In this activity, students learn how light and energy are spread throughout space. The rate of change can be expressed mathematically, demonstrating why spacecraft like NASA’s Juno need so many solar panels.
In this activity, students learn how light and energy are spread throughout space. The rate of change can be expressed mathematically, demonstrating why spacecraft like NASA’s Juno need so many solar panels.
In this illustrated problem set, students use pi to compare the sizes of Mars landing areas, calculate the length of a year for a distant solar system object, measure the depth of the ocean from an airplane, and determine the diameter of a debris disk.
In this illustrated problem set, students use pi to compare the sizes of Mars landing areas, calculate the length of a year for a distant solar system object, measure the depth of the ocean from an airplane, and determine the diameter of a debris disk.
In this intermediate-level programming challenge, students use microdevices along with light and mirrors to build a relay that can send information to a distant detector.
In this intermediate-level programming challenge, students use microdevices along with light and mirrors to build a relay that can send information to a distant detector.
In this challenge, students will program a rover to use a color sensor on several rock samples, allowing them to simulate how the Mars Curiosity rover uses its ChemCam instrument to analyze light emitted from geological samples on Mars.
In this challenge, students will program a rover to use a color sensor on several rock samples, allowing them to simulate how the Mars Curiosity rover uses its ChemCam instrument to analyze light emitted from geological samples on Mars.