Brandon Ethridge stands in front of a mural made to look like a blueprint on the Mechanical Design Building at JPL.

Bringing the first samples of Martian rock and soil to Earth requires a multi-part plan that starts with NASA's next Mars rover and would end with a series of never-attempted engineering feats – many of which are still the stuff of imagination. So this past summer, Brandon Ethridge joined a team of other interns at NASA's Jet Propulsion Laboratory to bring the concept one step closer to reality. This meant building a small-scale model of something that's never been made before: a vehicle capable of launching off the Martian surface with the precious samples collected by the 2020 Rover in tow and rendezvousing with another spacecraft designed to bring them to Earth. NASA's plans for returning samples from Mars are still early in development and could change. So Ethridge and his team were given a wide berth to dream up new ideas. The project is paving a path not just for Mars exploration, but also for Ethridge himself. Shortly after his internship ended, he graduated from North Carolina A&T State University with a degree in mechanical engineering and accepted a full-time position with the team at JPL that puts spacecraft together and ensures they are working properly. Read on to learn what it's like to envision an entirely new spacecraft for Mars and find out what brought Ethridge to JPL as a first-generation college student.

What are you working on at JPL?

I am working on creating a concept model for a possible future Mars ascent vehicle that would bring samples collected by the Mars 2020 Rover back to Earth. This would be the first time that we would bring samples back from Mars.

NASA is still discussing how we would bring these samples back to Earth, so we're exploring a concept that would be conducted in three stages. The first stage would be to collect the samples and bring them to the Mars ascent vehicle. The second stage would be to use the Mars ascent vehicle to launch into Mars orbit. And the third stage would be to take the spacecraft from orbit back to Earth. I'm primarily working on the second stage. Specifically, I'm working on creating a model of the mechanism that would launch the Mars ascent vehicle from the surface into orbit.

Infographic showing 5 engineering facts about the Mars 2020 rover
Infographic showing 5 engineering facts about the Mars 2020 rover

This infographic shows how the Mars 2020 rover differs from previous Mars rovers. Image credit: NASA/JPL-Caltech | › Learn more

What are the challenges of creating a model of something like this since it's never been done before?

That's definitely one of the challenges. A lot of it is speculation due to our not knowing all the conditions associated with launching anything from another planet. The concept that we're working with is a brand-new design with minimal references, so we're kind of figuring it out as we go. Our group of interns is working to scale down the preliminary design that we got from the engineers to see if it will work on a smaller scale. Then, obviously, you have to account for the changes between Earth and Mars. Even just getting the designs from the engineers has been a struggle, because they're just figuring it out as well.

What's your average day like?

I work with four other interns, and we have two mentors. We've gotten a couple benchmark concepts from the engineers. We're all working to analyze different concepts, comparing and contrasting, and trying to figure out what we think would be best.

Right now, we're in the analysis stage, where we are whittling things down to one specific concept that we want to work towards. We're trying to isolate the exact architecture of the launch mechanism itself, trying to all get on the same page, make sure our numbers match up, and see if we can even theoretically do this. It seems pretty promising – we just have to iron out the kinks.

What's it like working on a team of interns?

We all get along really well, and we're typically all on the same page. We have extroverted personalities, introverted personalities, but we all do pretty well at taking our time to let everyone get their opinions in, so it's a really good team. We bring different perspectives, different specialties. I am very thankful to have a good group of people to work with and fantastic mentors who really let us express ourselves and learn in the process.

How are you working with the engineers who are designing the concepts for this potential future mission?

We're working parallel to them rather than in conjunction with them, which is interesting because they're looking at it as more of a long-term project. Since I'm only here for the 10-week period, my mentors wanted to make sure that I got something out of this. So we're going to scale down the model to expedite the process. Hopefully at the end, we'll be able to present it to the engineers while they're still ironing out their kinks. But it's geared on a tight timeframe, a lot of quick learning.

What are you studying in school?

I am studying mechanical engineering with a concentration in aerospace.

How did you get into that field?

I think it was in middle school that I caught myself always staring at the planes in the sky. I recognized that I really wanted to fly. I wanted to be a pilot for a long time. But then, as I got a little bit older, I recognized that even the pilots aren't familiar with how the planes work exactly or the process that gets them there. I was just fascinated with the phenomenon in itself, where you can take this massive vehicle made of metal and make it appear lighter than air. So I decided to study engineering. I didn't really have any guidance toward it. It just happened that I liked planes, I looked into career options online and that lead me toward engineering and aerospace.

Is anyone else in your family involved in STEM?

No. I'm a first-generation college student. My brother-in-law is a civil engineering professor at Morgan State, and he's helped me a lot. He has been my mentor from the beginning. We don't talk all the time, but he's the one who kind of set me in a direction and told me, "All right, time to go."

How did you find out about the JPL internship and decide to apply?

I got an email one day before an info session was happening on my campus at North Carolina A&T. I had a class at that time, so I didn't think I was going to go, but the class ended early. I ended up attending the info session and speaking with Jenny Tieu and Roslyn Soto [who manage JPL's HBCU initiative]. I brought a resume, and Roslyn critiqued it for me and told me, "You have good experience. Resubmit this with these changes and see how it goes." That's how it worked out.

Did you have any idea that you wanted to come to JPL at some point?

I didn't even know what JPL was, if I'm honest. When I first saw the email, I read, "Jet Propulsion Laboratory," and I thought, "Oh, this sounds interesting." Then I was like, "Wait, this is NASA!" Coming from not knowing or learning about it growing up or being familiar with it, you kind of have to figure things out as you go. It's a little embarrassing to say that I'm here and I didn't even know about this place about a year ago. But at the same time, I figured it out and that's kind of how it goes. Just learn as you go.

What has been your impression of JPL so far?

I love it here. I've been working since I was legally able to work, and this is the first time I've ever enjoyed my job. I'm a night person, but I'm waking up early perfectly fine – not complaining about it, not having bad days. Every day, it's been really good for me. That's something that I don't take for granted, because I've worked jobs that I didn't like in the past. Being out here, being around the people at JPL, it's a really cool experience. It's also my first time away from the East Coast, so I'm just completely thrown into it. I love it. It's been a really great experience.

What's your ultimate career goal?

It's hard for me to say for sure because I have a lot of aspirations. I love the idea of continuing to work with NASA, working on things that are going to space and potentially getting into some of the human space flight projects going on. But I'm also very interested in management positions, maybe learning about some of the business side. Right now, I'm just taking all the experiences for what they are. I know that I want to be in and around aerospace, but as far as in what capacity – whether that's aerodynamics, systems engineering, mechanical engineering – I'm still trying to figure that out.

How do you feel you're contributing to NASA and JPL missions and science?

If we can finish our project by the end of the summer – which would kind of be impressive in itself – and prove that our design does work and is capable of being scaled up to use for an actual Mars ascent vehicle, then I'm sure that would be valuable. Not to mention, I'm learning a lot while I'm here, understanding a lot more and familiarizing myself with everything. So hopefully I can contribute in the future, too.

How does it feel to be working on something that could go to another planet and has never been tried before?

Honestly, it's somewhat unreal to be working on something that's so important and so new. It's not monotonous work. It's not like you're just punching numbers. Everything that I'm working on has the potential to be implemented in some sense for the very first time on another planet. That's something that makes me excited to go to work every day.

Speaking of historic missions: If you could play any role in NASA's plans to send humans back to the Moon or on to Mars, what would your dream role be?

I would love to go. But if our launcher mechanism works, there's no reason we couldn't use it for applications on the Moon or on Mars. I also really like the idea of being in mission control, working with the astronauts, working with the Space Station or Gateway in the future.

Have you ever considered applying to be an astronaut?

Only recently. It's one of those things that if you don't grow up with it in your scope, you don't acknowledge it as a possibility. It's just something that doesn't really seem attainable.

Throughout my college career and my life, I've been realizing that almost anything is attainable. It's just going to take time and effort. So [being an astronaut] is something that I was actually looking into last night, and recently, I was having a discussion with my mentors about it. It's definitely something that I think I'll try to do.

What inspired you to start looking into being an astronaut?

I have always had a fascination with the natural world and been enamored with the night sky. Becoming an astronaut had never been on my radar as a possibility, but seeing the world from a perspective beyond its surface is what motivated me to want to become a pilot, which eventually materialized into pursuing engineering. Once I did research and recognized that astronauts really are regular people with similar interests to mine, I began looking into it as a possibility.

Also, the idea of seeing these worlds for myself is something that I can't really get past.

What's been the most JPL- or NASA-unique experience that you've had during your internship?

Probably the fact that everything is just open to you. The work going on at my previous internship was only shared on a need-to-know basis. Here, everyone is very open to telling you what they're doing. They're open to showing you what's going on, all the brand-new things being built. You can just walk around and look at them. It makes it so much more exciting to be here because it's not that you're just placed on one project and stuck with it. It's, "Please explore." They encourage it. "Please come learn and experience everything."

You recently accepted a full-time position at JPL. Congrats! What is the position and what will you be working on?

Thank you! I am thrilled for the opportunity. I will be working in the Flight Systems Engineering, Integration & Test Section. Interestingly, I am not sure which group I will be in yet, because I was offered the position on the spot, at the conclusion of a day of interviews. I was told by my section manager that they are unsure which group I will work in specifically but that they want me to be a part of their team for sure. The plan is for me to start in June 2020.

This Q&A is part of an ongoing series highlighting the stories and experiences of students and faculty who came to JPL as part of the laboratory's collaboration with historically black colleges and universities, or HBCUs. › Read more from the series

Explore More

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Robotics, Mars, Rover, Mars 2020, Mars Sample Return, HBCU, Students, Careers, Mars 2020 Interns, Perseverance, Black History Month

  • Kim Orr