In this illustrated problem set, students use pi to compare the sizes of Mars landing areas, calculate the length of a year for a distant solar system object, measure the depth of the ocean from an airplane, and determine the diameter of a debris disk.
In this illustrated problem set, students use pi to compare the sizes of Mars landing areas, calculate the length of a year for a distant solar system object, measure the depth of the ocean from an airplane, and determine the diameter of a debris disk.
In this standards-aligned unit, students learn about Mars, design a mission to explore the planet, build and test model spacecraft and components, and engage in scientific exploration.
In this standards-aligned unit, students learn about Mars, design a mission to explore the planet, build and test model spacecraft and components, and engage in scientific exploration.
In this challenge, students must program a rover to get from point A to point B on a map without driving across any of the craters located between the two points.
In this challenge, students must program a rover to get from point A to point B on a map without driving across any of the craters located between the two points.
Students design, build and program a robotic “super crawler” to transport a payload from a starting position to a target launch pad, deliver the payload in an upright position and return the robot to the starting point.
Students design, build and program a robotic “super crawler” to transport a payload from a starting position to a target launch pad, deliver the payload in an upright position and return the robot to the starting point.
In this challenge, students will program a rover to use a color sensor on several rock samples, allowing them to simulate how the Mars Curiosity rover uses its ChemCam instrument to analyze light emitted from geological samples on Mars.
In this challenge, students will program a rover to use a color sensor on several rock samples, allowing them to simulate how the Mars Curiosity rover uses its ChemCam instrument to analyze light emitted from geological samples on Mars.
In this activity, students use spreadsheet software and their knowledge of scale, proportion and ratios to develop a solar system model that fits on a playground.
In this activity, students use spreadsheet software and their knowledge of scale, proportion and ratios to develop a solar system model that fits on a playground.
In this illustrated problem set, students use pi to determine the size of a Mars dust storm, estimate the water content of a rain cloud, gauge how much Jupiter's Great Red Spot has shrunk and calculate the strength of a laser used to explode ice samples.
In this illustrated problem set, students use pi to determine the size of a Mars dust storm, estimate the water content of a rain cloud, gauge how much Jupiter's Great Red Spot has shrunk and calculate the strength of a laser used to explode ice samples.