Brittney Cooper stands in a sandy area holding a controller attached to a rover

Brittney Cooper loves studying weather – and she's taking that passion all the way to Mars. A graduate student at York University in Toronto, Cooper has spent the past two years working with the science team for NASA's Mars rover Curiosity. In January, she authored her first science paper on a study she designed with the Curiosity team that looked at how clouds scatter light and what that tells us about the shapes of their ice crystals. Despite her involvement in the Curiosity mission, the Canada native has never actually been to a NASA center. But that's about to change this summer when she'll embark on her first internship at JPL in Pasadena, California. We caught up with Cooper to find out what she's looking forward to most about her internship and how she's planning to take her studies of Martian clouds even farther.

You're currently earning your master's at York University in Toronto. What are you studying and what got you interested in that field?

I'm doing my master's in Earth and space science. But if you really want an interesting story [laughs] … I've always been interested in astronomy, space and science, but I also really love art. Coming to the end of high school, I realized that maybe it was going to be too hard for me to pursue science. Maybe I was a little scared and I didn't really think I was going to be able to do it. So I went to university for photography for two years. After two years, I realized photography wasn't challenging me in the right ways and wasn't what I wanted to do for the rest of my life. So I left. I did night school to get credits for calculus and all the grade-12 physics and chemistry that I needed to pursue a degree in atmospheric science, which is not even remotely astronomy, but I've also always loved weather – pretty much anything in the sky. I still had a passion for astronomy, so I started volunteering at the Allan I. Carswell observatory at York. There, I met a professor who I ended up doing research with for many years. He told me, "There's the field called planetary science, where you can study the atmospheres of other planets and you can kind of marry those two fields that you're interested in [astronomy and atmospheric science]." So I ended up adding an astronomy major.

Brittney Copper stands in the snow surrounded by pine trees and holds out a device to measure the flux of solar radiation

Cooper measures the downward flux of solar radiation during a winter snow survey. Image courtesy Brittney Cooper | + Expand image

Later, I started doing research with this professor, John Moores, as an undergrad. In my last year, there was a Ph.D. student who was a participating scientist on NASA's Mars Science Laboratory mission and he was graduating. John had said something along the lines of, "There's an opening, and I know it's always been your dream to work in mission control, so do you want to be on the mission?" And I was, like, "Yes, I definitely do!" I couldn't believe it. And I was never intending to do a master's, but then I realized I really loved the work I was doing, working on constraining physical properties of Martian water-ice clouds using the Mars Curiosity rover. We got to design this observation, which ran on the rover, and then I got to work with the data from it, which was really cool. So I stayed on to do my master's, and I'm still on the mission, which is pretty awesome.

In January you authored your first science paper on that research. Tell me more about that.

A black and white animated image showing light, wispy clouds moving across the Martian sky

Wispy clouds float across the Martian sky in this accelerated sequence of images from NASA's Curiosity Mars rover. Image credit: NASA/JPL-Caltech/York University | › Full image and caption

My research focuses on the physical scattering properties of Martian water-ice clouds. A lot of people don't even realize that there are clouds on Mars, which I totally get because Mars doesn't have much of an atmosphere. But it does have enough of an atmosphere to create very thin, wispy, almost cirrus-like clouds similar to the ones we have on Earth. They're made up of small, water-ice crystals. These kinds of clouds do have a noticeable impact on Earth's climate, so we have now started thinking about what these clouds are doing in Mars' climate. The scattering properties can tell us a bit about that. They can tell us how much radiation is scattered back to space by these clouds or kept in Mars' atmosphere and whether or not we can see really fun things like halos, glories and different types of optical phenomena that we can see here on Earth.

We designed this observation that uses the Navcam imager on Curiosity. The engineering folks with the mission helped us design it. I got to present at a science discussion, which was superscary, but everyone was so kind. And then the observation was approved to run on Mars once a week from September 2017 to March 2018. During this observation window, Curiosity would take images of the sky to capture clouds at as many different scattering angles as possible. Once we got all the data back, we were able to constrain the dominant ice crystal shapes in the clouds based upon this thing called the phase function, which tells you how these clouds scatter light and radiation. I was the lead author on the research paper that came from that, and it got accepted. We started working on this right when I was really new to the mission, and it was my first paper. I couldn't believe everyone wasn't, like, "Who the heck are you? Why are we going to let you do anything?" But everyone was so kind, and it was just such a great experience.

What was the hardest part about writing that first paper?

The hardest part was probably just getting over the fear of thinking people aren't going to listen to you or you aren't going to be smart enough or you won't be able to answer questions. It was really just getting over my own fears and worries and not holding myself back because of them. I have a really great mentor who pushed me to do all these things, so I was able to suck it up and say, "If he believes in me and he thinks I can do it, maybe he's right." Every time I did a presentation or I would talk about the observation or try to advocate for it, I was just met with such positivity that I was, like, "OK, these fears are rooted in nothing."

In July, you're coming to JPL for your first internship here. What will you be working on?

Yes, I'm so excited! I'll be working with two scientists, Michael Mischna and Manuel de la Torre Juarez. We're going to be working with the Rover Environmental Monitoring Station, or REMS, which is an instrument on Curiosity that measures the temperature, relative humidity and pressure around the rover on Mars. From those measurements, we're going to try to infer the presence of clouds at night. So far, the way we've used Curiosity to study clouds is with optical instruments [or cameras]. So we take pictures of the clouds. But that's not really something we can do at night. So using REMS and its temperature sensors at night, we can try to see if clouds around the rover are emitting infrared radiation, heating up the atmosphere around the rover. We can try to detect them that way. So that's what we're going to try to do – look for some patterns and see what we can come up with. We'll also be comparing what we find with data from NASA's Mars Climate Sounder, which is in orbit around Mars and takes nighttime measurements of the atmosphere.

What are you most excited about coming to JPL?

I would be lying if I said it wasn't just getting to come to a NASA center – especially as a Canadian. It's every little space enthusiast's dream. I'm also excited to meet all the people who I've been working with for the last two years. The people are such an awesome part of this mission that I've been a part of. So I'm looking forward to meeting them in person and working with them in a closer way.

What do you see as the ultimate goal of your research?

We're just trying to better understand Mars. It's kind of a crazy place. There is a lot of evidence that shows us that there's a lot more going on than we know now and it's just about trying to put the pieces of the puzzle together. There are also a lot of similarities to Earth. So we can try to take what we learn about Mars and apply it to our planet as well.

What's your ultimate career goal?

What I would really love is to work in spacecraft operations. I absolutely love working in science and working with data, but getting a chance to be a part of this mission and do operations – be part of a team and do multidisciplinary work – it's so exciting, and it's something that I never thought that I'd get to experience. And now that I've had a bit of a taste, I'm wanting more. So that's what I'm hoping for in the future.

Do you ever think about how you moved away from studying photography but are using photography to do science on Mars?

Yes! Every once in a while, that hits me, and I think to myself, "That's so cool." It's just very, very cool. Ten years ago, I never thought I'd be where I am now. But also just to know that there's that connection, that I'm working with visual data, with optical data – I don't think it's a coincidence. I really love working with images, so I think it's pretty cool that I get to do that.

Just one last fun question: If you could travel to any place in space, where would you go and what would you do there?

Without a doubt, it would have to be [Saturn's moon] Titan. I actually would probably go there to study the atmosphere. The first research project that I ever did was trying to find methane and ethane fog on Titan and the surface data was quite limited, so I would like to go there. I want to see water-ice rocks. I want to see methane lakes and methane rain, set up a little vacation spot there [laughs].


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, College, Internships, Interns, Students, Science, Mars, Rovers, Weather

  • Kim Orr
READ MORE

Michelle Vo poses for a photo in front of a full-size model of the Curiosity Mars rover at JPL.

Michelle Vo poses for a photo in front of a full-size model of the Curiosity Mars rover at JPL.

Until she discovered game development, Michelle Vo’s daydreams were a problem. She couldn’t focus in her computer science classes. Her grades were dipping. She wondered whether she was cut out to be a programmer or for school at all. So she took a break to make something just for fun, a self-help game. And help her, it did. Now focusing on virtual and augmented reality, Vo is back at school, studying not just computer science, but also cognitive science, linguistics and digital humanities. It’s a lot, but to create a virtual world, she says one has to first understand how people navigate the real one. This summer, at NASA’s Jet Propulsion Laboratory, the UCLA student applied her talents to VR and AR experiences that help scientists explore a totally different world, Mars. While Vo’s tendency to daydream hasn’t gone away, she now knows how to use the distractions for good; she turns them into VR inspiration.

What are you working on at JPL?

I worked on this project called OnSight, which just won NASA Software of the Year! I also worked on another project for the InSight Mars lander mission. Honestly, it’s been such a dream come true to intern here. I actually used to struggle a lot with school because I would often get caught up in my own daydreams. However, I’m really glad I found a unique career path in VR where I can turn those dreams into something useful.

That's so great that you were able to channel your daydreams in that way. How did you go from struggling in school to doing VR?

When I first tried on a VR headset, I was like, "This is the future. I need to do whatever I can to learn about this." I decided to study computer science, but it was easy to get lost and fall behind in a large classroom environment. Not a lot of people know this, but I was on academic probation for a while. Looking back, I think my shyness held me back from asking for the help that I needed.

When I took a break from school, I decided I wanted to try making a game. I wanted to do something just for fun, and I was determined to fix my bad habits. So with some friends, I created a self-help game at AthenaHacks, a women’s hackathon. For 24 hours, I was just immersed in my work. I had never felt that way about anything in my life, where I was just zoned in, in my own world, building something I loved. And that's when I realized, I think it's game development. I think this is what I want.

So I spent the year teaching myself [game development], and I got a lot more comfortable using the Unity game engine. I went on to attend Make School’s VR Summer Academy in San Francisco. That smaller learning environment opened up the world for me. It boosted my confidence more than anything to have the support I needed. I was like, "Maybe my grades aren’t so great, but I know how to build VR applications – and the world needs VR right now.”

So when I went back to my university, I thought, "I'll try again. I'm going to go back to computer science.” And so far so good. I'm into my fourth year at UCLA studying cognitive science, linguistics, computer science and digital humanities. It sounds like a lot, but they're all related in the sense that they're all connected to VR. To me, VR is mainly a study of the mind and how we perceive reality. It’s not just about game development; you also need to understand human behavior to create good user-friendly VR.

So going back to your JPL internship, how are you using your VR skills to help scientists and engineers?

Michelle Vo in the InSight testbed at JPL

Michelle Vo poses for a photo with InSight Testbed Lead, Marleen Sundgaard. Image courtesy Michelle Vo | + Expand image

I’m interning in the Ops Lab, and the project I've been working on primarily is called OnSight. OnSight uses Microsoft’s HoloLens [mixed-reality software] to simulate walking on Mars. Mars scientists use it to collaborate with each other. We had “Meet on Mars” this morning, actually. On certain days, Mars scientists will put on their headsets and hang out virtually on Mars. They see each other. They talk. They look at Mars rocks and take notes. It's based on images from the Curiosity Mars rover. We converted those images to 3-D models to create the virtual terrain, so through VR, we can simulate walking on Mars without being there.

For a few weeks, I worked on another project with the InSight Mars lander mission. We took the terrain model that's generated from images of [the landing site] and made it so the team could see that terrain on top of their testbed [at JPL] with a HoloLens. For them, that's important because they're trying to recreate the terrain to … Wait, I recorded this.

[Michelle quickly scans through the photo library on her phone and pulls up a video she recorded from JPL’s In-Situ Instruments Laboratory. Pranay Mishra, a testbed engineer for the InSight mission, stands in a simulated Mars landscape next to a working model of the lander and explains:]

“When InSight reaches Mars, we're going to get images of the terrain that we land on. The instruments will be deployed to that terrain, so we will want to practice those deployments in the testbed. One of the biggest things that affects our deployment ability is the terrain. If the terrain is tilted or there are rocks in certain spots, that all has a strong effect on our deployment accuracy. To practice it here, we want the terrain in the testbed to match the terrain on Mars. The only things we can view from Mars are the images that we get back [from the lander]. We want to put those into the HoloLens so that we can start terraforming, or “marsforming,” the testbed terrain to match the terrain on Mars. That way, we can maybe get a rough idea of what the deployment would look like on Mars by practicing it on Earth.”

› Learn more about how scientists and engineers are creating a version of InSight's Mars landing site on Earth

Michelle Vo in the InSight testbed at JPL

Michelle Vo stands in the InSight testbed at JPL with testbed engineers Drew Penrod (left) and Pranay Mishra (right). Image courtesy Michelle Vo | + Expand image

They already gave us photos of Mars, which they turned into a 3D model. I created an AR project, where you look through the HoloLens – looking at the real world – and the 3D model is superimposed on the testbed. So the [testbed team] will shovel through and shape the terrain to match what it’s like on Mars, at InSight’s landing site.

Did you know that this was an area that you could work in at JPL before interning here?

OnSight was a well known project in the VR/AR space, since it was the first project to use the Microsoft Hololens. I remember being excited to see a panel on the project at the VRLA conference. So when I finally got on board with the team, I was ecstatic. I also realized that there’s room for improvement, and that’s OK. That’s why I'm here as an intern; I can bring in a fresh look.One of the things I did on this project was incorporate physical controllers. My critique when I first started was, "This interface is a bit tricky to use," and if it's challenging for me to use as a millenial, how is this going to be usable for people of all ages? I try to think in terms of accessibility for everybody. Through lots of testing, I realized that people need to be touching things, physical things. That's what OnSight lacked, a physical controller. There were a lot of things that I experimented with, and eventually, it came down to a keyboard that allows you to manipulate the simulated Mars rovers. So now with OnSight, you can drive the [simulated] rovers around with a keyboard controller and possibly in the future, type notes within the application. Previously, you had to tap into the air to use an AR keyboard, and that's not intuitive. I believe we still need to touch the physical world.

How has this project compared with other ones that you've done elsewhere?

I felt really in my element. And for the first time ever, the imposter-syndrome voice went away. I felt like I could just be myself and actually have a voice to contribute. You know, I might be small, I might be the shortest one, but I'm mighty. It’s been such a positive and supportive environment. I've had an incredible internship and learned so much.

What has been the most unique experience that you've had at JPL?

Working in the Ops Lab has been such a unique experience. Every day, we’re tinkering with cutting-edge technology in AR and VR. I am so thankful to have my mentors, Victor Luo and Parker Abercrombie, who give me the support and guidance I need to grow and learn. Outside of the Ops Lab, I also had the unique opportunity to meet astronaut Kate Rubins and talk about VR with her. I had lunch with NASA Administrator Jim Bridenstine when he visited JPL. And working with the InSight mission and Marleen Sundgaard, the mission’s testbed lead, was especially cool. I can't believe I was able to use my skills for something the Mars InSight mission needed. Being able to say that is something I'm really proud of. And seeing how far I came, from knowing nothing to being here, makes me feel happy. If I can transform, anyone can do this too, if they choose to work hard, follow their own path and see it in themselves to take a risk.

What advice do you have for others looking to follow your path?

Listen to your gut. Your gut knows. It’s easy to feel discouraged when learning something new, but trust me, you’re not alone. You’ve always got to stay optimistic about finding a solution. I've always been someone who has experimented with a lot of things, and I think learning is something you should definitely experiment with. If the classroom setting is not for you, try teaching yourself, try a bootcamp, try asking a friend – just any alternative. There is nothing wrong with carving your own path when it comes to your education. Everyone’s at their own pace, just don’t give up!

My biggest inspiration is the future. I think about it on a daily basis. I know I have a very cheery, idealistic view on life, but I think, "What's wrong with that?" as long as you can bring it back to reality.

Speaking of that, what is your ultimate dream for your career and your future?

I was raised in the Bay Area, and I grew up in Santa Clara so the tech culture of Silicon Valley was inescapable. I love Silicon Valley, but there is still a huge homelessness issue. I’ve always thought, “We have the brightest engineers and scientists doing the most amazing, crazy things, yet we still can't alleviate homelessness.” Everybody deserves a place to sleep and shower. People need to have their basic needs met. I’d love to see some sort of VR wellness center that could help people train for a job, overcome fears and treat mental health.

That's my idealistic dream, but back to present-day dreams: I'm actually doing a 180. I'm leaving tech for a little bit, and I’m taking Fall quarter off. I'll start back at UCLA in January, but I'm taking a leave to explore being an artist. I'm writing a science-fiction play about Vietnamese-American culture. I was inspired by my experience here at JPL. I feel really optimistic about the future of technology, which is funny because science fiction usually likes to depict tech as something crazy, like an apocalypse or the world crashing down. But I'm like, “Vietnamese people survived an actual war, and they’re still here.” For my parents and grandparents, their country as they knew it came crashing down on them when they were just about my age. They escaped Vietnam by boat and faced many hardships as immigrants who came to America penniless and without knowing English. For them to have survived all of that and sacrificed so much to make it possible for me to be here is incredible. I think it’s a testament to how, despite the worst things, there's always good that continues. I’m so grateful and thankful for my family. I wouldn’t be here living my dream without them, and I want to create a play about that.

It's funny. Before I used to be so shy, so shy. I used to be that one kid who would never talk to anybody. So it's kind of nice to see what happens when the introvert comes out of her shell. And this is what happens. All of this. [Laughs.]


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Women in STEM, Higher Education, College, Students, STEM, VR, AR, Technology, Mars, InSight, Curiosity, Women in STEM

  • Kim Orr
READ MORE

JPL interns Heather Lethcoe and Lauren Berger pose with the InSight engineering model in its testbed at JPL

UPDATE: Nov. 27, 2018 – The InSight spacecraft successfully touched down on Mars just before noon on Nov. 26, 2018, marking the eighth time NASA has succeeded in landing a spacecraft on the Red Planet. This story has been updated to reflect the current mission status. For more mission updates, follow along on the InSight Mission Blog, JPL News, as well as Facebook and Twitter (@NASAInSight, @NASAJPL and @NASA).


Matt Golombek’s job is one that could only exist at a place that regularly lands spacecraft on Mars. And for more than 20 years, the self-proclaimed “landing-site dude” and his rotating cast of interns at NASA’s Jet Propulsion Laboratory have helped select seven of the agency’s landing sites on the Red Planet.

Golombek got his start in the Mars landing-site business as the project scientist for the first rover mission to the Red Planet in 1997. Since that time, he has enlisted the help of geology students to make the maps that tell engineers, scientists, stakeholders and now even the rovers and landers themselves where – and where not – to land. Among the list of no-gos can be rock fields, craters, cliffs, “inescapable hazards” and anything else that might impede an otherwise healthy landing or drive on Mars.

For Golombek’s interns, the goal of helping safely land a spacecraft on Mars is as awe-inspiring as it comes, but the awe can sometimes be forgotten in the day-to-day work of counting rocks and merging multitudes of maps, especially when a landing is scheduled for well after their internships are over. But with the landing site for NASA’s next Mars rover just announced and the careful work of deciding where to lay down science instruments for the freshly landed InSight mission soon to begin, interns Lauren Berger, Rachel Hausmann and Heather Lethcoe are well aware of the significance of their work – the most important of which lies just ahead.

Site Unseen

Selecting a landing site on Mars requires a careful balancing act between engineering capabilities and science goals. It’s a partnership that for Golombek, a geologist, has evolved over the years.

Golombek reflects on the time before spacecraft like the now-critical Mars Reconnaissance Orbiter provided high-resolution, global views of the Martian terrain. In those early days, without close-up images of the surface, the science was largely guesswork, using similar terrain on Earth to get a sense for what the team might be up against. Spacecraft would successfully touch down, but engineers would look aghast at images sent back of vast rock fields punctuated by sharp boulders that could easily destroy a lander speeding to the surface from space. NASA’s 1997 Pathfinder spacecraft, encased in airbags for landing, bounced as high as a 10-story building before rolling to a stop at its jagged outpost.

Matt Golombek sits in his office in the science building at NASA's Jet Propulsion Laboratory surrounded by images and maps of Mars amassed over a 20-year career as the "landing-site dude." Image credit: NASA/JPL-Caltech/Kim Orr | + Expand image

Now, Golombek and his interns take a decidedly more technological approach, feeding images of candidate landing sites into a machine-learning program designed to measure the size of rocks based on the shadows they cast and carefully combining a series of images, maps and other data using Geographical Information Systems, or GIS, software (a required skill for Golombek’s interns).

Still, there are some things that must be done by hand – or eye, as the case may be.

“Lauren [Berger] is now an expert on inescapable hazards,” says Golombek of one of his current trio of interns. “She can look at those ripples, and she knows immediately whether it’s inescapable, probably inescapable, probably escapable or not a problem.”

“Or, as we like to say, death, part death and no death,” jokes Berger.

“We work with them to train them so their eye can see it. And so far, that’s the best way to [identify such hazards]. We don’t have any automated way to do that,” says Golombek.

“I like to call Lauren the Jedi master of ripples-pattern mapping,” says fellow intern Heather Lethcoe, who is the team’s mapping expert for the Mars 2020 rover mission. “I helped her a little bit with that, and now I’m seeing ripples closing my eyes at night.”

Until recently, Lethcoe and Berger were busily preparing maps for October’s landing site workshop, during which scientists debated the merits of the final four touchdown locations for the Mars 2020 mission. If Golombek’s team had a preferred candidate, they wouldn’t say. Their task was to identify the risks and determine what’s safe, not what’s most scientifically worthy. Thanks to new technology that for the first time will allow the rover to divert to the safest part of its landing ellipse using a map created by Golombek’s team, the debate about where to land was solely focused on science. So unlike landing site workshops for past Mars missions, Golombek’s team stayed on the sidelines and let the scientists “have at it.” (In the end, as with all other missions, the final site recommendation was made by the mission with NASA’s approval.)

Now, with an official landing site announced, it might seem that Golombek’s team is out of work. But really, the work is just beginning. “We’ll be heavily involved in making the final hazard map for the [Mars 2020] landing site, which will then get handed to the engineers to code up so that the rover will make the right decisions,” says Golombek.

Meanwhile, the team will be busy with the outcome of another Mars landing: InSight, a spacecraft designed to study the inner workings of Mars and investigate how rocky planets, including Earth, came to be.

Golombek’s third intern, Rachel Hausmann, became a master at piecing together the hundreds of images, rock maps, slope maps and other data that were used to successfully land InSight. But because InSight is a stationary spacecraft, one of the most important parts of ensuring the mission’s success will happen after it lands. The team will need to survey the landing area and determine how and where to place each of the mission’s science instruments on the surface.

“If you think about it, it’s like landing-site selection, just a little smaller scale,” says Golombek. “You don’t want [the instruments] sitting on a slope. You don’t want them sitting on a rock.”

For that, Golombek is getting the help of not just Hausmann but all three interns. “It’s a once-in-a-lifetime opportunity to have students who happen to be in the right place at the right time when a spacecraft lands and needs their expertise.”

Practice Makes Perfect

To prepare for this rare opportunity, the students have been embedded with different working groups, rehearsing the steps that will be required to place each of InSight’s instruments safely on Mars several weeks after landing.

Rachel Hausmann in the museum at JPL

Rachel Hausmann started with Golombek's team in June 2017 and until recently has been charged with finalizing the map that will be used to land InSight on Mars. Image courtesy: Rachel Hausmann | + Expand image

Lauren Berger stands in the InSight testbed at JPL

Lauren Berger, the longest tenured of the intern team, says everything she knew about Mars before interning at JPL came from a picture book she checked out at the library where her mom works. Now, she's an expert in identifying the sand-dune-like features considered hazardous to Mars rovers. Image credit: NASA/JPL-Caltech/Lyle Tavernier | + Expand image

Heather Lethcoe points at a Mars globe

Even when it was clear Heather Lethcoe's JPL internship was a sure thing, she says she didn't want to be too sure of herself and kept telling people she had a "potential internship." But as the praises roll in, she's learning to have more confidence in herself. Image credit: NASA/JPL-Caltech/Lyle Tavernier | + Expand image

“The groups have rehearsals for different anomalies, or issues, that could go wrong,” says Hausmann. “They do this to problem solve even down to, ‘Are we in the right room? Do we have enough space?’ because when you’re working on a space mission, you can’t have an issue with facilities.”

The students took part in the first of these so-called Operational Readiness Tests in early October and say it was an eye-opening experience.

“It was really helpful just to get to know the team and really understand what’s going to happen,” says Berger. “Now we know how to make it happen, and everyone’s a lot more ready. Also, it was so much fun.”

“That’s what I was going to say!” says Lethcoe. “That was just the rehearsal, and at the end of it, I felt so amped and pumped up. I can’t even imagine when we’re actually doing it how good that’s going to feel.”

Lethcoe says there was also the matter of balancing homework and midterms with full-time preparations for a Mars landing. That was its own sort of readiness test for December when the real work of deploying the instruments will coincide with finals.

Perhaps most surprising, say the students, was their realization that their expertise is valued by a team that’s well-versed in Mars landings.

“Imposter syndrome is real,” says Hausmann. But the team’s internships are serving as the perfect antidote.

“I had this fear that I don’t know if I’m going to be more in the way and more pestering or if I’m actually going to be helpful,” says Lethcoe, a student at Cal State University, Northridge, who was first exposed to the mapping software used by the team during her time in the U.S. Army. “It turns out that the [InSight geology] team lead gave me really nice reviews.”

Berger interjects to add supportive emphasis to Lethcoe’s statement – a common occurrence among the three women who have shared the same small office for more than a year now. “He said he absolutely needed her and she could not go away.”

Lethcoe laughs. “[My co-mentor] texted me to let me know, ‘You earned this,” and I tried not to take screenshots and send them to all my friends and my mom. They definitely make it known how much we’re appreciated.”

Adds Berger, “I think JPL really teaches you to have confidence in what you know.”

More than the mapping skills and research experience they’ve picked up during their time at JPL, it’s that confidence that they’re most eager to take back to school with them and impart to other young women interested in STEM careers.

Berger gave a talk about imposter syndrome at her school, Occidental College in Los Angeles, earlier this month. And Hausmann, a student at Oregon State University, says her efforts to encourage and coach young women are the most important contribution she’s making as a JPL intern.

“I just want to help young women get in [to research and internships] as early as possible in their college careers," says Hausmann. "I think that’s so important, just as important as the work we’re doing.”

The Next Frontier

When your internship or your job is to help land spacecraft and deploy instruments on Mars, the question, “Where do we go from here?” is literal and figurative. While the next year or so will be perhaps one of the busiest Golombek’s team has ever known, his future as the landing-site dude is uncertain.

“If what you do is select landing sites for a living, it’s kind of an odd thing because you can only work at one place,” says Golombek. “You need to have a spacecraft that needs a landing site selected for it. And for the past 20 years, there have been spacecraft that we’ve been landing on Mars. So I’m kind of out of business now because Mars 2020 is the last for the time being – there are no new [NASA Mars] landing sites that are being conceived of.”

At the mention of possible lander missions to other worlds, Golombek shrugs and his near-constant grin sinks into a thin horizon. “Don’t know,” he says. “I’m kind of a Martian, and I’ll probably stick with Mars.”

Maybe it’s a torch best carried by his intern alums, many of whom have gone from their internships to careers at JPL or other NASA centers. While Lethcoe, Berger and Hausmann are still enmeshed in their education – Lethcoe is in her junior year, Berger is taking a gap year before applying to graduate programs, and Hausmann is applying to Ph.D. programs in January – their experiences are sure to have a profound impact on their future. In many ways, they already have.

Could they be the landing-site dudes of the future? Maybe someday.

But for now, they’re focused on the challenges of the immediate future, helping NASA take the next steps in its exploration of Mars. And for that, “They’re super well trained,” Golombek says, “and just perfect for the job.”


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Women in STEM, Interns, Internships, Higher Education, College, Geology, Science, Rovers, Landers, Mars, InSight, Mars 2020

  • Kim Orr
READ MORE

Erika Flores poses for a photo in the lab at JPL

Erika Flores might be the longest-serving intern at NASA’s Jet Propulsion Laboratory. As a high-school student, she helped test the arm for the Phoenix Mars Lander, which launched about a year later, in 2007. When she returned in 2014 as an undergraduate intern, she joined a team of JPL scientists studying how life began on Earth. A chemical engineering student at Cal Poly at the time, Flores helped the team with one of its early breakthroughs, producing amino acids, which are central to life processes, under conditions found on early Earth. Now known as the "senior intern," Flores has been an integral part of the team ever since. Meanwhile, she's earned a bachelor's degree, was accepted to graduate school for environmental science and started writing her master's thesis. She also recently picked up a part-time gig helping the Mars 2020 rover team keep the spacecraft – which is being built at JPL – clear of microbes that could hitch a ride to the Red Planet. We caught up with Flores to ask what she plans to do next, how her internships have shaped her career path and, as she says with a laugh, how they've changed her personality.

You've had five or six JPL internships, dating back to when you were in high school. How did you first come to the Lab, and what's brought you back all these years?

My very first internship was when I was a high school student going from my junior to my senior year. I think one of my teachers recommended I apply to SHIP, the Summer High School Internship Program, at JPL, and I got the internship. When I came in, it was a little overwhelming. I was 16. I still wasn't exactly sure what I wanted to major in, but I got matched with a mentor who was an electrical engineer, doing some robotics testing on the arm for the Phoenix Mars Lander. So that was really exciting when I heard afterward that they were sending Phoenix to Mars. That’s definitely what – I wouldn't say piqued my interest because I was already into space, but it was like, "OK, I want to come back here."

I went off to community college, and after I transferred to Cal Poly to get my bachelor's degree in chemical engineering, I applied [for a JPL internship]. I started working with Laurie Barge in JPL's Astrobiology Lab, doing experiments on the origins of life. We started with research on early Earth conditions because our experiments have to reflect Earth before life as we know it existed. From there, we did a couple of experiments using iron mineral, or iron hydroxide, which is pretty basic and you can find it in nature. Then we adjusted the conditions. So we adjusted the pH to what it would be in early Earth – concentrations that you would find in the ocean floor. Using previous experiments and previous literature, we did an experiment to see if we could produce amino acids – so organics – based off of these reactions that could have been happening on early Earth. And our experiment was successful. We made alanine, which is an amino acid, and lactate, which is an alpha hydroxy acid. We use them for different properties in our body. So we expanded on the experiment, tried different conditions. Now we have a science paper in review. And that all lead to some other internships that are also related to the origins of life.

Erika Flores poses with her science poster

Erika Flores poses with her science poster. Photo courtesy of Erika Flores | + Expand image

Once I graduated, I wasn't able to qualify for an internship anymore. So Laurie hired me as a contractor. I was a lab technician, working part-time while I decided to go back to school. Once I got my acceptance letter to grad school, I was able to return again as an intern. Now I'm referred to as the "senior intern." So we get new interns during the summer or some throughout the year, and I train them, show them around, things like that, which is also pretty great because like they say, you learn more by teaching others.

What are you hoping to do once you graduate?

Since I will be graduating next year, Laurie, who is such a great mentor, has been pushing me to go talk to people and go network. She talked to one of our old postdocs, who happened to be looking for an intern. So just this September, I was converted to an academic part-time employee, which has really allowed me to branch out. Now I'm part-time with Laurie and part-time working with the Mars 2020 contamination control team, handling samples, cataloging them and dropping them off for analysis. The Contamination Control Group determines cleaning methods and the allowable amount of microbial and particulate contamination for spacecraft so that they don't bring those contaminants to the places that they visit. For the Mars 2020 rover, this is an especially crucial step because it will be collecting samples that could potentially be returned to Earth one day. I kind of get to see what's going on behind the scenes of the mission, which an intern normally would not get the chance to do, so it's been a really rewarding experience.

Hopefully, when I graduate, I'll land a full-time job at JPL. Working with Laurie is great, and I feel like she would want to keep me here, but from talking to people higher up, they say if you want to be in the Science Division, you need a Ph.D., and I'm still debating whether I want to do a Ph.D. Perhaps I will in the future, but right now, I'm finishing up my master's thesis and my goal is just to get a full-time job. I find JPL to be so exciting regardless of what you're doing, so at this point, I don't care what it is. It'll still be part of a bigger picture. But it would be great if I could continue with the Mars 2020 mission as an engineer. Since I've lived in LA, I've always known of JPL. So I think this has always been my ultimate goal.

How have your various JPL internships influenced the evolution of your career path?

I started with chemical engineering [as an undergrad], but then I realized a lot of people in my field were going into the oil industry. I was like, "I kinda wanna save the planet, do environmental stuff." I only graduated three years ago, but even then, I didn't hear much about environmental science or environmental engineering as a major, so it wasn't really an option.

The reason why Laurie chose me as her intern was because of my chemistry background, which is pretty awesome because even though I studied engineering, I saw myself doing more lab work. Being here in the lab with Laurie has been amazing. It has solidified my thoughts that "Yes, this is what I want to do." I definitely like doing experiments, taking samples, running analyses and then inputting the data.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

[Before going to grad school], I started turning to a lot of the talks here, because I was like, "OK, maybe I could be more involved with astronomy, astrobiology – things like that." But I felt that a lot of the talks were over my head. But then when I would attend some talks that had to do with climate change or, for example, the new ECOSTRESS [Earth science mission], I was captivated and interested. So it confirmed that I want to stick to the environmental side. That's why, for my master's, I went into environmental science with an option in engineering.

What got you interested in science and engineering initially?

I've always really liked math, but I knew I couldn't just do a math major. I knew I wanted to do more. Growing up, my favorite types of movies were sci-fi, and I was definitely into outer space and astronomy. Knowing how things work was always a curiosity. Trying to know the unknown was what really drew me into science. And then for engineering, I just couldn't decide. I wanted to learn a little bit of everything. The whole reason why I chose engineering was that I couldn't choose one specific subject. With engineering, you need your math, your physics, you need your chemistry, you need some biology, depending on what kind of engineering you go into, but it encompasses everything.

Is anyone in your family involved in engineering or science?

No. I'm actually the middle child of five. My mom came here from Mexico. So we're all first-generation. But I was the first one to even graduate high school. My little brother is in college, and I'm pushing him, because I see my other brother, who is working overnight and overtime and always tired, and it's obviously something he didn't think he was going to end up doing. Also, my mom came here and she struggled a lot, and she's still struggling. As sad as it sounds, I don't want that to be me. So I had to push through. Luckily for me, I was always into school, so it wasn't that hard to keep going.

Going back to the research that you're doing, what's the ultimate goal, and what might it mean for the search for life beyond Earth?

So most of my experiments don't have to do with other planetary systems; they're more focused on Earth and the origins of life here. But we could take some of this knowledge and apply it to other planets. Our research is figuring out what happened here, first, and then applying it to other places. Our ultimate goal is to explore processes for the origin of life.

How do you feel you're contributing to NASA/JPL missions and science?

Erika Flores demonstrates how to make a chemical garden

Image credit: NASA/JPL-Caltech/Kim Orr | + Expand image

Even if you do the smallest task, it still has to be done. Someone has to take these samples to get analyzed, someone has to drop these things off. But, personally, working with Laurie Barge and the origins of life, I feel like I've contributed a lot. We have one paper in review, and we're doing more experiments. Our research has implications for other celestial bodies, so I’m excited for us to learn more about Mars and Saturn's moon Enceladus so we can adjust our experiment to represent their environments. I have also been helping interns with their experiments. I don't think you can disregard anything you do here. I think everything is important, and you're always learning and teaching others. Whenever I meet students, I'm always saying, "Make sure you apply to JPL." It's a wonderful opportunity. I consider myself so lucky to still be here after all these years.

What's the most unique NASA or JPL experience you've had while you've been here?

Recently, my mentor has been hosting science happy hours. At school, it's not like you just go out and drink with your professor. [Laughs.] But the whole point of it was for her to introduce us to other people who are working in the science department. So going to these happy hours gives us a chance to talk and see what everyone is working on. It's all about collaborating. So, to me, that has been a bit of a unique experience.

Also, going to conferences. I've gone to maybe four or five. Meeting these people from all over the world is definitely a unique experience. It's crazy how we're all kind of working toward the same goal. Before I used to be very shy, more introverted, but meeting people from all over the world and knowing their stories and their background and how much we have in common, despite where we live, has gotten me to be more open. So that's helped me out in the whole networking aspect of things, which is very, very important when you're trying to get a job.

I really think this internship changed my personality. [Laughs.] I really do.

Last question, and it's a fun one: If you could travel to any place in space, where would you go and what would you do there?

With the possibility of seeing humans on Mars within my lifetime, I have joked with my friends that I would love to die on Mars. But I wouldn't want to limit myself. So if possible, at an older age, I would keep traveling through space, passing by every celestial body imaginable. That would be an astonishing and beautiful sight. Once I felt like I had witnessed it all, I would travel straight into a black hole to witness what no one else ever has, the unknown.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Women in STEM, Internships, Higher Education, College, STEM, Science, Engineering, Mars 2020

  • Kim Orr
READ MORE

Vicky Espinoza stands in front of an Earth science display at JPL

In the science world, publishing a paper is a big deal; it’s how scientists share their discoveries with the world. So it’s no small feat that Vicky Espinoza published her first science paper as an intern at NASA’s Jet Propulsion Laboratory. In the paper, her team takes a look at the effects of climate change on global atmospheric rivers, which bring an onslaught of snow and rain to affected areas and have serious implications for people who live there. The Earth science student from the University of California, Merced, met with us this summer to share how she’s helping her team take the research further and what it’s like to be an intern at JPL.

What are you working on at JPL?

We're studying how atmospheric rivers – which are long jets of water vapor – move through the Earth system and identifying key physical properties that characterize their frequency and magnitude. We’re doing this by taking what we currently know about atmospheric rivers and contrasting it with “aqua planet” model simulations, changing one physical parameter at a time. An aqua planet is a theoretical planet that has the same dynamic and thermodynamic properties as Earth’s atmosphere and oceans, but with the continents removed. We’re also observing how climate change and these parameter changes combine to impact the physical characteristics, frequency and magnitude of atmospheric rivers in these aqua-planet scenarios.

Tell me more about atmospheric rivers and the impacts that they have on our climate.

There is a certain geometry to them that separates them from other storm types. They often tap moisture in the tropics and transport it toward the poles and into and across mid-latitudes. An important feature of them is that they often make landfall on the western coasts of continents – so the mountainous regions like the Sierras and the Andes. When the warm, moist air rises to cross the mountains, it cools down and precipitates out as either snow or rain, depending on the temperature. Just to give you a sense of how much water they can hold, a single atmospheric river can transport 25 Mississippi Rivers of water as water vapor. So the implications are that they can cause severe flooding, or in their absence, they can cause drought periods. So they're very important for water management, especially for regions like California that depend on precipitation for water.

Diagram showing the path and dynamics of atmospheric rivers

This graphic shows what happens when atmospheric rivers make landfall. Image credit: NASA/JPL-Caltech | + Expand image

You were the lead author on a science paper published recently on this topic.

Yes. It’s a global analysis of climate-change projection effects on atmospheric rivers. It was the first paper that performed such an analysis on atmospheric rivers on a global scale. My mentors, Bin Guan and Duane Waliser here at JPL, created an atmospheric-river detection algorithm, which we used to identify and compare atmospheric rivers globally. We found that with climate change, these atmospheric rivers will occur 10 percent less, but they will be 25 percent wider and stronger. Because the rivers will be more expansive, a given area will experience atmospheric-river conditions up to 50 percent more often despite there being fewer atmospheric river events. Also, the frequency of the strongest of these atmospheric rivers is going to double. It has so many implications for water managers and those living in atmospheric-river-prone regions who will need to start preparing or start thinking about the implications of these large storms.

Is this the first time that you've been an author on a paper?

Yes, it's the first time I've published a paper. My mentors made me first author, which was such a great experience. It was a lot of work. As a Ph.D. student now, it's fruitful to know what it means to be an author of a paper.

What did it mean for you to be able to publish a paper as an intern?

Just being so passionate about a topic, putting your hard work and soul into a paper and then seeing it become reality is – it's something different. I can't even describe it. It makes me feel like I've accomplished something.

What are you studying for your doctorate?

I'm taking a look at water management and sustainable water uses in agricultural regions in California.

Are you hoping to eventually work at JPL?

Yes. JPL has been a dream. I actually applied to JPL three times before I got an internship. I applied as an undergrad, and then during my master's I was, like, “Let me try one more time. Let's give it a go.”

It's been such a great experience to intern here. One of the things that I love about JPL is that everyone is so passionate and creative. It's like Disneyland for scientists. It's very motivating to meet people in line for coffee and be like, “Oh, you work on the Hubble Space Telescope? No big deal.” And they're just so grounded and so passionate, and everyone's willing to talk to you. So it's been a great experience.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

What's the most unique JPL or NASA experience that you've had?

I think the overall experience has been unique. I haven't been in a work environment where the majority of people are so happy to be here and everyone is just so passionate and driven.

What's a typical day like for you?

A typical day for me is behind the computer, so taking a lot of data and running it through a detection algorithm and running a statistical analysis on the data, creating figures and analyzing these atmospheric-river trends.

How do you think that what you're working on might help the average person one day?

Taking a look at this theoretical aqua planet, [a simulated version of Earth with the continents removed], and changing differing parameters of these atmospheric rivers is bringing fundamental insight into how they function, develop and move across the globe. I think that this work will inform citizens, stakeholders, policy makers and water managers on the future of California water.

What got you interested in science in the first place?

I feel like I've been doing science for a long time. My dad works in hydrology, so I've always been exposed to that. But I've always been someone very curious, especially about climate change. I started with air quality and how climate change is impacting the atmosphere. The atmosphere and ocean are connected in some ways, so I started exploring the ocean through an internship. Just being curious about our planet has led me to where I am now.

If you could travel to any place in space, where would you go and what would you do there?

I am a fan of rogue planets, or floating planets. There's an [Exoplanet Travel Bureau] poster that imagines them as planets where people would go dancing. I would want to go to a rogue planet just to figure out what it's like. They don't have a parent star, so they're just out there on their own and there's something so serene and somewhat romantic about that.


Learn more about how and why NASA is studying Earth on the agency's Global Climate Change website.

Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Women in STEM, Higher Education, Internships, College, Earth Science, Climate Change, Students, Science

  • Kim Orr
READ MORE

Allison Ayad in her workspace at JPL

The Starshade project aims to do pretty much what the name suggests: suppress the light from distant stars so scientists can learn more about the planets that surround them – including whether they’re likely to support life. In practice, it requires building a giant, precisely shaped structure that can unfurl from a relatively tiny package and fly in perfect sequence with a space telescope. Interns have been key to making the idea a reality. The team has brought in more than 40 interns in the past seven years. We already caught up with three-time Starshade intern Christopher Esquer-Rosas, who is using his origami skills to help a full-scale model of the giant sunflower-shaped structure unfurl. Meanwhile, intern Allison Ayad, a mechanical engineering student at Pasadena City College, is creating a working miniature model to narrow in on the design. Fellow intern Evan Kramer met up with Ayad to find out how she’s contributing to the project and how she’s bringing what she’s learning back to school.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

What are you working on at JPL?

I'm working on a project called Starshade, which is a 26-meter diameter, flower-shaped structure we want to send to space to help us get images of exoplanets, [planets outside our solar system]. With these images, we could learn more about exoplanets and see if they could potentially harbor life.

So Starshade is a sort of spacecraft?

Yeah, it is! Starshade would fly out and position itself between a space telescope and a star. Its shape would suppress the light from the star so the spacecraft could get direct images of the exoplanets around it. It's similar to when you try to take a picture outside, and the Sun washes out the image. If you block the light from the Sun, then you can see everything in more detail. That's pretty much what Starshade would do.

What’s a typical day like for you?

Every day is very different. What I am working on is making a mini, fully deployable Starshade for interactive purposes, so we can show all the different stages of deployment. It will sort of be the first of its kind.

When I come in, I usually do work on my computer with [software] like Solidworks. Then, I do a lot of rapid prototyping with the use of 3D printers and laser cutters to test out all the little, moving components that are going into the real model.

I spend some of my time helping with the big structure that's out here. [She points to the warehouse-like space where the team is assembling a full-scale version of Starshade, which is about the size of a baseball diamond fully unfurled.] But most of the time, I'm working on the mini one. At least once a day, I’ll talk with my mentor, David Webb, about the ideas that I have on how to make things work. We'll bounce ideas off each other, then I'll have stuff to think about for the next day.

Allison Ayad stands under the support structure for a full-scale model of Starshade

Ayad stands under the support structure for the full-scale model of Starshade. Image credit: NASA/JPL-Caltech/Evan Kramer | + Expand image

What's been the most JPL- or NASA-unique experience you've had so far?

I’ve been here for a year and a half now, and I think the Starshade lab is the coolest at JPL, but I'm a little bit biased. It's really cool because we have a bunch of prototypes everywhere, so you get to see what Starshade would look like in real life. And there are a bunch of interactive models that you can play with to see all the different deployment stages.

How do you think you're contributing to NASA/JPL missions and science?

The full Starshade isn’t really finished being designed yet, so a lot of the problems that [the team that is building the full-scale model] is facing, I'm also facing with the mini one. The ideas that I'm thinking through could potentially help with the real flight-model design.

How has the work you’ve done here influenced you back at school?

When I first started interning here, I actually didn't have a lot of the core class requirements [for my major] done. So a lot of the terms and concepts that people were using at JPL were still new to me. Then when I took the classes, all [the lessons from my internship] came back, and I was like, whoa, I already kind of learned this stuff and got a hands-on approach to it. I'm a very hands-on learner, so having that previous experience and then learning more of the math behind it helped with that learning process.

If you could travel to any place in space, where would you go? And what would you do there?

I’d like to go to Mars just because we're so close to doing it. It'd be cool to see what's there. I personally think there's a really good chance there was once life on Mars. If I could go and see for myself, that would be pretty awesome.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Women in STEM, Internships, Interns, Students, College, STEM, Opportunities, Starshade, Exoplanets, Engineering

  • Evan Kramer
READ MORE

Jasmine Cameron poses in the viewing gallery of the In-Situ Instruments Laboratory at JPL

There is still a lot of mystery around what exactly causes aurora, the swirling spectacles of light that grace Earth’s southern and northern high-latitude skies. So, this summer, Jasmine Cameron, a JPL intern and computer science major at Howard University, helped push aurora science further by developing an algorithm to detect the phenomena in video taken from a weather balloon. Fellow intern Evan Kramer caught up with Cameron to ask how learning about aurora might help the average person and what it’s like to work with NASA scientists and engineers.

What are you working on at JPL?

My project is in computer science. What we’re trying to do is image aurora, so your northern and southern lights, during the day time. A near-infrared camera goes up on a weather balloon and takes a video of the sky at up to 30 frames per second. It stores the collected data and sends back video containing auroras. What we want to do is develop an efficient, real-time algorithm based on machine learning technology that can identify frames with aurora in them so that we can collect science data about these phenomena. Our algorithm needs to give the scientists as many true-positives, or useful images with auroras in them, as possible so they can better understand what they are. It also needs to fit on the computer aboard the balloon so that it will be power efficient and high performance.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

How might understanding aurora help the average person one day?

Auroras are the result of a complicated interaction between the Sun and Earth. This interaction is a fundamental cosmic process that will affect space weather, which in turn will affect our daily life in terms of radiation exposure, satellite and radio communication, power systems, and so on. Studying aurora could help us better understand and forecast space weather.

What’s a typical day like for you?

I come in and check my email to see if my mentor has sent me any new data to process. Then I’ll get to work on algorithms I think would work as a detection system for identifying the presence of aurora in images. There are a lot of different machine-learning algorithms out there that we can test.

How does the algorithm work?

The algorithm is based on machine learning technology. You create a model with unknown parameters. You then take the data and set it up between training data and testing data. Your training data is a bunch of base images with aurora in them and defined parameters used to detect aurora. Then, you develop the algorithm to look for those parameters in your test data, and it will conclude if there is an aurora or not in each of the test images. Then, you use a validation directory with only true-positives to compare the images in your test data that were identified as having aurora in them to actual aurora images to see how well your algorithm is working. My job is to see what algorithm works the best in identifying aurora in the test images.

Jasmine Cameron sits at her computer at JPL

Image credit: NASA/JPL-Caltech/Evan Kramer | + Expand image

Did you have to do any research or special preparation before you started on the project?

Yes, I had to read a lot, especially about the motivations behind why we’re doing this work and how we’re going to accomplish our goals. I had to read the technical documentation about different algorithms and different systems that are used to process the images and identify aurora. There’s definitely a lot of reading involved every day, and I frequently ask the people I work with questions.

What’s the most JPL- or NASA-unique experience you’ve had so far?

I got to see different hardware and test beds and even mission control where they control the Deep Space Network, [a system of antennas around the world that are used to communicate with spacecraft]. That was really cool.

What about the people here? What’s the environment like at JPL?

Everybody is kind of a nerd. Usually when I’m talking about my internship experience to friends back home, I have to edit out things I’d normally say because most of them would find it boring, but here I’m frequently asked what I work on in a genuine way. I know I can always ask anyone anything about their project and for help on my own project. It’s a great environment and I’m learning a lot.

How do you feel you’re contributing to NASA/JPL missions and science?

Just being able to do this type of work on aurora detection – it has never been done before. Being able to contribute to making data collection and analysis more efficient makes scientists’ lives a lot easier and helps us learn more about these phenomena.

If you could travel to any place in space, where would you go and what would you do there?

A black hole, just to see what happens. I’d want to see how destructive it is and how dark it is.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Women in STEM, Internships, Interns, College, Students, Opportunities, Science, Careers

  • Evan Kramer
READ MORE

Ryan Loper holds a optical test-bed component he designed during his internship at JPL.

Update: Sept. 4, 2018 – Ryan Loper was offered and accepted a full-time position with the team he's interned with for the past two summers. He'll start his new role at the laboratory after he graduates in September 2019!


During his seven years in the Marine Corps, traveling around the world, Ryan Loper saw how much an education could change a person’s life. When his service ended, he enrolled in community college, just to, “take a couple of classes and see,” he said – until it ended up changing the course of his life as well. Now a student at Stanford, a two-time JPL intern, and an alumnus of and volunteer for the NASA Community College Aerospace Scholars (NCAS) program, Loper is helping build a test bed for a next-generation space telescope. We caught up with him to find out how he made the transition from military to student life and what he hopes his future at JPL will bring.

What are you working on at JPL?

I'm working on an optical test bed, where we’re trying to make a telescope similar to one we would put in space, but a much smaller size.

What's the ultimate goal of the project?

We’re preparing for the next-generation space telescope. We want to get to what they call “first light,” where you get light to come through the telescope and detect it. Eventually, the team wants to take [the telescope] out and observe a star with it and be able to make measurements.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

What's a typical day like for you?

They're almost never the same. Just about every day, we have a morning meeting with the principal investigator, the systems engineer for the project and two other interns working on the same project. We talk about where we got yesterday, what our plan is for the day and things we might have to consider going forward. We're producing drawings now on some of the test-bed parts. We're trying to find the right design. Then, as much as I can, I try to get out onto the lab and meet new people and reconnect with some of the people who I met during my internship last year.

You were in the Marines before going to college. Can you tell me a bit about that experience and how it shaped your career path?

Yes. I did very poorly in high school. I didn't have anybody in my family who went to college, and I didn't see the benefit of an education. So two weeks after I graduated, I went to boot camp with the Marine Corps. I spent seven years in the Marines, where I got to travel a lot and go to different parts of the world. I saw how much a lack of an education could hurt an entire group of people. I also saw how a little bit of an education could give someone more opportunities than they ever had. I also happened to have really good mentors while I was in the Marines who pushed me to learn more than what was required. It instilled this hunger for knowledge that's really helped me be successful as a student and ultimately lead to me being able to start at community college and transfer to Stanford to finish my undergraduate degree. It’s also what makes me really enjoy JPL, because it's that same type of mentality here. There are a lot of really cool things going on here, but it's not like we just sit back and watch the cool stuff happen. We're doing the stuff no one has done before, and we’re continuing to learn and iterate.

It’s often challenging for veterans to take that next step after they return from their service. What challenges did you face and how did you overcome them?

It's really difficult when you're first leaving the service because you've been surrounded by a lot of like-minded people in the sense that you have a mission and you're executing that mission to the best of your team's ability. I didn't struggle with this because I happened to go to a community college that had a great veteran population, but some friends of mine who went to different schools felt like there wasn't that camaraderie. I think that's the biggest thing that hinders us when we come out. We're used to that sense of camaraderie and then we go to a place where that's not there, and it leaves you feeling alone.

Ryan Loper with his wife and kids.

Loper poses for a photo with his wife and kids on a trip to Yosemite National Park. Photo courtesy of Ryan Loper. | + Expand image

Some of the situations that you face and see while you're deployed in the military are not what the normal 18-,19-, 20-year-old sees, so it makes it hard to talk to others. I had a lot of trouble with that. I was very antisocial when I first came out of the service, so I did a lot of counseling through [Veterans Affairs]. My wife has been a huge help and has been very patient with me working through it. [It was also helpful] having a good group of friends who are veterans, who I got together and studied with. I think the biggest thing you can do is try to find other veterans or just people you can have in your corner because it does get difficult.

Did you pick the community college you went to because it had a large veteran population?

No. When I first got out, I wasn't sure I was going to go to college. I figured I would take one or two classes [at a community college] and see how it went. My wife went to get information and sign me up and told me there's this whole veterans resource center and that I should go meet this guy Jordan. The first time I went, I was just super uncomfortable. I was there for five or 10 minutes, and I left. I think I made it halfway through the semester and the classes started to get really difficult. So, I finally went back and met Jordan and the community there and right away got involved. I ended up becoming the vice president of our student veterans organization during my time there. But I didn't choose the school because they have a good veteran population. The location and timing just worked out really well.

What made you decide that you wanted to study STEM?

Growing up, I always got in trouble for tinkering. I grew up on a tiny farm. We didn't have any money, but we always had broken stuff lying around. So I would take stuff apart and try to put it together with other things. And then I've always been interested in space and military aircraft. I worked on military aircraft for part of my career. I've just always had that desire to poke my head into things and figure out how they work and take things apart. So STEM kind of seemed like the right thing to get into. It gives me an ability to dig into math and physics, which I enjoy, but also poke around with the creative side of things.

https://www.jpl.nasa.gov/edu/images/news/ryanloper_action-web.jpg

Image credit: NASA/JPL-Caltech/Kim Orr | + Expand image

When you started at community college and took those first couple courses, were they STEM-related?

Since I'd been out of school for so long, I had to take a test to see where I would start. I started in trigonometry, which is low on the totem pole for engineering majors, but I had an amazing trig professor, Professor Marquez. He walked into this trig-prep class and said, “Don't think of trig as a subject you have to learn in math, think of it as a superpower.” He taught us to think, not to repeat. So later on, it made other classes much easier.

This is your second internship at JPL, and before that, you were here as part of the NASA Community College Aerospace Scholars, or NCAS, workshop. Can you talk a little bit about that and why you've continued to come back to JPL?

I have a friend, Dave, who's also here [as an intern]. He was at the community college I went to. He told me how he was coming to JPL for this program called NCAS. I went online and signed up for it. I did the online class and got invited to come to JPL [for the NCAS onsite workshop]. During the workshop, I fell in love with everything that we got exposed to: the missions that NASA was doing and what JPL was working on. We had guest speakers come in and interns talk about their experiences at JPL. It wasn't necessarily that I thought, that’s the job I want to do. It was, those are the people who I want to work with.

Ryan Loper poses in front of a light sculpture at JPL with other NCAS participants

Loper (left) first came to JPL as part of the NCAS workshop for community college students. Image credit: NASA/JPL-Caltech/Lyle Tavernier | + Expand image

After that program, I stayed in contact with my mentor, Otto Polanco. He offered me an opportunity to come to JPL that following summer. I thought, I'll probably go there to do all the stuff that he doesn't want to do, like Excel sheets and trade studies. But then, I showed up, and I was basically handed the keys to the Ferrari and told to go drive. It was the first time with a work experience, especially an internship, where I came in and it was like, “Here's an engineering problem, go figure it out.” I loved it.

I was also invited that summer to be a student aid for NCAS at JPL, so I got to be behind the scenes and see all of the work that the JPL Education Office puts into the program. They do a fantastic job and it makes it that much more special for all the students.

What's been the most unique JPL or NASA experience you've had during your time here?

The most unique is being surrounded by people whose work you're reading [in school] and who are guiding what industry is doing – but they're approachable. Like yesterday, I sat with Adam Steltzner, who lead the entry, descent and landing for the Mars rover Curiosity. I had read his book, and last summer, I ran into him and briefly introduced myself and asked if he wanted to meet. He met me for coffee, and then he met me again this year and we got to catch up.

For me, a big thing that I'm considering is the work-life balance because I have a wife and two children. At JPL, you have that opportunity to do really amazing things and work with amazing people and get to be a husband and a father. And you don't have to sacrifice that to do something amazing. That's been unique to me – to find a place that has the culture fit that I've been looking for.

How do you feel you're contributing overall to NASA/JPL missions and science?

Hopefully, the project that I’m working on will help ensure success for the next space-based telescope. I feel as though I get to be part of the future, the next generation of space explorers and what we're going to find out there.

What's your ultimate career goal?

To be an NCAS mentor. That would mean I'd have to be a full-time JPL employee in a position where I'd be able to dedicate some of my time to support the next group of NCAS students, who are going to become interns and then come to JPL full time.

Last question: If you could go anywhere in space, where would you go and what would you do there?

Ooh, if I could go anywhere in space? I would want to go to the farthest point in space from Earth and look back to realize how insignificant it is and how much I take for granted.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Interns, Internships, Veterans, College, STEM, STEM Education

  • Kim Orr
READ MORE

JPL intern Maya Yanez stands in front of the Jupiter display in the lab's museum

There’s no telling what the first spacecraft to land on Jupiter’s ice-covered moon Europa could encounter – but this summer, JPL intern Maya Yanez is trying to find out. As part of a team designing the potential Europa Lander, a mission concept that would explore the Jovian moon to search for biosignatures of past or present life, Yanez is combing through images, models, analogs, anything she can find to characterize a spot that’s “less than a quarter of a pixel on the highest-resolution image we have of Europa.” We caught up with Yanez, an undergraduate student at the University of Colorado at Boulder, to find out what inspired her to get involved in space exploration and ask about her career ambition to discover alien life.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

What are you working on at JPL?

I'm working on what may be a robot that we would land on Europa's icy surface. Europa is a moon of Jupiter that has this thick ice shell that we estimate is 25 kilometers [15.5 miles] thick, and there’s evidence that underneath that is a huge global ocean. If we're going to find life beyond Earth, it's probably going to be wherever there's water. So this mission concept would be to put a lander on Europa to try to figure out if there are signs of life there. I’m looking at an area on Europa about two square meters [about 7 feet] and about a meter [3 feet] deep. For perspective, we've only explored a few kilometers into our own Earth's surface. What I'm doing is trying to figure out what we might expect is going on in that little tiny area on Europa. What light is interacting with it, what processes might be going on, what little micrometeorites are hitting the surface, what's the ice block distribution? I'm looking at places like Mars, the Moon and Earth to try to put constraints and understanding around what types of variation we might see on Europa and what might be going on underneath the surface.

What's an average day like for you?

A lot of it is looking up papers and trying to get an idea of what information exists about Europa. My first couple of weeks here, I read this thing that we call the "Big Europa Book.” It's a 700-page textbook that covers basically all of our knowledge of Europa.

One of the other things that I've been working on is a geologic map, trying to look at what geologic variation exists in a couple of meters on Europa because we don't know. It's kind of crazy to think that when Viking [the first Mars lander] landed, we had no clue what another surface would look like except for the Moon. We had no idea. And then we got those first amazing images and it looked kind of like Earth, except Europa probably won't look like Earth because it's not rock; it's all ice. So even though we're trying, we still have nothing to compare it to.

If it gets selected as an official mission, a Europa lander would come after NASA’s Europa Clipper spacecraft. How might data from Europa Clipper contribute to what you're working on now?

Image of Europa acquired by Voyager 2 on July 9, 1979.

This image of Jupiter's moon Europa was acquired by NASA's Voyager 2 spacecraft on July 9, 1979, from a distance of about 240,000 kilometers (150,600 miles). Credit: NASA/JPL-Caltech | › Full image and caption

Highest resolution image of Europa

This image is the most detailed view of Europa, obtained by NASA's Galileo mission on Dec. 16, 1997, at a distance of 560 kilometers (335 miles) from the surface. Credit: NASA/JPL-Caltech | › Full image and caption

Europa Clipper could be really beneficial in that it's going to do more than 40 flybys where it goes around Europa in a bunch of different ways and at different proximities. It’s going to curve into the moon’s atmosphere and get really close to the surface, about 25 kilometers [15.5 miles] close to the surface. Right now, some of the best data we have is from hundreds of kilometers away, so the images Europa Clipper will take will be pretty nicely resolved. If you look at the current highest resolution image of Europa as compared to one from Voyager [which flew by Jupiter and its moons in 1979], the amount of detail that changes, the amount of cracks and complexity you can see on the surface is huge. So having more images like that can be really beneficial to figure out where we can land and where we should land.

Before this project, you spent a summer at JPL studying the chemistry of icy worlds, such as Pluto. What’s it been like working on such different projects and getting experience in fields outside your major, like chemistry and geology?

[Laughs] Yeah, one day I'll get back to astronomy. That's one of the things I love about JPL. Overall, I'd say what I want to do is astrobiology because I want to find life in the solar system. I mean, everyone does. It would be really cool to find out that there are aliens. But one of the great things about astrobiology is it takes chemistry, physics, geology, astronomy and all of these different sciences that you don't always mix together. And that's kind of why I like JPL. So much of the work involves an interdisciplinary approach.

What's the most JPL- or NASA-unique experience you've had so far?

I have one from last summer and one from this summer.

I really want to find life out in space. I'm curious about bacteria and microbes and how they react in space, but it's not something I've ever really done work in. A couple of weeks ago, I got to see astronaut Kathleen Rubins give a talk, meet her afterward and take a picture with her. She was the first person to sequence DNA in space. I would have never met someone like that if it weren’t for my internship at JPL. I wouldn't have been able to go up to her and say, “This is really cool! I'd love to talk to you more and get your email” – and get an astronaut's email! Who would ever expect that?

And then last year, I had something happen that was completely unexpected. I was sitting alone in the lab, running an experiment and, throughout the summer, we had a couple of different tours come through. A scientist asked if he could bring in a tour. It was two high-school-age kids and, presumably, their moms. I showed them around and explained what my experiment was doing. It was great. It was a really good time. They left and a couple hours later, Mike Malaska, the scientist who was leading the tour, came back and said, “Thank you so much for doing that tour. Do you know the story of that one? I said no. He said, “Well the boy, he has cancer. This is his Make-a-Wish.” His Make-a-Wish was to tour JPL. I had never felt so grateful to be given the opportunity that I was given, to realize that someone’s wish before they may or may not die is to visit the place that I'm lucky enough to intern at. It was a very touching moment. It really made me happy to be at JPL.

What was your own personal inspiration for going into astronomy?

I was the nerdy kid. I had a telescope, but I also had a microscope. So it was destined. But in middle school, I started to get this emphasis on life sciences. I'd always really liked biology so I sort of clung to it. We never really talked about space, so I just kind of forgot about it. But my senior year, I took this really cool class in astrobiology taught by an amazing teacher, who I still talk to. After the first week in her class, I was like, I have to do this. At the end of the academic year, that same teacher took me to JPL and gave me a private tour with some of the other scientists. I actually met Morgan Cable, the mentor I worked with last summer and this summer, on that tour. It was definitely a combination of being in this really great class and having that perspective change, realizing that we’ve learned a lot about life on our own planet, but there's so much to learn about finding it elsewhere.

Did you know about JPL before that?

No. I'm the first generation in my family to go to college, so I'm the one who teaches science to everyone else. I didn't even think science was a career because, when you're a kid, you don't often interact with a lot with scientists. So I didn't realize what JPL was or how cool it was until that tour put everything into perspective. I wasn't a space kid, but I found my own path, and it worked.

JPL intern Maya Yanez live tweets from the JPL Watch Party for NASA's Internships Town Hall with Administrator Jim Bridenstine

Yanez hosted a takeover of the @NASAJPL_Edu Twitter account during the NASA Internships Town Hall with Administrator Jim Bridenstine. Credit: NASA/JPL-Caltech/Kim Orr | + Expand image

For National Intern Day on July 26, NASA held a special town hall for interns with Administrator Jim Bridenstine. Your question about how the agency prioritizes the search for extraterrestrial life was selected as a finalist to appear during the broadcast. What made you want to ask that particular question?

So it was a little self-serving [laughs]. Part of it is that it’s central to my career path, but I also want to run for office one day at some level, and I think it's important that there's this collaboration between science and politics. Without it, science doesn't get funded and politicians aren’t as well informed.

How do you feel you're contributing to NASA/JPL missions and science?

What I'm doing requires a lot of reading and putting things together and knowing rocks and putting scales into perspective, so it's not particularly specialized work. But the end goal of my project will be a table that says here's what processes are happening on Europa, here's what depth they govern and here's what it means if biosignatures are caught in these processes. I'm also going to be remaking an old graphic, including more information and trying to better synthesize everything that we know about Europa. Those two products will continue to be used by anyone who’s thinking about landing on Europa, for anyone who’s thinking about what surface processes govern Europa. Those two products that I'm producing are going to be the best summaries that we have of what's going on there.

OK, so now for the fun question: If you could travel to any place in space, where would you go and what would you do there?

Europa. Obviously [laughs]. Or [Saturn’s moon] Titan. Titan is pretty cool, but it scares me a little bit because there's definitely no oxygen. There's not a lot of oxygen on Europa, but what's there is oxygen. I would probably go to Europa and find some way to get through those 25 kilometers of ice, hit that ocean and see what's going on.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Women in STEM, Internships, Interns, College, Students, STEM, Science, Engineering, Europa, Europa Clipper, Europa Lander

  • Kim Orr
READ MORE