In this illustrated problem set, students use pi to reveal the size of a planet outside our solar system, find out how much helium is raining out from Jupiter's cloud tops, locate a seismic event on Mars and study an interstellar object detected in our so
In this illustrated problem set, students use pi to reveal the size of a planet outside our solar system, find out how much helium is raining out from Jupiter's cloud tops, locate a seismic event on Mars and study an interstellar object detected in our so
In this illustrated math problem, students use the mathematical constant pi to identify the timing and location of a seismic event on Mars, called a "marsquake."
In this illustrated math problem, students use the mathematical constant pi to identify the timing and location of a seismic event on Mars, called a "marsquake."
In this challenge, students must program a rover to get from point A to point B on a map without driving across any of the craters located between the two points.
In this challenge, students must program a rover to get from point A to point B on a map without driving across any of the craters located between the two points.
In this robotics challenge, students will program a rover to use a color sensor on several rock samples, allowing them to simulate how the Mars rover Curiosity collects geological samples by drilling into them then using a camera to analyze the light emit
In this robotics challenge, students will program a rover to use a color sensor on several rock samples, allowing them to simulate how the Mars rover Curiosity collects geological samples by drilling into them then using a camera to analyze the light emit
Students design, build and program a robotic “super crawler” to transport a payload from a starting position to a target launch pad, deliver the payload in an upright position and return the robot to the starting point.
Students design, build and program a robotic “super crawler” to transport a payload from a starting position to a target launch pad, deliver the payload in an upright position and return the robot to the starting point.
In this activity, students learn how light and energy are spread throughout space. The rate of change can be expressed mathematically, demonstrating why spacecraft like NASA’s Juno need so many solar panels.
In this activity, students learn how light and energy are spread throughout space. The rate of change can be expressed mathematically, demonstrating why spacecraft like NASA’s Juno need so many solar panels.