In this illustrated problem set, students use pi to detect frost in lunar craters, determine the density of Mars' liquid core, calculate the powered output from a dam, and find out how far a spacecraft travels as it returns data to Earth.
In this illustrated problem set, students use pi to detect frost in lunar craters, determine the density of Mars' liquid core, calculate the powered output from a dam, and find out how far a spacecraft travels as it returns data to Earth.
In this illustrated math problem, students use the mathematical constant pi to calculate the area covered by a laser used to detect frost on the Moon's surface.
In this illustrated math problem, students use the mathematical constant pi to calculate the area covered by a laser used to detect frost on the Moon's surface.
In this illustrated math problem, students use the mathematical constant pi to determine the water output of a dam to assess its potential environmental impact.
In this illustrated math problem, students use the mathematical constant pi to determine the water output of a dam to assess its potential environmental impact.
In this illustrated problem set, students use pi to collect samples from an asteroid, fly a helicopter on Mars for the first time, find efficient ways to talk with distant spacecraft, and study the forces behind Earth's beautiful auroras.
In this illustrated problem set, students use pi to collect samples from an asteroid, fly a helicopter on Mars for the first time, find efficient ways to talk with distant spacecraft, and study the forces behind Earth's beautiful auroras.
In this standards-aligned unit, students learn about Mars, design a mission to explore the planet, build and test model spacecraft and components, and engage in scientific exploration.
In this standards-aligned unit, students learn about Mars, design a mission to explore the planet, build and test model spacecraft and components, and engage in scientific exploration.
In this illustrated math problem, students use the mathematical constant pi to determine how many spacecraft contact pads need to touch the surface of asteroid Bennu to meet mission sample collection requirements.
In this illustrated math problem, students use the mathematical constant pi to determine how many spacecraft contact pads need to touch the surface of asteroid Bennu to meet mission sample collection requirements.
In this illustrated problem set, students use pi to compare the sizes of Mars landing areas, calculate the length of a year for a distant solar system object, measure the depth of the ocean from an airplane, and determine the diameter of a debris disk.
In this illustrated problem set, students use pi to compare the sizes of Mars landing areas, calculate the length of a year for a distant solar system object, measure the depth of the ocean from an airplane, and determine the diameter of a debris disk.
In this illustrated math problem, students use the mathematical constant pi to find the "habitable zone" around a distant star and determine which of its planets are in that zone.
In this illustrated math problem, students use the mathematical constant pi to find the "habitable zone" around a distant star and determine which of its planets are in that zone.