA Pi Day Challenge – four illustrated math puzzlers involving pi and real problems scientists and engineers solve to explore space, also available as a free poster! Answers will be released on March 15. 

Why March 14?

Pi is what’s known as an irrational number, meaning its decimal representation never ends and it never repeats. It has been calculated to more than one trillion digits, but NASA scientists and engineers actually use far fewer digits in their calculations (see “How Many Decimals of Pi Do We Really Need?”). The approximation 3.14 is often precise enough, hence the celebration occurring on March 14, or 3/14 (when written in U.S. month/day format). The first known celebration occurred in 1988, and in 2009, the U.S. House of Representatives passed a resolution designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi.

NASA’s Pi Day Challenge

Pi in the Sky 5

Lessons: Pi in the Sky

Explore the entire NASA Pi Day Challenge lesson collection, including free posters and handouts!

To show students how pi is used at NASA and give them a chance to do the very same math, the JPL Education Office has once again put together a Pi Day challenge featuring real-world math problems used for space exploration. This year’s challenge includes exploring the interior of Mars, finding missing helium in the clouds of Jupiter, searching for Earth-size exoplanets and uncovering the mysteries of an asteroid from outside our solar system.

Here’s some of the science behind this year’s challenge:

Scheduled to launch May 5, 2018, the InSight Mars lander will be equipped with several scientific instruments, including a heat flow probe and a seismometer. Together, these instruments will help scientists understand the interior structure of the Red Planet. It’s the first time we’ll get an in-depth look at what’s happening inside Mars. On Earth, seismometers are used to measure the strength and location of earthquakes. Similarly, the seismometer on Insight will allow us to measure marsquakes! The way seismic waves travel through the interior of Mars can tell us a lot about what lies beneath the surface. This year’s Quake Quandary problem challenges students to determine the distance from InSight to a hypothetical marsquake using pi!

Also launching in spring is NASA’s Transiting Exoplanet Survey Satellite, or TESS, mission. TESS is designed to build upon the discoveries made by NASA’s Kepler Space Telescope by searching for exoplanets – planets that orbit stars other than our Sun. Like Kepler, TESS will monitor hundreds of thousands of stars across the sky, looking for the temporary dips in brightness that occur when an exoplanet passes in front of its star from the perspective of TESS. The amount that the star dims helps scientists determine the radius of the exoplanet. Like those exoplanet-hunting scientists, students will have to use pi along with data from Kepler to find the size of an exoplanet in the Solar Sleuth challenge.

Jupiter is our solar system’s largest planet. Shrouded in clouds, the planet’s interior holds clues to the formation of our solar system. In 1995, NASA’s Galileo spacecraft dropped a probe into Jupiter’s atmosphere. The probe detected unusually low levels of helium in the upper atmosphere. It has been hypothesized that the helium was depleted out of the upper atmosphere and transported deeper inside the planet. The extreme pressure inside Jupiter condenses helium into droplets that form inside a liquid metallic hydrogen layer below. Because the helium is denser than the surrounding hydrogen, the helium droplets fall like rain through the liquid metallic hydrogen. In 2016, the Juno spacecraft, which is designed to study Jupiter’s interior, entered orbit around the planet. Juno’s initial gravity measurements have helped scientists better understand the inner layers of Jupiter and how they interact, giving them a clearer window into what goes on inside the planet. In the Helium Heist problem, students can use pi to find out just how much helium has been depleted from Jupiter’s upper atmosphere over the planet’s lifetime.

In October 2017, astronomers spotted a uniquely-shaped object traveling in our solar system. Its path and high velocity led scientists to believe ‘Oumuamua, as it has been dubbed, is actually an object from outside of our solar system – the first ever interstellar visitor to be detected – that made its way to our neighborhood thanks to the Sun’s gravity. In addition to its high speed, ‘Oumuamua is reflecting the Sun’s light with great variation as the asteroid rotates on its axis, causing scientists to conclude it has an elongated shape. In the Asteroid Ace problem, students can use pi to find the rate of rotation for ‘Oumuamua and compare it with Earth’s rotation rate.

Explore More

Join the Conversation

Standards-Aligned Lessons

Multimedia

Facts and Figures

Missions

Websites

TAGS: Pi Day, Math, Science, Engineering, NASA Pi Day Challenge, K-12, Lesson, Activity, Slideshow, Mars, Jupiter, Exoplanets, Kepler, Kepler-186f, Juno, InSight, TESS, ‘Oumuamua, asteroid, asteroids, NEO, Nearth Earth Object

  • Lyle Tavernier
READ MORE

Space-Themed Halloween Supplies

When Halloween rolls around at NASA’s Jet Propulsion Laboratory, we really let our nerd flags fly. Pumpkin carving contests turn into serious engineering design challenges and costume inspiration runs the gamut from real science to science fiction.

This year, join us in all our geekdom with these spooky (and educational!) space activities from the Education Office at NASA/JPL:


Create a Halloween Pumpkin Like a NASA Engineer

Project: Create a Halloween Pumpkin Like a NASA Engineer

Get tips and inspiration for creating a stellar pumpkin from the same people who send spacecraft to other planets!


Mysteries of the Solar System and Beyond Slideshow

Slideshow: Mysteries of the Solar System and Beyond

Strange things are happening all around the solar system. See if you can solve these space mysteries before finding out how scientists did it.


 

TAGS: Halloween, Pumpkin, Mysteries, Stranger Things, Science, Engineering, STEM

  • NASA/JPL Edu
READ MORE

In the News

This year marks the 40th anniversary of the launch of the world’s farthest and longest-lived spacecraft, NASA’s Voyager 1 and 2. Four decades ago, they embarked on an ambitious mission to explore the giant outer planets, the two outermost of which had never been visited. And since completing their flybys of Jupiter, Saturn, Uranus and Neptune in 1989, they have been journeying toward the farthest reaches of our solar system – where no spacecraft has been before. These two intrepid spacecraft continue to return data to NASA daily, offering a window into the mysterious outer realms of our solar system and beyond.

Illustration of Voyager in space
Teach It!

Try these standards-aligned lessons and activities with students to bring the wonder of the Voyager mission to your classroom or education group.

How They Did It

The Voyager spacecraft were launched during a very short window that took advantage of a unique alignment of the four giant outer planets – one that would not occur again for another 176 years. (Try this lesson in calculating launch windows to get an idea of how it was done.) Launching at this point in time enabled the spacecraft to fly by all four planets in a single journey, returning never-before-seen, close-up images and scientific data from Jupiter, Saturn, Uranus and Neptune that greatly contributed to our current understanding of these planets and the solar system.

Voyager Golden Record
Mission planners knew Voyager would be a historic mission to parts of the solar system never visited by a human-made object. To commemorate the journey, NASA endowed each spacecraft with a time capsule of sorts called the Golden Record intended to communicate the story of our world to extraterrestrials. Both Voyagers carry the 12-inch, gold-plated copper phonograph record containing sounds and images selected to portray the diversity of life and culture on Earth. Find out more about the Golden Record on the Voyager website. Credit: NASA/JPL-Caltech

Why It’s Important

diagram of solar system components

These images of Jupiter, Saturn, Uranus and Neptune (clockwise from top) were taken by Voyager 1 and 2 as the spacecraft journeyed through the solar system. See a gallery of images that Voyager took on the Voyager website. Credit: NASA/JPL-Caltech

In addition to shaping our understanding of the outer planets, the Voyager spacecraft are helping us learn more about the space beyond the planets – the outer region of our solar system. After completing their “grand tour” of the outer planets, the Voyagers continued on an extended mission to the outer solar system. They are now more than 10 billion miles from Earth, exploring the boundary region between our planetary system and what’s called interstellar space.

The beginning of interstellar space is where the constant flow of material from the Sun and its magnetic field stop influencing the surroundings. Most of the Sun’s influence is contained within the heliosphere, a bubble created by the Sun and limited by forces in interstellar space. (Note that the heliosphere doesn’t actually look like a sphere when it travels through space; it’s more of a blunt sphere with a tail.) The outer edge of the heliosphere, before interstellar space, is a boundary region called the heliopause. The heliopause is the outermost boundary of the solar wind, a stream of electrically charged atoms, composed primarily of ionized hydrogen, that stream outward from the Sun. Our planetary system lies inside the bubble of the heliosphere, bordered by the heliopause and surrounded by interstellar space.

solar system components visualized in a kitchen sink
Any flat-bottom sink can provide a visual analogy of these solar system components. In this video, the water traveling radially away from where the faucet stream impacts the sink represents the solar wind. The termination shock is the point at which the speed of the solar wind (water) drops abruptly as it begins to be influenced by interstellar wind. The outer edge of the thick ring of water at the bottom of the sink represents the heliopause. Just like the water in the sink, the solar wind at the heliopause changes direction and flows back into the heliosphere. Credit: NASA/JPL-Caltech.

Though we’ve learned a lot about the heliopause thanks to the Voyager spacecraft, its thickness and variation are still key unanswered questions in space physics. As the Voyagers continue their journey, scientists hope to learn more about the location and properties of the heliopause.

From their unique vantage points – Voyager 1 in the northern hemisphere and Voyager 2 in the southern hemisphere – the spacecraft have already detected differences and asymmetries in the solar wind termination shock, where the wind abruptly slows as it approaches the heliopause. For example, Voyager 2 crossed the termination shock at a distance of about 83.7 AU in the southern hemisphere. (One AU, or astronomical unit, is equal to 150 kilometers (93 million miles), the distance between Earth and the Sun.) That’s about 10 AU closer to the Sun than where Voyager 1 crossed the shock in the north. As shown in this diagram, Voyager 1 traveled through the compressed “nose” of the termination shock and Voyager 2 is expected to travel through the flank of the termination shock.

With four remaining powered instruments on Voyager 1 and five remaining powered instruments on Voyager 2, the two spacecraft continue to collect science data comparing their two distinct locations at the far reaches of the solar system.

diagram of solar system components

In August 2012, Voyager 1 detected a dramatic increase in galactic cosmic rays (as shown in this animated chart). The increase, which has continued to the current peak, was associated with the spacecraft's crossing into interstellar space. Credit: NASA/JPL-Caltech

Since it launched from Earth in 1977, Voyager 1 has been using an instrument to measure high-energy, dangerous particles traveling through space called galactic cosmic rays. While studying the interaction between the bubble of the heliosphere and interstellar space, Voyager 1 revealed that the heliosphere is functioning as a radiation shield, protecting our planetary system from most of these galactic cosmic rays. So in August 2012, when Voyager 1 detected a dramatic increase in the rays, which has continued to the current peak, it was associated with the spacecraft’s crossing into interstellar space.

Meanwhile, Voyager 2 ­­– which is still in the heliosheath, the outermost layer of the heliosphere between the shock and the heliopause ­– is using its solar wind instrument to measure the directional change of solar wind particles there. Within the next few years, Voyager 2 is also expected to cross into interstellar space, providing us with even more detailed data about this mysterious region.

In another 10 years, we expect one or both Voyagers to cruise outward into a more pristine region of interstellar space, returning data to inform our hypotheses about the concentration of galactic particles and the characteristics of interstellar wind.

Even with 40 years of space flight behind them, the Voyagers are expected to continue returning valuable data until about 2025. Communications will be maintained until the spacecraft’s nuclear power sources can no longer supply enough electrical energy to power critical functions. Until then, there’s still much to learn about the boundary of our heliosphere and what lies beyond in the space between the stars.

Teach It

Use these standards-aligned lessons and related activities to get students doing math and science with a real-world (and space!) connection.

  • Hear Here - Students use the mathematical constant pi and information about the current location of Voyager 1 to learn about the faint data-filled signal being returned to Earth.
  • Solar System Bead Activity – Students calculate and construct a scale model of solar system distances using beads and string.
  • Catching a Whisper from Space – Students kinesthetically model the mathematics of how NASA communicates with spacecraft.

Explore More

TAGS: Voyager, Farthest, Golden Record, STEM, Teachable Moments, Science, Engineering, Solar System, Interstellar Space, Heliopause, Heliosphere, Heliosheath, Termination Shock, Stars, Heliophysics

  • Ota Lutz
READ MORE

Mars Exploration Educator Workshop at JPL in Pasadena, California

You may already know about the online lessons and activities available from the Education Office at NASA’s Jet Propulsion Laboratory. (If not, check them out here.) But did you know that JPL and all NASA centers nationwide have an education specialist focused specifically on professional development for teachers – including how to use those online lessons in the classroom? It’s part of a program called the Educator Professional Development Collaborative, or EPDC, a free service for any K-12 classroom educator in the country.

During the 2016-2017 school year, the EPDC at JPL participated in more than 120 school events focusing on teacher professional development, including implementing Next Generation Science Standards, helping schools initiate science fairs and community events, and assisting with student presentations. That number includes more than 5,000 teachers and students who worked with the EPDC on initiatives designed to get NASA science and engineering into the hands of future space explorers.

As the EPDC coordinator for JPL, I schedule and help shape these events for schools and teacher preparation programs in Southern California, coordinating and consulting with educators to help them bring standards-aligned NASA STEM content into the classroom. My work and the ways in which I support educators can take many shapes. Teachers often ask me to visit during regularly scheduled professional development or early dismissal days. These represent the most common events, wherein schools choose topics or themes to focus on and the time is spent practicing hands-on activities for students. This year, teachers and schools have come up with new and especially creative formats, scheduling onsite tours and workshops at JPL for their teaching staff, or even having NASA scientists dial in to their classrooms to talk with students.

JPL's EPDC Coordinator, Brandon Rodriguez, leads an educator workshop

The EPDC helps educators bring NASA STEM content into the classroom through workshops, webinars and more. Image credit: NASA/JPL-Caltech

One school in particular took its program to another level with the help of the EPDC at JPL by building a grade-wide, multi-week mission to Mars. For their annual cross-curricular project, teachers at the San Fernando Institute for Applied Media in Los Angeles were hoping to create a more expansive offering that incorporated the Next Generation Science Standards, or NGSS. I met with teachers over several days to suggest activities and strategies that would meet their goal of getting students engaged in space science across numerous subject areas.

Students were tasked to explore the history of space exploration and the pioneers who led the charge. Using NASA lessons like those found on the JPL Education website, the students built conceptual models of Mars missions, including calculating the budget associated with such a trek. They then constructed robotic rovers capable of traversing a simulated Martian surface and the tools needed to interact with the local environment.

But what really set the program apart was its focus on collaboration. The school thought beyond the content of the lesson itself, making NASA badges for each student and having them refer to each other as “doctor.” Students designed their own team name and logo. They also used Web-based apps to capture pictures and videos of their work during each class and posted them online, allowing groups to digitally follow the revisions and lessons learned by their classmates. As a year-end culminating event, students presented their work in front of their classmates, and I was fortunate to be in attendance to celebrate the hard work of the teachers and students.

Mars mission project at the San Fernando Institute for Applied Media in Los Angeles
Working with the EPDC at JPL, educators at the San Fernando Institute for Applied Media in Los Angeles designed a multi-week project that had students create a mission to Mars. The project included testing samples of "Martian soil" for signs of microbial life (top left) and creating a hydraulic arm to interact with a simulated Mars surface (top center). Image credit: NASA/JPL-Caltech

In Chicago, Burley Elementary staff reached out to me via our distance learning program to revise an existing lesson for an elementary-level special education audience. Working together, the staff and I created a project using JPL’s NGSS-aligned Touchdown lesson to demonstrate the value of the engineering design process, revision and collaboration.

Students at Burley Elementary School in Chicago work on JPL's Touchdown lesson

Students at Burley Elementry in Chicago design lunar landers as part of JPL's NGSS-aligned Touchdown lesson. Burley Elementary teachers worked with the EPDC at JPL to modify the lesson for their students. Image credit: NASA/JPL-Caltech

At the onset of the project, students were tasked to develop a spacecraft capable of landing astronauts safely on a distant planet. Each day concluded with students testing their designs and documenting the changes they made. Again, student groups captured their revisions digitally, praising others and crediting them for ideas that influenced their work. As a result, student groups learned the value of collaboration over competition.

From the educator’s point of view, the evolution of students’ designs also provided a narrative for assessment: Each student group had three designs constructed along with written and recorded diaries discussing the changes they made. The rubric included analysis of their own trials as well as the peer designs that shaped their future trials, creating in-depth student storyboards.

In both of these cases, the educators’ creativity, expertise and interest in creating novel opportunities for professional development and student engagement helped elevate the quality of the EPDC’s offerings and expand the scope of JPL’s STEM lessons. I’ve since been able to incorporate the ideas and strategies created during these projects into other workshops and lessons, sharing them with an even wider group of educators and classrooms. While not every collaboration between the EPDC and educators need be multi-day endeavors, even when done on a small scale, they can have a big impact.

Looking to bring NASA science into your classroom or need help customizing lessons for your students and staff? The EPDC at JPL serves educators in the greater Los Angeles area. Contact JPL education specialist Brandon Rodriguez at brandon.rodriguez@jpl.nasa.gov. Note: Due to the popularity of EPDC programs, JPL may not be able to fulfill all requests.

Outside the Southern California area? The EPDC operates in all 50 states. To find an EPDC specialist near you, see https://www.txstate-epdc.net/nasa-centers/.

The Educator Professional Development Collaborative (EPDC) is managed by Texas State University as part of the NASA Office of Education. A free service for K-12 educators nationwide, the EPDC connects educators with the classroom tools and resources they need to foster students’ passion for careers in STEM and produce the next generation of scientists and engineers.

TAGS: Professional Development, Workshops, Teachers, Educators, STEM, Science, Engineering, EPDC

  • Brandon Rodriguez
READ MORE

When the offer letter arrived from NASA’s Jet Propulsion Laboratory, Kiana Williams could hardly believe it. Thousands of science and engineering students apply each year for internships at the lab known for its dare-anything missions to the planets and beyond. Williams never expected it would be her first internship.

“It actually took me about a week to accept that it was a real offer and that I’d actually be coming to intern at NASA/JPL,” she said.

Kiana Williams at NASA's Jet Propulsion Laboratory

Mechanical engineering student Kiana Williams grew up near JPL in Southern California, but she never thought to apply for an internship until JPL's Education Office visited her university in Alabama. Now, a first-time intern, she says she realizes, "Oh, I can do this." Image credit: NASA/JPL-Caltech

This summer, Williams is joining more than 700 undergraduate, graduate and doctoral students for internships at JPL in Pasadena, California. Over 10 weeks, they will design new ways to study stars, investigate icy moons thought to be hospitable to life, and even help choose a landing spot for the next Mars rover.

“I get the opportunity to design an entire space telescope from top to bottom,” said Williams, a senior mechanical engineering student at Tuskegee University in Alabama. “It’s kind of a big task, but at the same time it’s fun, so it makes my day go really quickly.”

One of 10 NASA field centers, JPL is the birthplace of spacecraft and instruments that have explored every planet in the solar system, studied our home planet and looked beyond to discover new worlds. It doesn’t just design and build spacecraft, it also operates them, and collects and studies the science they return.

“It’s the only place in the world where everyone needed to conceive of, design, build, launch and land spacecraft, get the science data and write the papers about that science data are all in one place,” said Matt Golombek, a JPL scientist whose interns over the years have helped choose the landing sites for all five Mars rovers and landers since Pathfinder in 1997.

Scientist Matt Golombek with his summer interns at NASA's Jet Propulsion Laboratory
The self-proclaimed "landing site dude," Matt Golombek brings in a host of geology students each year to help identify landing sites on Mars. He has five students this summer helping with site selections for three upcoming missions, including Mars 2020. He says it's rewarding to see how students' JPL experience has a positive impact on their future no matter what they go on to do. (From left to right: Marshall Trautman, Matt Golombek, Rachel Hausman, Carol Hundal, Shannon Hibbard.) Image credit: NASA/JPL-Caltech

The lab’s internship programs give students studying everything from aerospace engineering to computer science and chemistry the chance to do research with NASA scientists, build spacecraft, and create new technology for future missions.

With more than 20 active spacecraft plus a to-do list that includes missions to Mars, Jupiter’s moon Europa and the asteroid belt, JPL has no shortage of projects ripe for students who are eager for careers in space exploration.

Nirmal Patel at NASA's Jet Propulsion Laboratory

Nirmal Patel says that in addition to the wow-factor of testing parts for a Mars rover, his JPL internship is a chance to meet other engineers and scientists all united in a common goal. "Here, everyone wants to explore. And when you have that common goal, it has a different atmosphere," he said. Image credit: NASA/JPL-Caltech

“It’s just amazing knowing that what we’re doing now will also be replicated on Mars in a few years,” said Nirmal Patel, a mechanical engineering student at the University of Michigan who is testing parts for the Mars 2020 rover. “It’s surreal almost. I’m still a student but I’m getting to have an impact on this project.”

David Dubois, a three-time intern who studies planetary science at the University of Versailles Saint Quentin near Paris, returned to JPL this summer to continue his research on icy moons around Saturn, Jupiter and Neptune. Using data from the Cassini mission (which will end its nearly 13-year mission at Saturn this September) he is modeling the atmosphere of Saturn’s moon Titan to better understand its chemical environment – and maybe discover if it could support life.

He says that in addition to access to one-of-a-kind data directly from spacecraft, JPL offers the opportunity to explore new fields of science and even career paths, if students are open to it.

“Being open is certainly something that I’ve learned from JPL, not being afraid of tackling different problems in different fields,” said Dubois, who is about to publish his first paper as a lead author based on his research at JPL.

David Dubois at NASA's Jet Propulsion Laboratory

When he's not doing research, David Dubois says he focuses much of his time on outreach, which is one of his other passions. This year, he traveled to India with a friend to visit schools and villages and encourage students there to pursue science. "I like to say that I think anybody is a scientist," he said, "as long as you try to provide an answer to questions around you." Image credit: NASA/JPL-Caltech

It’s precisely that exposure to its unique career offerings in science, technology, engineering and math – and a foot in the door – that JPL’s Education Office, which manages the lab’s internship programs, is working to provide to more students.

“Our students are operating right alongside the mentors and participating in the discovery process,” said Adrian Ponce, who manages JPL’s higher education group. “It’s a fantastic opportunity for them, and it’s also a great opportunity for JPL. Our internship programs are designed to bring in students from diverse backgrounds and underrepresented communities who share new ways of thinking and analyzing challenges. Many of them will become the next generation of innovators – and not just at JPL.”

For Williams, who plans to continue toward a master’s degree in design engineering after she graduates in December, her time at JPL is confirmation that she’s on the right path and has the motivation to keep going.

“It makes me feel like school is worth it,” said Williams of her internship experience so far. “All the stress I’m going through at school will be worth it because you can find places that are like JPL, that make your job fun.”

Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Intern, Mars 2020, Europa, Cassini, Titan, Science, Engineering, Missions

  • Kim Orr
READ MORE

Marco Dolci did not set out to become a NASA engineer. Instead, like many of Dolci’s pursuits, the career path presented itself on his lifelong quest “to know” – that is, to answer any and every question that crosses his mind. As a boy, his never-ending stampede of questions became too much even for his ever-patient parents, so they presented him with a book, 1001 Questions and Answers on Planet Earth. But rather than satiate his quest for answers, it spurred him to seek more.

Today, Dolci still asks a multitude of questions, but the answers he finds through his own determination and curiosity, which have taken him from studies in linguistics to physics to aerospace engineering to robotics – and across the world, from his hometown of Lodi, Italy to NASA’s Jet Propulsion Laboratory in Pasadena, California.

Dolci first came to the Laboratory in 2013 as part of the JPL Visiting Student Researchers Program, or JVSRP. Having just earned a master’s in physics, Dolci was pursuing a second master’s in aerospace engineering at the Polytechnic University of Milan when he entered and won a scholarship sponsored by the Italian Space Agency and the Italian Scientists and Scholars of North America Foundation. His prize: a paid internship at any North American laboratory. He says JPL was the obvious choice.

Marco Dolci in Joshua Tree

Dolci in California's Joshua Tree National Park. Photo courtesy: Marco Dolci

“I chose JPL because it’s the best place to work on anything related to space,” said Dolci, adding that he only learned later that the laboratory is located in California, a fact that made it all the more desirable. “I just wanted to come here.”

Dolci spent two months working on concepts and proposals for missions designed to study black holes, protoplanetary discs, X-rays and cosmic rays. He became the lead author on a science paper about the latter, and the team was so impressed with his work that Dolci’s internship was extended another 10 months.

After a year, however, Dolci’s visa was up and so was his time in America and at JPL. But his next step was clear: He would find a way to come back. “I was really impressed by JPL, both for the people that I found here, who are open to learn and challenge themselves,” said Dolci. “And the fact that it puts on the table resources that allow great projects.”

So Dolci formulated a plan. First, he entered a PhD program in aerospace engineering at the Polytechnic University of Turin, which in Italy offered the chance to spend part of his studies abroad supported by his university. He also applied for the US Diversity Immigrant Visa program, sometimes called the "green card lottery." With only 50,000 people across the world randomly chosen for green cards each year from about 10 million qualified applicants, it was a long-shot – but luck was on Dolci’s side.

In 2016, Dolci returned to JPL to do research for his PhD under the JVSRP program – but this time with a green card in hand.

For the last year, in concert with his PhD thesis, Dolci has been helping develop technology for a possible future NASA mission to bring samples from Mars back to Earth. In 2020, the agency will send a rover to the surface of Mars, where one of its goals will be to collect samples of Martian rocks and soil that could be returned to Earth in the future. Getting those samples to Earth would require a series of never-attempted feats, each with unique challenges.

Dolci is helping develop a device to transfer the sample from a container launched from Mars to a spacecraft that would carry the samples home. It would all need to happen remotely, in space, without the device jamming or exposing the samples to contaminants.

Having always approached problems from a theoretical perspective, Dolci says the chance to get hands-on with actual hardware has opened his eyes to new career possibilities.

“I think that you can really learn something when you put your hands on it,” said Dolci. “Otherwise, yeah, you know the theory, but there’s an ocean between theory and practice.”

Recently, Dolci’s manager encouraged him to apply for a job at JPL. He used the invitation as a chance to explore a career move – one that would take him beyond theory to start building devices capable of answering questions.

"I'm looking for a unity between science and space technology,” said Dolci, who will start his new job in JPL’s Robotic Vehicles and Manipulators group in November. “Robotics seems to me to be the best place in which these two interests find the common point to be able to provide a technological answer to scientific problems."

Marco Dolci in front of the Space Hab at the California Science Center in Los Angeles

Dolci poses in front of an astronaut workstation called SPACEHAB on display at the California Science Center in Los Angeles. Photo courtesy: Marco Dolci

Dolci admits with a sheepish grin that he still has another big aspiration. In four years, once he becomes a US citizen, he plans to apply to be an astronaut. For now, though, he’s focused on learning all he can, continuing to ask questions and finding new ways to seek answers.

“I consider myself really lucky to be in a place like JPL,” said Dolci. “Working here is a possibility to keep moving up, to become more mature in terms of deciding who I am, what I want to do, where I want to contribute.”

To others looking to follow his trajectory, Dolci says while luck helped push things along, it was the power of determination, his quest “to know” and a support network of family, friends and mentors that made his dreams a reality.

“I would have never made it to JPL without the support of someone who has bet on me,” said Dolci. “Don’t give up on desiring good things. Dare mighty things because we are made for great things.”

Explore JPL internship programs and apply at: http://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the reach of NASA's Office of Education, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Intern, Internships, JVSRP, Mars 2020, Robotics, Science, Engineering, STEM

  • Kim Orr
READ MORE

NASA Pi Day Challenge Pi in the Sky 4 from NASA/JPL Edu

NASA Pi Day Challenge – Pi in the Sky 4 from NASA/JPL Edu – Answer Key

UPDATE: March 16, 2017 – An illustrated answer key for the 2017 NASA Pi Day Challenge is now available here.

Pi in the Sky 4 Answers – NASA Pi Day Challenge

Check your answers!

Were you able to solve these stellar mysteries using pi? Check your answers on our illustrated answer key and download the free "Pi in the Sky4" poster set.


NASA is giving space fans a reason to celebrate Pi Day, the March 14 holiday created in honor of the mathematical constant pi. For the fourth year in a row, the agency’s Jet Propulsion Laboratory has created an illustrated Pi Day Challenge featuring four math problems NASA scientists and engineers must solve to explore space. The challenge is designed to get students excited about pi and its applications beyond the classroom. This year’s problem set, designed for students in grade six through high school – but fun for all – features Mars craters, a total solar eclipse, a close encounter with Saturn, and the search for habitable worlds.

› Take the NASA Pi Day Challenge!

› Educators, get the standards-aligned Pi Day Challenge lesson and download the free poster and handouts. The answers to all four problems will be released in a companion infographic on March 16.

Read on for more about Pi Day, the science behind the 2017 problem set and to learn how NASA scientists and engineers use pi.

NASA Pi Day Challenge - Student Slideshow

Take the NASA Pi Day Challenge

Solve a Martian crater mystery, measure the size of the moon’s shadow during a total solar eclipse, get into a daring orbit around Saturn, and discover potentially habitable worlds beyond our solar system. You don’t have to be a NASA rocket scientist to do stellar math with pi.

Why March 14?

Pi is what’s known as an irrational number, meaning its decimal representation never ends and it never repeats. It has been calculated to more than one trillion digits, but NASA scientists and engineers actually use far fewer digits in their calculations (see “How Many Decimals of Pi Do We Really Need?”). The approximation 3.14 is often precise enough, hence the celebration occurring on March 14, or 3/14 (when written in US month/day format). The first known celebration occurred in 1988, and in 2009, the US House of Representatives passed a resolution designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi.

Why It’s Important

While many of us celebrate by eating pi-themed pie and trying to memorize as many digits of pi as possible (the record is 70,030 digits), scientists and engineers at NASA take pi even further, using it in their day-to-day work exploring space!

“Finding the volume of a sphere, area of a circle (and thus volume of a cylinder) are well known applications of pi,” said Charles Dandino, a JPL engineer who designs robots for extreme environments. “But those relationships also form the basis for how stiff a structure is, how it will vibrate, and understanding how a design might fail.”

Rachel Weinberg works on the Orbiting Carbon Observatory 3, or OCO-3, instrument, which will track the distribution of carbon dioxide across Earth. She says pi came in handy during her studies at MIT and still does today for her work at JPL. “Just the other day during a meeting, the team went to the whiteboard and used pi to discuss the angles and dimensions of optical components on OCO-3,” she said.

Pi allows us to calculate the size and area of two- and three-dimensional shapes, says Anita Sengupta, a JPL engineer, who has worked on a variety of planetary missions. “In my career, pi has allowed me to calculate the size of a shield needed to enter the atmosphere of Venus and the size of a parachute that could safely land the Curiosity rover on the surface of Mars. Most recently we used pi in our calculations of the expanding atom cloud we will create for an experiment called the Cold Atom Laboratory, which will fly aboard the International Space Station.”

The Science Behind the Challenge

The Pi Day Challenge gives students a chance to take part in recent discoveries and upcoming celestial events, all while using math and pi just like NASA scientists and engineers.

“Students always want to know how math is used in the real world,” said Ota Lutz, a senior education specialist at JPL who helped create the Pi Day Challenge. “This problem set demonstrates the interconnectedness of science, math and engineering, providing teachers with excellent examples of cross-cutting concepts in action and students with the opportunity to solve real-world problems.”

Pi in the Sky 4 standards-aligned lesson - NASA Pi Day Challenge

NASA's Pi Day Challenge in the Classroom!

The NASA Pi Day Challenge is available as a standards-aligned lesson for grades 6-12. In the illustrated math problem set, students use pi to solve real-world science and engineering problems related to craters on Mars, a total solar eclipse, a daring orbit about Saturn, and the search for habitable worlds.

Here’s some of the science behind this year’s problem set.

The craters that cover Mars can tell us a lot about the Red Planet. Studying ejecta – the material blasted out during an impact – can tell us even more. Information about ejecta patterns even came up during a recent workshop to discuss and select the final candidates for the Mars 2020 rover landing site. For the first problem in our Pi Day Challenge, students use pi and the area and perimeter of two craters to identify which was made by an impactor that struck Mars at a low angle. Researchers found that low-angle impactors create an unusual ejecta pattern around craters on Mars. As part of the research, scientists are currently working to identify and catalog these craters.

The year 2017 brings a unique astronomical event to the United States for the first time in nearly 40 years! On August 21, 2017, a total solar eclipse will cross the continental United States. Starting in Oregon, the shadow of the moon will cross the country at more than 1,000 miles per hour, making its way to the Atlantic Ocean off the coast of South Carolina. Everyone inside the moon’s shadow will witness one of the most impressive sights nature has to offer. So how big is the shadow? In the second part of NASA’s Pi Day Challenge, students will use pi to calculate the area of the moon’s shadow on Earth during the total solar eclipse.

This year also marks the final chapter in the exciting story of NASA’s Cassini mission at Saturn. Since 2004, Cassini has been orbiting the ringed giant, vastly improving our understanding of the second largest planet in the solar system. After more than 12 years around Saturn, Cassini’s fuel is running low, so mission operators have devised a grand finale that will take the spacecraft closer to Saturn than ever before – inside the gap between the planet and its rings – and finally into Saturn’s cloud tops, where it will burn up. The finale is designed to prevent the spacecraft from crashing into and possibly contaminating any of Saturn’s scientifically intriguing moons. In the Pi Day Challenge, students will use pi to safely navigate the spacecraft on its final orbits and dive into Saturn.

Finally, students will investigate a relatively new and very exciting realm in astronomy, the search for habitable worlds. The discovery of exoplanets – worlds orbiting stars outside of our solar system – has changed our understanding of the universe. Until 1995, exoplanets hadn’t even been detected. Now, using the transit method – where planets are detected by measuring the light they block as they pass in front of a star – more than 2,300 exoplanets have been discovered. Recently, astronomers discovered a record seven Earth-size planets orbiting a single star called Trappist-1. Students will use pi to identify which of Trappist-1’s planets orbit in the star’s habitable zone – the area where liquid water could exist.

Explore More

Join the Conversation

  • Join the conversation and share your Pi Day Challenge answers with @NASA/JPL_Edu on social media using the hashtag #NASAPiDayChallenge
  • Pi Day: What’s Going ‘Round – Tell us what you’re up to this Pi Day and share your stories and photos with NASA.

Standards-Aligned Lessons

Multimedia

Facts and Figures

Missions

Websites

TAGS: Pi Day, Math, Science, Engineering, NASA Pi Day Challenge, K-12, Lesson, Activity, Slideshow

  • Lyle Tavernier
READ MORE

The NCAS Spring 2016 project managers pose with their rovers

Thursday, April 14


3 p.m. - Firsts and Thanks ... Until Next Time

Once the group photos were taken and the rovers dismantled, students gathered in the conference room where they had spent most of the last four days. Where rover parts, notebooks and laptops once stood, now it was just 40 suitcases laying in wait for the return home. But the experience wouldn’t end until awards and several rounds of thanks were given to the organizers, mentors and students who made the experience possible – and as program coordinators Roslyn Soto and Eddie Gonzales were sure to point out, contributed to a number of firsts for the National Community College Aerospace Scholars program.

The networking challenge and planetarium show were among some of the firsts. As was the first female majority among the team’s project managers (three of four were women) as well as the number of women participating in the on-site experience overall.

The women of NCAS Spring 2016
The women of NCAS Spring 2016 pose for a photo with their teams' rovers. Image credit: NASA/JPL-Caltech/Kim Orr

By the time the winning team was announced, the students were so full with congratulations that they seemed to have almost forgotten there was a winning team at all. But it didn’t dull the Blue Team’s celebration when, without further ado, they were announced as the winners by (another first) the smallest margin ever.

The Blue Team and their mentor, Amelia Quon, celebrate their win
The Blue Team celebrates their win (left) along with their mentor Amelia Quon (right). Image credit: NASA/JPL-Caltech/Kim Orr

Soto and Gonzales said the level of teamwork – even between teams – was one of the biggest standouts of this session of NCAS and urged future teams to take note.

“The collaboration between teams was a thing of beauty,” said Gonzales. "It felt more like one huge team versus four individual teams. They helped each other in every facet of the competition and were graceful and showed incredible sportsmanship like I've never witnessed before."

With round after round of applause and standing ovations for Soto and Gonzales, the students, mentors and program coordinators said their final goodbyes, and by 2 p.m., the once hectic conference room was dark and quite … that is until the next crop of hopeful students arrives this fall.

> Learn more about NCAS and apply for the Fall 2016 session

> See a collection of photos from the Spring 2016 session

> Explore all the internship and fellowship programs at JPL and apply


10 a.m. - The Final Challenge

A student raises his hand to ask a question of the NCAS Green Team
Image credit: NASA/JPL-Caltech/Kim Orr

Today, on the fourth and final day of the NCAS on-site experience, students had one more challenge before the scores were tallied. They had five minutes to make a presentation to a mock "NASA Headquarters panel” about why their rover mission should be green-lighted. Channeling their inner Steve Jobs, the teams used music, videos, lighting and of course their rovers to make their case.

The Gold Team impressed with their marketing video that used two LEGO figurines (borrowed from their mentor) to tell a story about two people on a quest to add a rover to their family.

The Gold Team presents their mission
Image credit: NASA/JPL-Caltech/Kim Orr

The Red Team started their presentation with a dance and later presented “scholarship certificates” from their reserved education budget to the JPL Education Office staff and other NCAS helpers.

The Red Team presents their mission
Image credit: NASA/JPL-Caltech/Kim Orr

The Blue Team got laughs for a slide on their mission objectives, which was introduced by audio of Lakers basketball star Kobe Bryant saying, “Success on success on success.”

The Blue Team presents their mission
Image credit: NASA/JPL-Caltech/Kim Orr

And the Green Team, which took the either coveted or dreaded task of being first to present, showcased their teamwork by sharing the stage to present the various facets of their mission.

The Green Team presents their mission
Image credit: NASA/JPL-Caltech/Kim Orr

When presentations were over, it was time for the customary group photos and then perhaps the hardest part of the on-site experience: dismantling the rovers and packing up.

The Spring 2016 NCAS group poses for a photo on the mall at JPL
Image credit: NASA/JPL-Caltech/Kim Orr

A member of the Red Team deconstructs the team's rover
Image credit: NASA/JPL-Caltech/Kim Orr


Wednesday, April 13


6:30 p.m. - Mission Two

It’s less than an hour away from the second and final mission for the teams' rovers. Tonight, the rovers must autonomously retrieve and rescue a stranded “Mars Buggy” from the simulated Mars surface. While the challenge involves a different set of commands and even changes in the design of the rovers, the lessons students learned from last night’s mission are ever present. We asked the teams to share the single biggest lesson they’re taking into tonight’s challenge:

“If we try our best, we can succeed.” – #GreenTeam

The Green Team poses for a group photo in front of the Mars Curiosity rover model at JPL
Image credit: NASA/JPL-Caltech/Lyle Tavernier


“Simplicity and planning are key.” – #BlueTeam

The Blue Team poses for a group photo in front of the Mars Curiosity rover model at JPL
Image credit: NASA/JPL-Caltech/Lyle Tavernier


"No matter how much we plan for every scenario, at the end of the day, it's inevitable that mistakes will come up. As a team, we learned to push forward through the doubts and frustrations. For tonight, we will use this lesson to enhance our troubleshooting.” – #GoldTeam

The Gold Team poses for a group photo in front of the Mars Curiosity rover model at JPL
Image credit: NASA/JPL-Caltech/Lyle Tavernier


“We must embrace the unexpected difficulties” – #RedTeam

The Red Team poses for a group photo in front of the Mars Curiosity rover model at JPL
Image credit: NASA/JPL-Caltech/Lyle Tavernier

5:30 p.m. – Meet the Mentors

Each NCAS team works with a mentor who helps guide students with not just the mission at hand, but also their career missions. With four fully packed days of activities and challenges, it can be a big time commitment – especially since mentors are scientists and engineers themselves, and have their own missions and projects competing for their attention. But as we found out when we caught up with the mentors for this session, it’s well worth the hectic four days.

Amelia Quon - #BlueTeam

Amelia Quon helps a student on her team
Image credit: NASA/JPL-Caltech/Lyle Tavernier

What do you do at JPL?

I am a mechanical integration engineer. My group builds the tools used to assemble and test spacecraft, as well as helping with the assembly and testing process. I’m currently working on a thermal-vacuum test where we’re using the 25-ft space simulator to mimic Martian atmospheric pressure, which is less than 1 percent of sea level atmospheric pressure on Earth.

How long have you been an NCAS mentor and what made you want to become one?

I’ve been an NCAS mentor since 2012. I enjoy helping the students gain confidence in their problem-solving skills as they work through the (rock and rover retrieval) missions. I participated in NASA’s High School Aerospace Scholars program as a high school student and had a great experience, so it’s nice to be able to support the program and help create similarly positive memories for the students.

How would you describe your mentoring style?

As a mentor, I try to clarify the parameters of the (rock and rover retrieval) missions for the students. I help them develop strategies for programming and building their rovers, and ask questions to encourage them to reason through problems they encounter.

What are some of the challenges or obstacles your team has faced so far and how are you overcoming them?

While testing their rover, my team discovered that many of the rocks they picked up were falling out of their basket. They went through several iterations of building and testing new designs before they came up with a design that performed as intended.

What do you most want students to take away from their experience?

I want them to realize that everyone on an engineering team is integral to the team’s success, and that setbacks and challenges can be overcome.


Luz Martinez Sierra - #GoldTeam

Luz Martinez Sierra speaks with students on her team
Image credit: NASA/JPL-Caltech/Lyle Tavernier

What do you do at JPL?

I am in the Natural Space Environments group. We are in charge of defining the radiation and debris environment that the spacecraft will encounter in space. This is very important to evaluate the risks so the designer and engineers can take the necessary measurements to avoid any failure. I am also involved with the nuclear physics instruments that are used to determine the composition of other planetary bodies or to better understand the radiation environments in space. I am also a part-time Nuclear Engineering Ph.D student at Texas A&M. I am trying to finish my Ph.D while still being a full-time employee at JPL.

How long have you been an NCAS mentor and what made you want to become one?

This is the first time I’ve been involved with NCAS, and I am loving it.

How would you describe your mentoring style?

I think I can relate with the young student quite easily. I have a younger sister, and I have done mentorships in the past. I like to get to know students and make a safe environment for them to ask me questions and to not be afraid of participation. I like to show them a strong attitude without making them scared of me. I want them to feel like they are in a collaborative atmosphere. I don’t have all the answers, but I am there to guide them in finding the answers.

What are some of the challenges or obstacles your team has faced so far and how are you overcoming them?

We had a rough start with issues regarding the division of the work. There was not a clear line between who was in charge of what, and they were focusing in one task instead of approaching it at different angles. We talked, and I encouraged the project manager to assign responsibilities and to try to make sure they still communicate with the team promptly.

What do you most want students to take away from their experience?

I want them to feel comfortable with their career, and show them that it is possible to achieve their dreams. Also I want them to realize how much can be accomplished in a few days, and make them confident of their capabilities. I want to see them succeed in life and in a professional way. They are wonderful young adults ready to take the challenge. They just need to hear it and believe it.


Otto Polanco - #GreenTeam

Otto Palonco speaks with students on his team
Image credit: NASA/JPL-Caltech/Lyle Tavernier

What do you do at JPL?

I am a mechanical engineer in the payload development group. I work with engineers across different disciplines to develop instruments and complete system payloads for various customers that come to JPL for this type of development.

How long have you been an NCAS mentor and what made you want to become one?

Since the beginning. Five years now. Wow. Already. Simple. When I was in High school, Dr. Jeff Martin, a principal for LAUSD, provided guidance on what college life was all about, how to be successful, and how to prepare for a career. Unfortunately, Dr. Martin passed away from cancer a year and a half later, but my time with him was invaluable, as he opened my eyes to the possibilities of what my future could be.

How would you describe your mentoring style?

Aggressive and hopeful, like Dr. Martin, but with a twist. No excuses. Failure is an option, but NO Quitting is permitted. I’m encouraging and pass on words of wisdom and lessons learned since my start as an intern here at JPL.

What are some of the challenges or obstacles your team has faced so far and how are you overcoming them?

Organization, laptop and programming the rover. They got organized by coming together as a team with a single leader and co-leader. Programming was done with paper and pen, then executed flawlessly when a laptop became available through great communication and team work. They have asked for help when they got stuck and/or looked bewildered. They are nervous, but they work hard and smile.

What do you most want students to take away from their experience?

Blow by the sky limit and reach for the stars. Do not place limits on what you and your future will accomplish.


Steve Edberg - #RedTeam

Steve Edberg speaks to his team
Image credit: NASA/JPL-Caltech/Lyle Tavernier

What do you do at JPL?

My career has been “bipolar."  About half of the 36+ years I’ve been at JPL, I have worked on flight missions, from development to flight operations. The other half has been in education and public outreach. Both have been good for each other and for the projects I’ve worked on and the people I have interacted with.

How long have you been an NCAS mentor and what made you want to become one?

I have been a mentor for four or five sessions, starting in 2010 or 2011.

How would you describe your mentoring style?

For the competition, I help, encourage and suggest options. For the individuals on the team (and anyone else in earshot), I share experiences, suggest ways to successfully get into STEM as a career, and describe what we do as a human endeavor, including the anecdotes that prove it.

What are some of the challenges or obstacles your team has faced so far and how are you overcoming them?

There were not enough computers ready at the start of the design/build day. The Red Team agreed to wait for delivery of theirs, but that took much longer than expected, and it wasn’t ready to use and needed technicians to get the software working as designed. This delay strongly affected the software team and limited their ability to make a more complete set of command routines. The software team built sufficient routines for the rock retrieval challenge by making maximum use of the software and technology available for the challenge. To their credit, they did this on their own.

What do you most want students to take away from their experience?

I want them to remember this as a taste of the real thing. I want them to realize that finding what THEY want to do (individually) is what they should aim for, and that they should aim high.  They should come away knowing that space exploration, and each part of STEM, whether exploring space or not, is a wonderful, challenging, and joyous way to spend a lifetime.


2 p.m. - Networking Challenge

Students spent the morning touring the Space Flight Operations Facility, also known as mission control, and the Mars Yard, a simulated Mars terrain where engineers test maneuvers for the Curiosity rover.

NCAS students watch a show in the inflatable planetarium
Students also saw a show in our educational inflatable planetarium. Image credit: NASA/JPL-Caltech/Lyle Tavernier

Then it was time to get up close and personal with the people of JPL during NCAS' first-ever Networking Challenge. Shannon Barger of JPL's Education Office came up with the idea for the challenge: "The best way to move forward [at JPL and in your career] is to get your name out there and have connections."

So, armed with questionnaires (that served as networking icebreakers of a sort) students caught up with JPLers as they were out in full: during lunch.

NCAS students networking during lunch at JPL.
Students participated in NCAS' first-ever Networking Challenge. Image credit: NASA/JPL-Caltech/Lyle Tavernier

It turned out that JPLers were just as excited to talk to NCAS students as the students were to talk to JPLers. More than a few students were asked for their resumes and others left with promises to attend the presentations tomorrow. The students said they were impressed by the diversity of people and careers at JPL, which they learned can include such things as ripple effect engineering and planetary science.

NCAS students networking during lunch at JPL
Students went from table to table at the JPL cafeteria during lunchtime to ask employees about their careers and what inspired them. Image credit: NASA/JPL-Caltech/Lyle Tavernier

"I love that you can go talk to anyone at JPL and they'll talk to you for an hour about what they do," said Scott Hall, a member of the Green Team who's studying mechanical engineering and physics at Ohlone College in Fremont, California.

Roslyn Soto and Eddie Gonzales, who manage the NCAS program for JPL, said they hope to make the challenge a regular part of the on-site experience.


Tuesday, April 12


9:35 p.m. – Mission One

After a full day of listening to inspirational speakers, building rovers, programming them and testing them, the teams were ready for their first mission. One by one, each team brought their rover to the mission site where they were given a two-minute trial run followed by one minute to make modifications to their rover. Once the modification window elapsed, teams had 10 minutes to command their rover to autonomously collect as many rock samples as possible.

Having completed the mission, teams retired for the evening, their scores to be calculated and added to the cumulative total at the end of the program.

A team's rover collects rocks on the simulated Mars surface
The gold team's rover collects rock samples during its 10-minute scored mission. Image credit: NASA/JPL-Caltech/Lyle Tavernier

The green team cheers for their rover
The green team cheers as their rover returns a rock sample to home base. Image credit: NASA/JPL-Caltech/Lyle Tavernier


5:45 p.m. – What's Your Strategy?

While each team has the same mission in mind, their approach and strategy can vary wildly. The team members’ personalities and experience, their mentor and any challenges they face along the way all make an impact on the outcome of their final mission. Tonight, the teams will compete in their first mission, which involves programming their rovers to autonomously collect and transport rock samples on the simulated Mars terrain. As the teams learned earlier in the day from Mars rover engineer Rob Manning, it all comes down to the team with the most thorough design and testing – plus a bit of luck. We wondered what each team's strategy or motto is going into the challenge, so we asked them to describe it in five words or fewer. Here’s what they said:

NCAS 2016 Red Team at JPL  “Every action requires team heart” – #RedTeam


NCAS 2016 Blue Team at JPL  “Simple, efficient, applicable, logical science” – #BlueTeam


NCAS 2016 Green Team at JPL  “Forward, drop, drag” – #GreenTeam


NCAS 2016 Gold Team at JPL  “Off-world specimen cache and retrieval” – #GoldTeam

Tell us which one is your favorite and wish them luck on Facebook and Twitter, using #NCAS2016 and the team hashtag.


3 p.m. – Their Mission, Should They Choose to Accept It

The blue teams discusses their project

The red team gathers to discuss their mission. Image credit: NASA/JPL-Caltech/Lyle Tavernier

As soon as students arrived at JPL yesterday, they began working on what will be their mission for the next three days: building a working Mars rover prototype that can perform two separate missions on a simulated Mars terrain. The rover doesn't look like much. It's an amalgamation of LEGOs and a programming console. And the Mars terrain consists of red floor tiles with sand, colored rocks and a faux Olympus Mons. But despite the looks of it all, the challenge is just about as close as it gets to the real thing.

NCAS rover parts

Teams must use parts from a LEGO Mindstorm kit to design and build their rovers. Image credit: NASA/JPL-Caltech/Lyle Tavernier

NCAS rover
The rovers must be able to successfully complete two mission challenges: collecting and transporting samples, and retrieving and rescuing a stranded "Mars Buggy." Image credit: NASA/JPL-Caltech/Lyle Tavernier

The students are divided into four teams, each lead by a JPL mentor, and are assigned project roles such as project manager, software engineer, even marketing and communications manager. On Day One, teams are given a $600 million budget to build a rover that can successfully complete two missions: gather and transport sample rocks, and later rescue and retrieve a stranded "Mars Buggy." They then have to design and build their rovers using a LEGO Mindstorm kit with various parts that are each assigned a dollar value. They are allowed to purchase and sell parts from other teams, but they can't exceed their budget. Monetary fines and bonuses are given for things like losing equipment (fine) or asking good questions (bonus). Teams are also awarded money for performing successful maneuvers during their missions.

NCAS budget
Students are given fines and bonuses that may help or detract from their overall mission budget of $600 million. Image credit: NASA/JPL-Caltech/Lyle Tavernier

On the final day of their experience, teams will make final presentations to a mock NASA mission selection panel, during which they will have to explain their rover's scientific objective and sell their design.

"We push them to take on roles outside of their comfort zones, to speak up and have their voice heard and to learn from each other," said Roslyn Soto, who along with Eddie Gonzales helps manage the program for JPL. "We want students to have a good understanding of the kind of teamwork that is required in engineering and other STEM fields and walk away with a better understanding of the research and career opportunities available to them."


12 p.m. – Lessons from a Career Mars Rover Engineer

Rob Manning giving a talk during the NCAS Spring 2016 session

Mars rover chief engineer Rob Manning gives a talk to students. Image credit: NASA/JPL-Caltech/Lyle Tavernier

The students took a break from building their rovers to hear a talk by Rob Manning, the chief engineer for the Mars Curiosity rover. Manning has been a Mars rover engineer since the Pathfinder mission of the 1990s, which landed Sojourner, the first rover ever on the Red Planet.

He shared his experiences designing and building rovers for NASA and how the process has evolved during his 35 years at the laboratory.

"Can you believe that JPL started building its first spacecraft the year I was born, 1958. These people were building spacecraft without the use of computers. Everything was done by hand. So if you wanted to design [a spacecraft], you had to draw out all the details on a piece of paper."

On building spacecraft for Mars, he said:

"What I like about building spacecraft for Mars is you can build it, design it, test it and launch it, and in seven months, it's on Mars. So the very same people who thought of it, can operate it."

Students used the opportunity to ask Manning about some of the more creative engineering solutions his teams have come up with over the years, such as the bounce landing used for the Spirit and Opportunity rovers.

"Back then people thought we were really goofy by doing that. 'So you're going to land how many times?' Imagine dropping your spaceship from 23 meters on another planet."

He stressed the importance of designing spacecraft with potential issues in mind, but said a lot of it comes down to luck.

"Sometimes you get lucky. And the trick is to design your systems so you think of these things. In many respects, what happens on the day of landing is out of our control. In some sense, the future has already happened because if it doesn’t work, it’s because of something we missed or we didn’t test ahead of time."


11 a.m. – Welcome NCAS 2016 Students!

NCAS Spring 2016 student teams discuss their project

Forty community college students are participating in the Spring 2016 on-site experience at JPL as part of NASA's National Community College Aerospace Scholars program. Image credit: NASA/JPL-Caltech/Lyle Tavernier

Forty community college students descended on NASA's Jet Propulsion Laboratory yesterday for a four-day experience and engineering competition hosted by NASA's National Community College Aerospace Scholars, or NCAS, program. The program, which consists of a five-week online course, webinars with NASA scientists and engineers, a project planning a mission to Mars, and the opportunity to qualify for a four-day on-site experience at a NASA center, is designed to give community college students a window into science, technology, engineering and mathematics careers at NASA. Of the nearly 300 accepted for the online workshop, 120 are invited for an on-site experience at a NASA center.

This week JPL, Johnson Space Center, Armstrong Flight Research Center and Stennis Space Center are hosting 40 students each for the Spring 2016 on-site experience, during which student teams will compete to win a fictional mission contract for a future Mars rover. Teams must design and build their rovers using a LEGO Mindstorm kit, test them on a simulated Mars surface and finally sell their mission concept to a panel of NASA experts. Each of the four teams at JPL is guided by a laboratory engineer, who will mentor them throughout the competition. 

Follow all the action this week here and on Twitter using the hashtag #NCAS2016.

TAGS: NCAS, Community College, Programs, Workshops, STEM, Robotics, Engineering

  • NASA/JPL Edu
READ MORE

Decimals of the mathematical constant pi

Earlier this week, we received this question from a fan on Facebook who wondered how many decimals of the mathematical constant pi (π) NASA-JPL scientists and engineers use when making calculations:

Does JPL only use 3.14 for its pi calculations? Or do you use more decimals like say: 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360

We posed this question to the director and chief engineer for NASA's Dawn mission, Marc Rayman. Here's what he said:

Thank you for your question! This isn't the first time I've heard a question like this. In fact, it was posed many years ago by a sixth-grade science and space enthusiast who was later fortunate enough to earn a doctorate in physics and become involved in space exploration. His name was Marc Rayman.

To start, let me answer your question directly. For JPL's highest accuracy calculations, which are for interplanetary navigation, we use 3.141592653589793. Let's look at this a little more closely to understand why we don't use more decimal places. I think we can even see that there are no physically realistic calculations scientists ever perform for which it is necessary to include nearly as many decimal points as you present. Consider these examples:

  1. The most distant spacecraft from Earth is Voyager 1. It is about 12.5 billion miles away. Let's say we have a circle with a radius of exactly that size (or 25 billion miles in diameter) and we want to calculate the circumference, which is pi times the radius times 2. Using pi rounded to the 15th decimal, as I gave above, that comes out to a little more than 78 billion miles. We don't need to be concerned here with exactly what the value is (you can multiply it out if you like) but rather what the error in the value is by not using more digits of pi. In other words, by cutting pi off at the 15th decimal point, we would calculate a circumference for that circle that is very slightly off. It turns out that our calculated circumference of the 25 billion mile diameter circle would be wrong by 1.5 inches. Think about that. We have a circle more than 78 billion miles around, and our calculation of that distance would be off by perhaps less than the length of your little finger.

  2. We can bring this down to home with our planet Earth. It is 7,926 miles in diameter at the equator. The circumference then is 24,900 miles. That's how far you would travel if you circumnavigated the globe (and didn't worry about hills, valleys, obstacles like buildings, rest stops, waves on the ocean, etc.). How far off would your odometer be if you used the limited version of pi above? It would be off by the size of a molecule. There are many different kinds of molecules, of course, so they span a wide range of sizes, but I hope this gives you an idea. Another way to view this is that your error by not using more digits of pi would be 10,000 times thinner than a hair!

  3. Let's go to the largest size there is: the visible universe. The radius of the universe is about 46 billion light years. Now let me ask a different question: How many digits of pi would we need to calculate the circumference of a circle with a radius of 46 billion light years to an accuracy equal to the diameter of a hydrogen atom (the simplest atom)? The answer is that you would need 39 or 40 decimal places. If you think about how fantastically vast the universe is — truly far beyond what we can conceive, and certainly far, far, far beyond what you can see with your eyes even on the darkest, most beautiful, star-filled night — and think about how incredibly tiny a single atom is, you can see that we would not need to use many digits of pi to cover the entire range.

Read more from Marc Rayman on the Dawn Journal, where he writes monthly updates about the Dawn spacecraft currently exploring the dwarf planet Ceres to provide scientists with a window into the dawn of the solar system. 

Can you use pi like a NASA scientist?
› Take the Pi in the Sky Challenge!

TAGS: Pi, Pi Day, Dawn, Voyager, Engineering, Science, Mathematics

  • NASA/JPL Edu
READ MORE