Jose Martinez-Camacho stands in front of a Moon display, featuring a lunar rock sample, in the Visitor Center at JPL.

In high school, science was the last thing on Jose Martinez-Camacho's mind. But one day, he was flipping through his chemistry textbook, and a diagram caught his eye. It described an experiment that was the first to identify the structure of an atom. Martinez-Camacho was amazed that a science experiment could reveal the inner workings of something so mysterious. He was hooked. Now a physics major at Cal Poly Pomona and in his fourth year interning at NASA's Jet Propulsion Laboratory, Martinez-Camacho is immersed in unveiling the details of other mysterious objects: lunar craters. Using a simulation he developed, Martinez-Camacho is working to understand how the temperatures inside and around craters in the permanently shadowed regions of the Moon might point the way to water ice. We caught up with him to find out more about his internship and his career journey so far.

You've done several internships at JPL, starting in 2015. What are the projects you've worked on?

My first internship in the summer of 2015 was with the Lunar Flashlight mission. The idea of the mission is to reflect sunlight into the permanent shadowed regions of the Moon to detect water ice. My project was testing and characterizing the photodetectors that would be used to identify the water ice. So most of that project involved setting up an experiment to test those detectors.

My next internship was still with the Lunar Flashlight mission, but my project was to model the amount of stray light that the detector was expected to receive from the lunar surface.

After that, I started to work with the Lunar Reconnaissance Orbiter Diviner team. [Diviner is an instrument on the Lunar Reconnaissance Orbiter that creates detailed daytime and nighttime temperature maps of the Moon.] In that project, I was working with Catherine Elder to validate one of her algorithms that can identify the abundance and size distribution of lunar rocks in a single pixel of an image taken by Diviner. So I used the algorithm to analyze the rock populations around the Surveyor landers, which took images on the lunar surface that we could use to validate our results.

What I'm working on now is 2D thermal modeling of craters in the polar regions of the Moon. The end goal is to better understand the thermal environments of the Moon's permanently shadowed regions, which can harbor water ice. Because the stability of water ice is very sensitive to temperatures, knowing the thermal environment can tell us a lot about where these water-ice deposits might exist.

Bright greens, purples and red indicate temperatures of craters on a section of the Moon in this data image

This temperature map from the Diviner instrument on the Lunar Reconnaissance Orbiter shows the locations of several intensely cold impact craters that are potential cold traps for water ice as well as a range of other icy compounds commonly observed in comets. Image credit: NASA/GSFC/UCLA | + Expand image

What is your average day like on your current project?

I'm using MATLAB to write code [that I use to model the craters]. I wrote the code from scratch. Right now I'm at the point where I've written the program, I've gone through most of the debugging and the derivations of the equations and picking the algorithm, so I'm just running the model and waiting for results. So an average day would be to come in and run the model for different cases. There's a range of crater diameters and a range of latitudes where permanent shadows exist, so I run the model for these different cases, wait for the results and interpret the results at the end of the simulations. I also do some debugging now and then to deal with problems in the code.

What got you interested in a science career?

I think it happened in my junior year of high school. I was always disinterested in school and never paid attention. In chemistry class, we were learning about the atom, and for some reason, I opened up my chemistry book at home and started looking at the diagrams. I found a section on the Rutherford gold foil experiment, which showed that atoms consist of a tightly packed positive nucleus surrounded by electrons. I was amazed that someone could deduce that from a simple experiment. So that sparked my interest in science. After that, I started to read about chemistry and astronomy and all types of science. That was the pivotal moment.

How did you pursue that career path, and were there any challenges along the way?

I knew I'd have to go to community college because, at the time, my GPA wasn't going to get me anywhere. So I knew I had to start at the very, very beginning. But I had a very clear plan: Just keep studying, keep getting good grades until you get to where you want to be.

Sometimes students – especially community college students – feel intimidated applying for JPL internships, even though they should absolutely apply! Did you feel that way at all, and if so, how did you overcome that fear?

I was almost not going to submit my application just because I thought I wasn't good enough to intern at JPL. But ultimately, I had nothing to lose if I got rejected. It would be the same outcome as if I didn't apply, so I submitted my application. And I was really surprised when I got the acceptance letter.

What was your first experience at JPL like?

Everything was super-unfamiliar. I was in a lab, working on a science instrument, and I wasn't an instruments guy. But I got a lot of help from other people who were on the project. Even though it was difficult, it made it very enjoyable to always have someone there with the right answer or a suggestion.

How has your time at JPL molded your career path?

I think it established it. Next year, I'm going to Southern Methodist University to start a geophysics Ph.D. and my graduate advisor is someone who I met at one of the Diviner team meetings. Being at JPL has made that connection for me. And through JPL, I found what I want to do as a career.

What is your ultimate career goal?

After grad school, it would be really, really nice to come back here as a research scientist.

Are you interested in lunar research or anything planetary?

I think I'm really biased toward the Moon just because it's been my focus throughout my JPL internships. But I could see myself studying other planets or bodies. Mercury is very similar to the Moon. Anything without an atmosphere will do. That's what I'm comfortable with. If you add an atmosphere, the science is different. Ultimately, I think I'm interested in planetary science; it's just a matter of learning new science and learning about new planetary bodies.

Well, that leads nicely into my fun question: If you could travel to any place in space, where would you go and what would you do there?

I think I'd go somewhere around Saturn, or a moon of Saturn. Looking up from one of Saturn's moons would be a pretty amazing sight, with Saturn and its rings on the horizon.

Going back to your career path so far, did you have any mentors along the way?

In high school, I don't think so. I just needed to graduate. But in community college, I was part of this program called EOPS, or Extended Opportunity Programs and Services. It's for minorities and disadvantaged groups. There's counseling involved with people who knew what someone like me might be struggling with. There was that support group throughout my time at Citrus College. And there was also the Summer Research Experience Program [at Citrus.] That's the one I applied to in order to get the summer internship here. It was through Citrus College's partnership with JPL. One of the people who was in charge of that, Dr. Marianne Smith, she was always encouraging me, saying, "Just because you come from a community college doesn't mean you're any less than someone who is at UCLA or any other university." So that was another source of support.

Did you see advantages to going the community college route?

Yeah, definitely. It's a smaller community, so you get to form connections a lot easier than you would at a larger college. The quality of education there is probably on par with other universities. So, there was certainly no disadvantage. And then there was that advantage of the smaller community. It's more personalized and easier to get help.

What would you recommend to other students in community college who are interested in coming to JPL?

Apply to the program. Take advantage of the summers and apply to internships. At Citrus College they have the Summer Research Experience Program, and they probably have something similar at other community colleges. Take advantage of that. If I hadn't applied to that program that summer, my life would be totally different. Those decisions can shape your future.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, College, Internships, Interns, Science, Moon, Community College, Students

  • Kim Orr
READ MORE

Amiee Quon points to a small rover built out of legos as her team stands in a circle around her examining the rover.

Last week, 40 community college students landed at NASA's Jet Propulsion Laboratory to accept the challenge of building miniature Mars rovers over the course of four days, from July 9-12, putting their designs to the test in a series of competitions on simulated Martian terrain.

The challenge is part of the National Community College Aerospace Scholar, or NCAS, program, which hosts hundreds of students across multiple NASA centers for a twice-yearly educational workshop and engineering competition. The activity provides students with an up-close and intimate look at NASA missions, and an opportunity to present their work to a panel of judges.

Several students stand against a wall while another sets a miniature rover on a red surface meant to simulate Martian terrain

Students ready their rover to compete in one of two challenges that took place during the activity at JPL. Image credit: NASA/JPL-Caltech/Lyle Tavernier | + Expand image

One key part of their week here: The students, who are divided into four teams, are mentored by NASA scientists and engineers. And at JPL – where the competition is organized by the Education Office – nobody knows the mentorship experience better than Amiee Quon and Otto Polanco, JPL's two longest-serving NCAS mentors.

In 2012, Quon – who participated in the high school version of NCAS when she was 16 – saw an email circulated at JPL requesting mentors for the competition. She signed up and has been a mentor ever since.

“It’s so rewarding to see how excited they are about engineering, and when they work hard on something and collaborate, that things work out for them,” says Quon, a mechanical integration engineer who has worked on the Mars 2020 helicopter and the Juno mission orbiting Jupiter, and is currently working on the Europa Clipper mission.

10 students and Quon stand in two rows smiling with their winnings, including a padfolio and a Hot Wheels rover

Quon's team poses for a photo with their winnings from the summer 2019 competition. Image credit: NASA/JPL-Caltech/Kim Orr | + Expand image

Things worked out especially well for Quon's mentees this session: The 10 students on her team were named the winners of the summer 2019 competition.

“My team was very cohesive, and I was impressed by how well they worked together to design, build and operate their successful rover,” she says. “All the teams did a great job on the toughest competition course I’ve ever seen.”

For Polanco, being a mentor is a capstone on his own experience as a community college student. He started his undergraduate studies at Santa Monica College, transferred to Cal State L.A. to earn his bachelor’s and master’s degrees in mechanical engineering, and eventually landed an internship at JPL. He's been at JPL for 15 years and has worked as an optical-mechanical engineer on the Mars Science Laboratory mission, Starshade project and more.

The NCAS competition is an opportunity for Polanco to encourage students to go after what they want to do – including helping one female college freshman, whose family expected her to marry and have children instead of chasing a STEM career. Polanco guided her during an NCAS competition and stayed in touch throughout her college years; today, she’s pursuing a Ph.D. at Caltech and studying global climate change.

Polanco makes a claw motion with his hands, while three students stand in a semi circle around him with one student mimicking the claw motion

Polanco speaks with several of his mentees during the summer 2019 session of NCAS. Image credit: NASA/JPL-Caltech/Lyle Tavernier | + Expand image

“The most rewarding part is influencing people’s perspectives about what their engineering futures might be,” he says. “It’s about convincing them to pursue their dreams and passions and seeing them grow over the years.”

While Quon and Polanco play a big part in helping guide the students through various Mars rover challenges and their final presentations, they both recognize that their ultimate roles lie in reminding students that they deserve to achieve anything they set their minds to.

“A lot of our mentorship is raising the confidence levels of individuals,” Polanco says. “It’s through these side conversations that you often hear, ‘I’m not qualified or worthy enough to work here.’” And I always ask them, ‘Why do you put a ceiling on yourself?’”

Adds Quon: “We talked to somebody during the competition who felt they would be at a disadvantage going to career fairs because they transferred [into their current university]. But you’ve worked hard to get to where you are. There’s absolutely no reason to feel 'less than.'”

To that end, Polanco encourages more people at JPL to mentor when they can.

“I think it’s a really good experience for JPL employees to go through, to see how their own experience can help others,” he says. “My little path is a good example of what people can do. There are so many students in community college who struggle to see that end achievement. But the institution is good about hiring talent and [individuals with] strong work ethic, no matter where you went to school.”


The NCAS program is funded by the NASA Minority University Research and Education Program. Learn more and apply, here.

TAGS: Higher Education, Community College, NCAS, Mentors, Students, STEM, Engineering

  • Celeste Hoang
READ MORE

Forty community college students from across California spent a week designing Mars rover missions at NASA’s Jet Propulsion Laboratory as part of the Spring 2017 session of NASA’s Community College Aerospace Scholars, or NCAS, program.

Selected from nearly 1,000 applicants, the students toured JPL in Pasadena, California, met with scientists and engineers, and attended career and resume workshops. But the main event was a series of competitions that pitted four teams’ rovers against one another on a simulated Mars terrain.

Led by JPL mentors, the teams had just a few days to build and refine autonomous rovers from Lego Mindstorms EV3 kits. After competing in two challenges, the teams presented their rover mission concepts to a panel of judges and a winning team was announced.

› Watch the full story

To learn more about the program and apply, visit: https://nas.okstate.edu/ncas/

Explore more NASA/JPL internship opportunities at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: NCAS, Internships, Workshops, STEM, Community College

  • Kim Orr
READ MORE

The NCAS Spring 2016 project managers pose with their rovers

Thursday, April 14


3 p.m. - Firsts and Thanks ... Until Next Time

Once the group photos were taken and the rovers dismantled, students gathered in the conference room where they had spent most of the last four days. Where rover parts, notebooks and laptops once stood, now it was just 40 suitcases laying in wait for the return home. But the experience wouldn’t end until awards and several rounds of thanks were given to the organizers, mentors and students who made the experience possible – and as program coordinators Roslyn Soto and Eddie Gonzales were sure to point out, contributed to a number of firsts for the National Community College Aerospace Scholars program.

The networking challenge and planetarium show were among some of the firsts. As was the first female majority among the team’s project managers (three of four were women) as well as the number of women participating in the on-site experience overall.

The women of NCAS Spring 2016
The women of NCAS Spring 2016 pose for a photo with their teams' rovers. Image credit: NASA/JPL-Caltech/Kim Orr

By the time the winning team was announced, the students were so full with congratulations that they seemed to have almost forgotten there was a winning team at all. But it didn’t dull the Blue Team’s celebration when, without further ado, they were announced as the winners by (another first) the smallest margin ever.

The Blue Team and their mentor, Amelia Quon, celebrate their win
The Blue Team celebrates their win (left) along with their mentor Amelia Quon (right). Image credit: NASA/JPL-Caltech/Kim Orr

Soto and Gonzales said the level of teamwork – even between teams – was one of the biggest standouts of this session of NCAS and urged future teams to take note.

“The collaboration between teams was a thing of beauty,” said Gonzales. "It felt more like one huge team versus four individual teams. They helped each other in every facet of the competition and were graceful and showed incredible sportsmanship like I've never witnessed before."

With round after round of applause and standing ovations for Soto and Gonzales, the students, mentors and program coordinators said their final goodbyes, and by 2 p.m., the once hectic conference room was dark and quite … that is until the next crop of hopeful students arrives this fall.

> Learn more about NCAS and apply for the Fall 2016 session

> See a collection of photos from the Spring 2016 session

> Explore all the internship and fellowship programs at JPL and apply


10 a.m. - The Final Challenge

A student raises his hand to ask a question of the NCAS Green Team
Image credit: NASA/JPL-Caltech/Kim Orr

Today, on the fourth and final day of the NCAS on-site experience, students had one more challenge before the scores were tallied. They had five minutes to make a presentation to a mock "NASA Headquarters panel” about why their rover mission should be green-lighted. Channeling their inner Steve Jobs, the teams used music, videos, lighting and of course their rovers to make their case.

The Gold Team impressed with their marketing video that used two LEGO figurines (borrowed from their mentor) to tell a story about two people on a quest to add a rover to their family.

The Gold Team presents their mission
Image credit: NASA/JPL-Caltech/Kim Orr

The Red Team started their presentation with a dance and later presented “scholarship certificates” from their reserved education budget to the JPL Education Office staff and other NCAS helpers.

The Red Team presents their mission
Image credit: NASA/JPL-Caltech/Kim Orr

The Blue Team got laughs for a slide on their mission objectives, which was introduced by audio of Lakers basketball star Kobe Bryant saying, “Success on success on success.”

The Blue Team presents their mission
Image credit: NASA/JPL-Caltech/Kim Orr

And the Green Team, which took the either coveted or dreaded task of being first to present, showcased their teamwork by sharing the stage to present the various facets of their mission.

The Green Team presents their mission
Image credit: NASA/JPL-Caltech/Kim Orr

When presentations were over, it was time for the customary group photos and then perhaps the hardest part of the on-site experience: dismantling the rovers and packing up.

The Spring 2016 NCAS group poses for a photo on the mall at JPL
Image credit: NASA/JPL-Caltech/Kim Orr

A member of the Red Team deconstructs the team's rover
Image credit: NASA/JPL-Caltech/Kim Orr


Wednesday, April 13


6:30 p.m. - Mission Two

It’s less than an hour away from the second and final mission for the teams' rovers. Tonight, the rovers must autonomously retrieve and rescue a stranded “Mars Buggy” from the simulated Mars surface. While the challenge involves a different set of commands and even changes in the design of the rovers, the lessons students learned from last night’s mission are ever present. We asked the teams to share the single biggest lesson they’re taking into tonight’s challenge:

“If we try our best, we can succeed.” – #GreenTeam

The Green Team poses for a group photo in front of the Mars Curiosity rover model at JPL
Image credit: NASA/JPL-Caltech/Lyle Tavernier


“Simplicity and planning are key.” – #BlueTeam

The Blue Team poses for a group photo in front of the Mars Curiosity rover model at JPL
Image credit: NASA/JPL-Caltech/Lyle Tavernier


"No matter how much we plan for every scenario, at the end of the day, it's inevitable that mistakes will come up. As a team, we learned to push forward through the doubts and frustrations. For tonight, we will use this lesson to enhance our troubleshooting.” – #GoldTeam

The Gold Team poses for a group photo in front of the Mars Curiosity rover model at JPL
Image credit: NASA/JPL-Caltech/Lyle Tavernier


“We must embrace the unexpected difficulties” – #RedTeam

The Red Team poses for a group photo in front of the Mars Curiosity rover model at JPL
Image credit: NASA/JPL-Caltech/Lyle Tavernier

5:30 p.m. – Meet the Mentors

Each NCAS team works with a mentor who helps guide students with not just the mission at hand, but also their career missions. With four fully packed days of activities and challenges, it can be a big time commitment – especially since mentors are scientists and engineers themselves, and have their own missions and projects competing for their attention. But as we found out when we caught up with the mentors for this session, it’s well worth the hectic four days.

Amelia Quon - #BlueTeam

Amelia Quon helps a student on her team
Image credit: NASA/JPL-Caltech/Lyle Tavernier

What do you do at JPL?

I am a mechanical integration engineer. My group builds the tools used to assemble and test spacecraft, as well as helping with the assembly and testing process. I’m currently working on a thermal-vacuum test where we’re using the 25-ft space simulator to mimic Martian atmospheric pressure, which is less than 1 percent of sea level atmospheric pressure on Earth.

How long have you been an NCAS mentor and what made you want to become one?

I’ve been an NCAS mentor since 2012. I enjoy helping the students gain confidence in their problem-solving skills as they work through the (rock and rover retrieval) missions. I participated in NASA’s High School Aerospace Scholars program as a high school student and had a great experience, so it’s nice to be able to support the program and help create similarly positive memories for the students.

How would you describe your mentoring style?

As a mentor, I try to clarify the parameters of the (rock and rover retrieval) missions for the students. I help them develop strategies for programming and building their rovers, and ask questions to encourage them to reason through problems they encounter.

What are some of the challenges or obstacles your team has faced so far and how are you overcoming them?

While testing their rover, my team discovered that many of the rocks they picked up were falling out of their basket. They went through several iterations of building and testing new designs before they came up with a design that performed as intended.

What do you most want students to take away from their experience?

I want them to realize that everyone on an engineering team is integral to the team’s success, and that setbacks and challenges can be overcome.


Luz Martinez Sierra - #GoldTeam

Luz Martinez Sierra speaks with students on her team
Image credit: NASA/JPL-Caltech/Lyle Tavernier

What do you do at JPL?

I am in the Natural Space Environments group. We are in charge of defining the radiation and debris environment that the spacecraft will encounter in space. This is very important to evaluate the risks so the designer and engineers can take the necessary measurements to avoid any failure. I am also involved with the nuclear physics instruments that are used to determine the composition of other planetary bodies or to better understand the radiation environments in space. I am also a part-time Nuclear Engineering Ph.D student at Texas A&M. I am trying to finish my Ph.D while still being a full-time employee at JPL.

How long have you been an NCAS mentor and what made you want to become one?

This is the first time I’ve been involved with NCAS, and I am loving it.

How would you describe your mentoring style?

I think I can relate with the young student quite easily. I have a younger sister, and I have done mentorships in the past. I like to get to know students and make a safe environment for them to ask me questions and to not be afraid of participation. I like to show them a strong attitude without making them scared of me. I want them to feel like they are in a collaborative atmosphere. I don’t have all the answers, but I am there to guide them in finding the answers.

What are some of the challenges or obstacles your team has faced so far and how are you overcoming them?

We had a rough start with issues regarding the division of the work. There was not a clear line between who was in charge of what, and they were focusing in one task instead of approaching it at different angles. We talked, and I encouraged the project manager to assign responsibilities and to try to make sure they still communicate with the team promptly.

What do you most want students to take away from their experience?

I want them to feel comfortable with their career, and show them that it is possible to achieve their dreams. Also I want them to realize how much can be accomplished in a few days, and make them confident of their capabilities. I want to see them succeed in life and in a professional way. They are wonderful young adults ready to take the challenge. They just need to hear it and believe it.


Otto Polanco - #GreenTeam

Otto Palonco speaks with students on his team
Image credit: NASA/JPL-Caltech/Lyle Tavernier

What do you do at JPL?

I am a mechanical engineer in the payload development group. I work with engineers across different disciplines to develop instruments and complete system payloads for various customers that come to JPL for this type of development.

How long have you been an NCAS mentor and what made you want to become one?

Since the beginning. Five years now. Wow. Already. Simple. When I was in High school, Dr. Jeff Martin, a principal for LAUSD, provided guidance on what college life was all about, how to be successful, and how to prepare for a career. Unfortunately, Dr. Martin passed away from cancer a year and a half later, but my time with him was invaluable, as he opened my eyes to the possibilities of what my future could be.

How would you describe your mentoring style?

Aggressive and hopeful, like Dr. Martin, but with a twist. No excuses. Failure is an option, but NO Quitting is permitted. I’m encouraging and pass on words of wisdom and lessons learned since my start as an intern here at JPL.

What are some of the challenges or obstacles your team has faced so far and how are you overcoming them?

Organization, laptop and programming the rover. They got organized by coming together as a team with a single leader and co-leader. Programming was done with paper and pen, then executed flawlessly when a laptop became available through great communication and team work. They have asked for help when they got stuck and/or looked bewildered. They are nervous, but they work hard and smile.

What do you most want students to take away from their experience?

Blow by the sky limit and reach for the stars. Do not place limits on what you and your future will accomplish.


Steve Edberg - #RedTeam

Steve Edberg speaks to his team
Image credit: NASA/JPL-Caltech/Lyle Tavernier

What do you do at JPL?

My career has been “bipolar."  About half of the 36+ years I’ve been at JPL, I have worked on flight missions, from development to flight operations. The other half has been in education and public outreach. Both have been good for each other and for the projects I’ve worked on and the people I have interacted with.

How long have you been an NCAS mentor and what made you want to become one?

I have been a mentor for four or five sessions, starting in 2010 or 2011.

How would you describe your mentoring style?

For the competition, I help, encourage and suggest options. For the individuals on the team (and anyone else in earshot), I share experiences, suggest ways to successfully get into STEM as a career, and describe what we do as a human endeavor, including the anecdotes that prove it.

What are some of the challenges or obstacles your team has faced so far and how are you overcoming them?

There were not enough computers ready at the start of the design/build day. The Red Team agreed to wait for delivery of theirs, but that took much longer than expected, and it wasn’t ready to use and needed technicians to get the software working as designed. This delay strongly affected the software team and limited their ability to make a more complete set of command routines. The software team built sufficient routines for the rock retrieval challenge by making maximum use of the software and technology available for the challenge. To their credit, they did this on their own.

What do you most want students to take away from their experience?

I want them to remember this as a taste of the real thing. I want them to realize that finding what THEY want to do (individually) is what they should aim for, and that they should aim high.  They should come away knowing that space exploration, and each part of STEM, whether exploring space or not, is a wonderful, challenging, and joyous way to spend a lifetime.


2 p.m. - Networking Challenge

Students spent the morning touring the Space Flight Operations Facility, also known as mission control, and the Mars Yard, a simulated Mars terrain where engineers test maneuvers for the Curiosity rover.

NCAS students watch a show in the inflatable planetarium
Students also saw a show in our educational inflatable planetarium. Image credit: NASA/JPL-Caltech/Lyle Tavernier

Then it was time to get up close and personal with the people of JPL during NCAS' first-ever Networking Challenge. Shannon Barger of JPL's Education Office came up with the idea for the challenge: "The best way to move forward [at JPL and in your career] is to get your name out there and have connections."

So, armed with questionnaires (that served as networking icebreakers of a sort) students caught up with JPLers as they were out in full: during lunch.

NCAS students networking during lunch at JPL.
Students participated in NCAS' first-ever Networking Challenge. Image credit: NASA/JPL-Caltech/Lyle Tavernier

It turned out that JPLers were just as excited to talk to NCAS students as the students were to talk to JPLers. More than a few students were asked for their resumes and others left with promises to attend the presentations tomorrow. The students said they were impressed by the diversity of people and careers at JPL, which they learned can include such things as ripple effect engineering and planetary science.

NCAS students networking during lunch at JPL
Students went from table to table at the JPL cafeteria during lunchtime to ask employees about their careers and what inspired them. Image credit: NASA/JPL-Caltech/Lyle Tavernier

"I love that you can go talk to anyone at JPL and they'll talk to you for an hour about what they do," said Scott Hall, a member of the Green Team who's studying mechanical engineering and physics at Ohlone College in Fremont, California.

Roslyn Soto and Eddie Gonzales, who manage the NCAS program for JPL, said they hope to make the challenge a regular part of the on-site experience.


Tuesday, April 12


9:35 p.m. – Mission One

After a full day of listening to inspirational speakers, building rovers, programming them and testing them, the teams were ready for their first mission. One by one, each team brought their rover to the mission site where they were given a two-minute trial run followed by one minute to make modifications to their rover. Once the modification window elapsed, teams had 10 minutes to command their rover to autonomously collect as many rock samples as possible.

Having completed the mission, teams retired for the evening, their scores to be calculated and added to the cumulative total at the end of the program.

A team's rover collects rocks on the simulated Mars surface
The gold team's rover collects rock samples during its 10-minute scored mission. Image credit: NASA/JPL-Caltech/Lyle Tavernier

The green team cheers for their rover
The green team cheers as their rover returns a rock sample to home base. Image credit: NASA/JPL-Caltech/Lyle Tavernier


5:45 p.m. – What's Your Strategy?

While each team has the same mission in mind, their approach and strategy can vary wildly. The team members’ personalities and experience, their mentor and any challenges they face along the way all make an impact on the outcome of their final mission. Tonight, the teams will compete in their first mission, which involves programming their rovers to autonomously collect and transport rock samples on the simulated Mars terrain. As the teams learned earlier in the day from Mars rover engineer Rob Manning, it all comes down to the team with the most thorough design and testing – plus a bit of luck. We wondered what each team's strategy or motto is going into the challenge, so we asked them to describe it in five words or fewer. Here’s what they said:

NCAS 2016 Red Team at JPL  “Every action requires team heart” – #RedTeam


NCAS 2016 Blue Team at JPL  “Simple, efficient, applicable, logical science” – #BlueTeam


NCAS 2016 Green Team at JPL  “Forward, drop, drag” – #GreenTeam


NCAS 2016 Gold Team at JPL  “Off-world specimen cache and retrieval” – #GoldTeam

Tell us which one is your favorite and wish them luck on Facebook and Twitter, using #NCAS2016 and the team hashtag.


3 p.m. – Their Mission, Should They Choose to Accept It

The blue teams discusses their project

The red team gathers to discuss their mission. Image credit: NASA/JPL-Caltech/Lyle Tavernier

As soon as students arrived at JPL yesterday, they began working on what will be their mission for the next three days: building a working Mars rover prototype that can perform two separate missions on a simulated Mars terrain. The rover doesn't look like much. It's an amalgamation of LEGOs and a programming console. And the Mars terrain consists of red floor tiles with sand, colored rocks and a faux Olympus Mons. But despite the looks of it all, the challenge is just about as close as it gets to the real thing.

NCAS rover parts

Teams must use parts from a LEGO Mindstorm kit to design and build their rovers. Image credit: NASA/JPL-Caltech/Lyle Tavernier

NCAS rover
The rovers must be able to successfully complete two mission challenges: collecting and transporting samples, and retrieving and rescuing a stranded "Mars Buggy." Image credit: NASA/JPL-Caltech/Lyle Tavernier

The students are divided into four teams, each lead by a JPL mentor, and are assigned project roles such as project manager, software engineer, even marketing and communications manager. On Day One, teams are given a $600 million budget to build a rover that can successfully complete two missions: gather and transport sample rocks, and later rescue and retrieve a stranded "Mars Buggy." They then have to design and build their rovers using a LEGO Mindstorm kit with various parts that are each assigned a dollar value. They are allowed to purchase and sell parts from other teams, but they can't exceed their budget. Monetary fines and bonuses are given for things like losing equipment (fine) or asking good questions (bonus). Teams are also awarded money for performing successful maneuvers during their missions.

NCAS budget
Students are given fines and bonuses that may help or detract from their overall mission budget of $600 million. Image credit: NASA/JPL-Caltech/Lyle Tavernier

On the final day of their experience, teams will make final presentations to a mock NASA mission selection panel, during which they will have to explain their rover's scientific objective and sell their design.

"We push them to take on roles outside of their comfort zones, to speak up and have their voice heard and to learn from each other," said Roslyn Soto, who along with Eddie Gonzales helps manage the program for JPL. "We want students to have a good understanding of the kind of teamwork that is required in engineering and other STEM fields and walk away with a better understanding of the research and career opportunities available to them."


12 p.m. – Lessons from a Career Mars Rover Engineer

Rob Manning giving a talk during the NCAS Spring 2016 session

Mars rover chief engineer Rob Manning gives a talk to students. Image credit: NASA/JPL-Caltech/Lyle Tavernier

The students took a break from building their rovers to hear a talk by Rob Manning, the chief engineer for the Mars Curiosity rover. Manning has been a Mars rover engineer since the Pathfinder mission of the 1990s, which landed Sojourner, the first rover ever on the Red Planet.

He shared his experiences designing and building rovers for NASA and how the process has evolved during his 35 years at the laboratory.

"Can you believe that JPL started building its first spacecraft the year I was born, 1958. These people were building spacecraft without the use of computers. Everything was done by hand. So if you wanted to design [a spacecraft], you had to draw out all the details on a piece of paper."

On building spacecraft for Mars, he said:

"What I like about building spacecraft for Mars is you can build it, design it, test it and launch it, and in seven months, it's on Mars. So the very same people who thought of it, can operate it."

Students used the opportunity to ask Manning about some of the more creative engineering solutions his teams have come up with over the years, such as the bounce landing used for the Spirit and Opportunity rovers.

"Back then people thought we were really goofy by doing that. 'So you're going to land how many times?' Imagine dropping your spaceship from 23 meters on another planet."

He stressed the importance of designing spacecraft with potential issues in mind, but said a lot of it comes down to luck.

"Sometimes you get lucky. And the trick is to design your systems so you think of these things. In many respects, what happens on the day of landing is out of our control. In some sense, the future has already happened because if it doesn’t work, it’s because of something we missed or we didn’t test ahead of time."


11 a.m. – Welcome NCAS 2016 Students!

NCAS Spring 2016 student teams discuss their project

Forty community college students are participating in the Spring 2016 on-site experience at JPL as part of NASA's National Community College Aerospace Scholars program. Image credit: NASA/JPL-Caltech/Lyle Tavernier

Forty community college students descended on NASA's Jet Propulsion Laboratory yesterday for a four-day experience and engineering competition hosted by NASA's National Community College Aerospace Scholars, or NCAS, program. The program, which consists of a five-week online course, webinars with NASA scientists and engineers, a project planning a mission to Mars, and the opportunity to qualify for a four-day on-site experience at a NASA center, is designed to give community college students a window into science, technology, engineering and mathematics careers at NASA. Of the nearly 300 accepted for the online workshop, 120 are invited for an on-site experience at a NASA center.

This week JPL, Johnson Space Center, Armstrong Flight Research Center and Stennis Space Center are hosting 40 students each for the Spring 2016 on-site experience, during which student teams will compete to win a fictional mission contract for a future Mars rover. Teams must design and build their rovers using a LEGO Mindstorm kit, test them on a simulated Mars surface and finally sell their mission concept to a panel of NASA experts. Each of the four teams at JPL is guided by a laboratory engineer, who will mentor them throughout the competition. 

Follow all the action this week here and on Twitter using the hashtag #NCAS2016.

TAGS: NCAS, Community College, Programs, Workshops, STEM, Robotics, Engineering

  • NASA/JPL Edu
READ MORE

NCAS students Arlene Lopez, Khanh Pham, Jose Salinas, Arleena Faith and Laura Medina

Animated gif of miniature rovers driving through an obstacle course

Four miniature rovers will go head-to-head this week at NASA's Jet Propulsion Laboratory in Pasadena, California, as community college students across the state - and one from Hawaii - get a first-hand look at what it's like to work on a robotic space mission.

Wednesday marked the start of the fall 2014 session of the NASA Community College Aerospace Scholars, or NCAS, program, a three-day workshop designed to give community college students a window into the science, technology, engineering and mathematics universe and launch them into future internships and careers at NASA.

To qualify, students took a five-week online course on Mars exploration and were tasked with designing a rover to explore a Red Planet destination of their choosing.

"I focused on the sustainable efforts side," said Arleena Faith, a computer science student at Santa Monica College, who's working on bringing her design skills into the Web development world. "You spend billions of dollars building one of these sophisticated rovers and suddenly it hits something, and you've lost it. So why don't you have a small rover that's like a ball. It rolls everywhere and it helps determine whether the terrain is safe enough for the main rover."

Based on their scores from the design challenge and online course, 40 finalists were chosen to take part in the workshop at JPL. Johnson Space Center in Houston and Marshall Space Flight Center in Huntsville, Alabama, are also hosting their own NCAS student teams this week.

While at the NASA centers, students meet with engineers and scientists, and teams compete in their biggest challenge yet: Building a rover that can navigate through everything from a simulated Martian terrain to budget constraints to win the coveted "mission contract."

The rovers are only about the size of a brick, but they carry a heavy load: The futures of aspiring engineers and scientists.

For Laura Medina, a 24-year-old aeronautical engineering student at San Bernardino Community College, participating in NCAS is a chance to prove to herself that she can.

"At first I was nervous because I feel like I've never been smart enough," said Medina, who after dropping out of high school to help her mom take care of her younger siblings, decided to get her GED and enroll in college so she could fulfill her dream of becoming an engineer. "But I've gotten this far. I've been able to do these things on my own."

For other students at the brink of their next educational leap, it's about getting a push in the right direction.

"I'm sure this experience will help me home in on what type of career I want to go into," said Arlene Lopez, a mechanical engineering student at El Camino College. "I'm leaning toward working with spacecraft."

Khanh Pham is pursuing her lifelong interest in mathematics at Orange Coast College and hopes to become a teacher -- unless, she says, NCAS changes her mind.

Right now, my career goal is to become a math teacher," said Pham, a 39-year-old mother of two who emigrated from Vietnam a little more than two years ago. "But somebody told me that maybe after this trip, I'll want to change my major to aerospace engineering."

Student teams met for the first time on Wednesday to begin preparations for the rover competition, but for many, the draw of seeing a NASA center in person and working with professional engineers and scientists is just as exciting.

"I'm just looking forward to going to JPL," said aerospace and mechanical engineering student Jose Salinas, who's in his second year at Bakersfield Community College. "It'll be my first time at any NASA center, so I'm just really excited. I think nervousness is out the window. I'm just really stoked to go."

For more information on the NCAS program and to apply, visit: https://ncas.aerospacescholars.org/

Learn more about JPL internships and fellowships 

NCAS is funded by NASA, managed by the Johnson Space Center, and coordinated locally by the JPL Education Office.

TAGS: Women in STEM, NCAS, NASA Community College Aerospace Scholars, Community College, Internships & Fellowships, Robotics

  • Kim Orr
READ MORE

Isis Frausto-Vicencio in the lab at JPL

I grew up moving around in the U.S. and Mexico, which made it hard to keep up with school. I mainly struggled with my language arts classes, but there were areas in which I excelled: math and science. I was in high school when I decided I wanted to be a scientist; I was fascinated by the explanations of the world through chemistry and physics. Although I was living in Mexico at that time, I never gave up on the dream of attending an American university to pursue my education. In 2010, my family and I moved to California to escape the dangers of drug cartels that had invaded our town.

I was already a high school senior in my last semester when I enrolled in school. I had already missed all the university deadlines, hadn't taken the SATs and had to attend adult school in the afternoon to make up for missing credits. Despite all of that, I graduated on time and decided to attend the College of the Sequoias, a local community college, where I am now majoring in chemistry. (I will be transferring to the University of California, Los Angeles in the fall!)

During my freshman year, I heard about the NASA National Community College Aerospace Scholars Program, and I decided to give it a shot. I used my basic knowledge of chemistry to write a series of proposals for a mission to Mars that included a timeline, budget and rover design. Based on my individual performance, I was selected on a competitive basis to attend the on-site team project at NASA's Jet Propulsion Laboratory. There were about 40 students from all over the U.S. We were split into four teams to put our ideas together and build a rover. We called our team "Red Planet Research" and our rover was named "Isis." (It was my birthday!) Through this I experience, I saw what it takes to be a NASA scientist and engineer. I also discovered that I wanted to become one of the JPL scientists who are involved with exploration missions. I was hooked on studying the Earth and planets. I returned to my school excited for what was to come and shared my excitement with others. I am happy to say that four students from my community college participated in NCAS this year at JPL.

In August of 2013, I received an email from NASA Education saying that I had been selected to receive the Minority University Research and Education Program (MUREP) scholarship! The program guarantees two summer internships at any NASA center. Right away, I knew I wanted to come back to JPL. Although I come from a small community college, I managed to be a competitive applicant due to my involvement with science, technology, engineering and mathematics programs, such as the Mathematics Engineering Science Achievement Program and the Society for Advancement of Chicanos and Native Americans in Science.

This summer, for the first of my two NASA internships as a MUREP scholar, I am working in the AstroBiogeoChemistry (ABC) Lab measuring hydrogen and oxygen isotopes in hydrated clay minerals. Our goal is to improve instrument precision and techniques for possible future return-sample missions.

It's a dream come true to finally work in a planetary chemistry and astrobiology lab. I have the opportunity to meet researchers who are passionate about their work and be involved in exciting research. But I think the best part of the internship is my lab group. There are two other interns, two post-doctorate interns, a Ph.D. student, and my mentor. They all take the time to tell us about the work they're doing and, most important, mentor us as rising scientists. Throughout my experience, I have learned a lot about research, and I am inspired to continue in the STEM field. I was nervous before coming to JPL and didn't know what to expect, but being part of the ABC Lab has exceeded all my expectations. I encourage all community college students to apply for NASA opportunities.

Although my internship is coming to an end, I am happy to say that I will be back next summer to do more exciting research. 

Learn more about JPL internships and fellowships

TAGS: Women in STEM, NCAS, Community College, Internships & Fellowships, Chemistry, Planetary Science, Astrobiology, Geology, Women in STEM

READ MORE

Amelito Enriquez with a student

Growing up in the Philippines, Amelito Enriquez knew nothing of high expectations. He wasn't expected to be the first student in his high school's history to go to a university - especially for a degree in engineering. He wasn't expected to receive the highest grade point average in the engineering department's history -- he wasn't even expected to be more than a "C" student. He wasn't expected to continue his education in the United States and become one of the country's most inspirational educators. And he wasn't expected to receive a presidential honor for his career-long commitment to helping underprivileged youth succeed.

"I like proving people wrong," said Enriquez, a professor of engineering and mathematics at Cañada College in Redwood City, Calif., who recently received the Presidential Award for Excellence in Science, Mathematics, and Engineering Mentoring. Over the years, he certainly has.

It was sixteen years ago that Enriquez first discovered his calling. "After grad school, I started applying for teaching jobs at four-year institutions," said Enriquez.  "Being from the Philippines, I didn't know about community colleges. When I realized what they were, I thought, this is me. I knew I could really make a difference at a community college." Turning down multiple offers at four-year institutions, Enriquez began his career at Cañada College in 1995 and never looked back - except when his mentor periodically phoned him to see if he'd reconsider the university route. He wouldn't.

Enriquez's students start very much like he did. They come from disadvantaged backgrounds where expectations are at a minimum, if not nonexistent. "The students I work with score high enough to be accepted into community college," said Enriquez. "But their math and science scores are below average. A lot of them are at the high school algebra level."

Inspiring these students to go from barely getting by to reaching way beyond anyone's expectations is Enriquez's passion, and he achieves it through a variety of grants and programs. One such program - which Enriquez says has given his students the rare opportunity to get hands-on research experience - is NASA's Curriculum Improvements Partnership Award for the Integration of Research, or CIPAIR. CIPAIR brings minority college students and their teachers to NASA centers for research projects aimed at improving curriculums for future generations of students. Through their experiences with the NASA program, Enriquez and his students have so far contributed to more than a dozen curriculum improvements at Cañada College, adding activities and lessons on launching satellites, designing a Mars rover and more.

"As a result of CIPAIR, our students are more confident about succeeding in a four-year school," said Enriquez. "And almost all of them are now considering advanced degrees." 

In early December, Enriquez flew to Washington D.C. to accept his mentorship award from President Barack Obama. While Enriquez considers it a great honor to be recognized for his hard work, he says that in a way, he already feels rewarded. "As part of the application process, my students had to write letters about why I should be recognized," he said. "A lot of students wrote in. Just reading those letters was really more of an honor than I could ask for."

It's also proof that inspiration goes a long way. "That's the best thing a teacher can give to a student," said Enriquez. "It's inspiration. It's to get kids to do something bigger than themselves."

TAGS: Community College, Educators, Fellowships, Cañada College

  • Kim Orr
READ MORE

Students participating in NASA's National Community College and Aerospace Scholars program

What does it take to plan a rover mission to Mars? Thirty-nine students from community colleges around the country visited NASA's Jet Propulsion Laboratory in Pasadena, Calif., for a three-day "boot camp" to plan, design and build a working model for a robotic journey to the Red Planet.

The students participated in NASA's National Community College and Aerospace Scholars (NCAS), a program for students interested in science, technology, engineering and mathematics.  Now in its second year, the program is managed by NASA's Johnson Space Center and provides hands-on projects that feature possible careers in engineering.


"This program helps fill a gap in the education pipeline," explained NCAS Program Manager Deborah Hutchings. "We have a program that allows community college students to get a taste of a real NASA mission, from planning a budget, to making line drawings and even testing their designs. It takes them through a compressed mission development cycle." On the final day, teams make presentations and compete to see which rovers can maneuver over a simulated terrain.

One alum from last year attests to the program's impact. "I feel like this has put me on the road to working at NASA," said Cliff McKenzie, a mechanical engineering student who attended Wake Technical Community College in Raleigh, N.C., when he was in the program. He is now an intern at JPL with the NASA Undergraduate Student Researchers Program. "I think students are surprised by the kind of people who work here. Scientists and engineers are sociable and friendly, not locked in their offices just crunching numbers."

TAGS: NCAS, Community College, Internships & Fellowships

  • NASA/JPL Edu
READ MORE