Collage of images and illustrations of planets, spacecraft and space objects

Whether discovering something about our own planet or phenomena billions of miles away, NASA missions and scientists unveiled a vast universe of mysteries this past decade. And with each daring landing, visit to a new world and journey into the unknown came new opportunities to inspire the next generation of explorers. Read on for a look at some of NASA's most teachable moments of the decade from missions studying Earth, the solar system and beyond. Plus, find out what's next in space exploration and how to continue engaging students into the 2020s with related lessons, activities and resources.

1. Earth's Changing Climate

Flat map of Earth with an animation of co2 data overlayed

Rising sea levels, shrinking ice caps, higher temperatures and extreme weather continued to impact our lives this past decade, making studying Earth’s changing climate more important than ever. During the 2010s, NASA and National Oceanic and Atmospheric Administration, or NOAA, led the way by adding new Earth-monitoring satellites to their fleets to measure soil moisture and study carbon dioxide levels. Meanwhile, satellites such as Terra and Aqua continued their work monitoring various aspects of the Earth system such as land cover, the atmosphere, wildfires, water, clouds and ice. NASA's airborne missions, such as Operation IceBridge, Airborne Snow Observatory and Oceans Melting Greenland, returned data on water movement, providing decision makers with more accurate data than ever before. But there's still more to be done in the future to understand the complex systems that make up Earth's climate and improve the scientific models that will help the world prepare for a warmer future. Using these missions and the science they're gathering as a jumping-off point, students can learn about the water cycle, build data-based scientific models and develop an understanding of Earth's energy systems.

Explore More

2. Teachable Moments in the Sky

Animated image of the Moon during a lunar eclipse

Astronomical events are a sure-fire way to engage students, and this past decade delivered with exciting solar and lunar eclipses that provided real-world lessons about the Sun, the Moon and lunar exploration. The total solar eclipse that crossed the U.S. in 2017 gave students a chance to learn about the dynamic interactions between the Sun and Moon, while brilliant lunar eclipses year after year provided students with lessons in lunar science. There's more to look forward to in the decade ahead as another solar eclipse comes to the U.S. in 2024 – one of nine total solar eclipses around the world in the 2020s. There will be 10 total lunar eclipses in the 2020s, but observing the Moon at any time provides a great opportunity to study celestial patterns and inspire future explorers. Using the lessons below, students can develop and study models to understand the size and scale of the Earth-Moon system, predict future Moon phases and engage in engineering challenges to solve problems that will be faced by future explorers on the Moon!

Explore More

3. Missions to Mars

Animation of Curiosity driving on Mars

The past decade showed us the Red Planet in a whole new light. We discovered evidence that suggests Mars could have once supported ancient life, and we developed a better understanding of how the planet lost much of its atmosphere and surface water. The Opportunity rover continued exploring long past its expected lifespan of 90 days as NASA sent a larger, more technologically advanced rover, Curiosity, to take the next steps in understanding the planet's ability to support life. (Opportunity's nearly 15-year mission succumbed to the elements in 2019 after a global dust storm engulfed Mars, blocking the critical sunlight the rover needed to stay powered.) The InSight lander touched down in 2018 to begin exploring interior features of the Red Planet, including marsquakes, while high above, long-lived spacecraft like the Mars Reconnaissance Orbiter and Mars Odyssey were joined by NASA's MAVEN Orbiter, and missions from the European Space Agency and the Indian Space Research Organization. The next decade on Mars will get a kick-start with the July launch of the souped-up Mars 2020 rover, which will look for signs of ancient life and begin collecting samples designed to one day be returned to Earth. Mars provides students with countless opportunities to do some of the same engineering as the folks at NASA and design ideas for future Mars exploration. They can also use Mars as a basis for coding activities, real-world math, and lessons in biology and geology.

Explore More

4. Ocean Worlds and the Search for Life

Image of Saturn's moon Enceladus covered in ice with giant cracks scarring its surface

This decade marked the final half of the Cassini spacecraft's 13-year mission at Saturn, during which it made countless discoveries about the planet, its rings and its fascinating moons. Some of the most exciting findings highlighted new frontiers in our search for life beyond Earth. Cassini spotted geysers erupting from cracks in the icy shell of Saturn's moon Enceladus, suggesting the presence of an ocean below. At the moon Titan, the spacecraft peered through the hazy atmosphere to discover an Earth-like hydrologic cycle in which liquid methane and ethane take the place of water. Meanwhile, evidence for another ocean world came to light when the Hubble Space Telescope spotted what appear to be geysers erupting from the icy shell surrounding Jupiter's moon Europa. NASA is currently developing Europa Clipper, a mission that will explore the icy moon of Jupiter to reveal even more about the fascinating world. For students, these discoveries and the moons themselves provide opportunities to build scientific models and improve them as they learn more information. Students can also use math to calculate physical properties of moons throughout the solar system and identify the characteristics that define life as we know it.

Explore More

5. Asteroids, Comets and Dwarf Planets, Oh My!

Animated image series of comet 67P/Churyumov-Gerasimenko in which the comet tail can be seen shooting out from the comet as it rotates slightly from the perspective of the Rosetta spacecraft

The past decade was a big deal for small objects in space. NASA's Dawn mission started 2010 as a new arrival in the main asteroid belt. The next eight years saw Dawn explore the two largest objects in the asteroid belt, the giant asteroid Vesta and the dwarf planet Ceres. On its way to comet 67P/Churyumov-Gerasimenko, ESA's Rosetta mission (with contributions from NASA) flew by the asteroid Luticia in 2010. After more than two years at its destination – during which time it measured comet properties, captured breathtaking photos and deposited a lander on the comet – Rosetta's mission ended in dramatic fashion in 2016 when it touched down on 67P/Churyumov-Gerasimenko. In 2013, as scientists around the world eagerly anticipated the near-Earth flyby of asteroid Duende, residents of Chelyabinsk, Russia, got a surprising mid-morning wake-up call when a small, previously undetected asteroid entered the atmosphere, burned as a bright fireball and disintegrated. The team from NASA's OSIRIS-Rex mission wrapped up the decade and set the stage for discoveries in 2020 by selecting the site that the spacecraft will visit in the new year to collect a sample of asteroid Bennu for eventual return to Earth. And in 2022, NASA's Psyche mission will launch for a rendezvous with a type of object never before explored up close: a metal asteroid. The small objects in our solar system present students with chances to explore the composition of comets, use math to calculate properties such as volume, density and kinetic energy of asteroids, and use Newton's Laws in real-world applications, such as spacecraft acceleration.

Explore More

6. Uncovering Pluto's Mysteries

Image of Pluto in false color from NASA's New Horizons mission

In 2015, after nearly a decade of travel, NASA's New Horizons spacecraft arrived at Pluto for its planned flyby and became the first spacecraft to visit the dwarf planet and its moons. The images and scientific data the spacecraft returned brought into focus a complex and dynamic world, including seas of ice and mountain ranges. And there's still more left to explore. But New Horizons' journey is far from over. After its flyby of Pluto, the spacecraft continued deep into the Kuiper Belt, the band of icy bodies beyond the orbit of Neptune. In 2019, the spacecraft flew by a snowman-shaped object later named Arrokoth. In the 2020s, New Horizons will continue studying distant Kuiper Belt objects to better understand their physical properties and the region they call home. The new information gathered from the Pluto and Arrokoth flybys provides students with real-life examples of the ways in which scientific understanding changes as additional data is collected and gives them a chance to engage with the data themselves. At the same time, New Horizons' long-distance voyage through the Solar System serves as a good launchpad for discussions of solar system size and scale.

Explore More

7. The Voyagers' Journey Into Interstellar Space

Animation of Voyager entering interstellar space

In 1977, two spacecraft left Earth on a journey to explore the outer planets. In the 2010s, decades after their prime mission ended, Voyager 1 and Voyager 2 made history by becoming the first spacecraft to enter interstellar space – the region beyond the influence of solar wind from our Sun. The Voyager spacecraft are expected to continue operating into the 2020s, until their fuel and power run out. In the meantime, they will continue sending data back to Earth, shaping our understanding of the structure of the solar system and interstellar space. The Voyagers can help engage students as they learn about and model the structure of the solar system and use math to understand the challenges of communicating with spacecraft so far away.

Explore More

8. The Search for Planets Beyond Our Solar System

Illustration of the TRAPPIST-1 star and its system of planets

It was only a few decades ago that the first planets outside our solar system, or exoplanets, were discovered. The 2010s saw the number of known exoplanets skyrocket in large part thanks to the Kepler mission. A space telescope designed to seek out Earth-sized planets orbiting in the habitable zone – the region around a star where liquid water could exist – Kepler was used to discover more than 2,600 exoplanets. Discoveries from other observatories and amateur astronomers added to the count, now at more than 4,100. In one of the most momentous exoplanet findings of the decade, the Spitzer telescope discovered that the TRAPPIST-1 system, first thought to have three exoplanets, actually had seven – three of which were in the star’s habitable zone. With thousands of candidates discovered by Kepler waiting to be confirmed as exoplanets and NASA's latest space telescope, the Transiting Exoplanet Survey Satellite, or TESS, surveying the entire sky, the 2020s promise to be a decade filled with exoplanet science. And we may not have to wait long for exciting new discoveries from the James Webb Space Telescope, set to launch in 2021. Exoplanets are a great way to get students exploring concepts in science and mathematics. In the lessons linked to below, students use math to find the size and orbital period of planets, learn how scientists are using spectrometry to determine what makes up exoplanet atmospheres and more.

Explore More

9. Shining a Light on Black Holes

In this historic first image of a black hole, an orange glowing donut-shaped light can be seen against the black backdrop of space. At the center of the light is a black hole.

Even from millions and billions of light-years away, black holes made big news in the 2010s. First, a collision of two black holes 1.3 billion light-years away sent gravitational waves across the universe that finally reached Earth in 2015, where the waves were detected by the Laser Interferometer Gravitational-Wave Observatory, or LIGO. This was the first detection of gravitational waves in history and confirmed a prediction Einstein made 100 years earlier in his Theory of General Relativity. Then, in 2019, a team of researchers working on the Event Horizon Telescope project announced they had taken the first image capturing the silhouette of a black hole. To take the historic image of the supermassive black hole (named M87* after its location at the center of the M87 galaxy), the team had to create a virtual telescope as large as Earth itself. In addition to capturing the world's attention, the image gave scientists new information about scientific concepts and measurements they had only been able to theorize about in the past. The innovations that led to these discoveries are changing the way scientists can study black holes and how they interact with the space around them. More revelations are likely in the years ahead as scientists continue to analyze the data from these projects. For students, black holes and gravitational waves provide a basis for developing and modifying scientific models. Since they are a topic of immense interest to students, they can also be used to encourage independent research.

Explore More

TAGS: Teachable Moments, K-12 Education, Educators, Students, STEM, Lessons, Activities, Climate, Moon, Mars, Ocean Worlds, Small Objects, Pluto, Voyager, Exoplanets, Black Holes

  • Lyle Tavernier

Brandon Ethridge stands in front of a mural made to look like a blueprint on the Mechanical Design Building at JPL.

Bringing the first samples of Martian rock and soil to Earth requires a multi-part plan that starts with NASA's next Mars rover and would end with a series of never-attempted engineering feats – many of which are still the stuff of imagination. So this past summer, Brandon Ethridge joined a team of other interns at NASA's Jet Propulsion Laboratory to bring the concept one step closer to reality. This meant building a small-scale model of something that's never been made before: a vehicle capable of launching off the Martian surface with the precious samples collected by the 2020 Rover in tow and rendezvousing with another spacecraft designed to bring them to Earth. NASA's plans for returning samples from Mars are still early in development and could change. So Ethridge and his team were given a wide berth to dream up new ideas. The project is paving a path not just for Mars exploration, but also for Ethridge himself. Shortly after his internship ended, he graduated from North Carolina A&T State University with a degree in mechanical engineering and accepted a full-time position with the team at JPL that puts spacecraft together and ensures they are working properly. Read on to learn what it's like to envision an entirely new spacecraft for Mars and find out what brought Ethridge to JPL as a first-generation college student.

What are you working on at JPL?

I am working on creating a concept model for a possible future Mars ascent vehicle that would bring samples collected by the Mars 2020 Rover back to Earth. This would be the first time that we would bring samples back from Mars.

NASA is still discussing how we would bring these samples back to Earth, so we're exploring a concept that would be conducted in three stages. The first stage would be to collect the samples and bring them to the Mars ascent vehicle. The second stage would be to use the Mars ascent vehicle to launch into Mars orbit. And the third stage would be to take the spacecraft from orbit back to Earth. I'm primarily working on the second stage. Specifically, I'm working on creating a model of the mechanism that would launch the Mars ascent vehicle from the surface into orbit.

Infographic showing 5 engineering facts about the Mars 2020 rover
Infographic showing 5 engineering facts about the Mars 2020 rover

This infographic shows how the Mars 2020 rover differs from previous Mars rovers. Image credit: NASA/JPL-Caltech | › Learn more

What are the challenges of creating a model of something like this since it's never been done before?

That's definitely one of the challenges. A lot of it is speculation due to our not knowing all the conditions associated with launching anything from another planet. The concept that we're working with is a brand-new design with minimal references, so we're kind of figuring it out as we go. Our group of interns is working to scale down the preliminary design that we got from the engineers to see if it will work on a smaller scale. Then, obviously, you have to account for the changes between Earth and Mars. Even just getting the designs from the engineers has been a struggle, because they're just figuring it out as well.

What's your average day like?

I work with four other interns, and we have two mentors. We've gotten a couple benchmark concepts from the engineers. We're all working to analyze different concepts, comparing and contrasting, and trying to figure out what we think would be best.

Right now, we're in the analysis stage, where we are whittling things down to one specific concept that we want to work towards. We're trying to isolate the exact architecture of the launch mechanism itself, trying to all get on the same page, make sure our numbers match up, and see if we can even theoretically do this. It seems pretty promising – we just have to iron out the kinks.

What's it like working on a team of interns?

We all get along really well, and we're typically all on the same page. We have extroverted personalities, introverted personalities, but we all do pretty well at taking our time to let everyone get their opinions in, so it's a really good team. We bring different perspectives, different specialties. I am very thankful to have a good group of people to work with and fantastic mentors who really let us express ourselves and learn in the process.

How are you working with the engineers who are designing the concepts for this potential future mission?

We're working parallel to them rather than in conjunction with them, which is interesting because they're looking at it as more of a long-term project. Since I'm only here for the 10-week period, my mentors wanted to make sure that I got something out of this. So we're going to scale down the model to expedite the process. Hopefully at the end, we'll be able to present it to the engineers while they're still ironing out their kinks. But it's geared on a tight timeframe, a lot of quick learning.

What are you studying in school?

I am studying mechanical engineering with a concentration in aerospace.

How did you get into that field?

I think it was in middle school that I caught myself always staring at the planes in the sky. I recognized that I really wanted to fly. I wanted to be a pilot for a long time. But then, as I got a little bit older, I recognized that even the pilots aren't familiar with how the planes work exactly or the process that gets them there. I was just fascinated with the phenomenon in itself, where you can take this massive vehicle made of metal and make it appear lighter than air. So I decided to study engineering. I didn't really have any guidance toward it. It just happened that I liked planes, I looked into career options online and that lead me toward engineering and aerospace.

Is anyone else in your family involved in STEM?

No. I'm a first-generation college student. My brother-in-law is a civil engineering professor at Morgan State, and he's helped me a lot. He has been my mentor from the beginning. We don't talk all the time, but he's the one who kind of set me in a direction and told me, "All right, time to go."

How did you find out about the JPL internship and decide to apply?

I got an email one day before an info session was happening on my campus at North Carolina A&T. I had a class at that time, so I didn't think I was going to go, but the class ended early. I ended up attending the info session and speaking with Jenny Tieu and Roslyn Soto [who manage JPL's HBCU initiative]. I brought a resume, and Roslyn critiqued it for me and told me, "You have good experience. Resubmit this with these changes and see how it goes." That's how it worked out.

Did you have any idea that you wanted to come to JPL at some point?

I didn't even know what JPL was, if I'm honest. When I first saw the email, I read, "Jet Propulsion Laboratory," and I thought, "Oh, this sounds interesting." Then I was like, "Wait, this is NASA!" Coming from not knowing or learning about it growing up or being familiar with it, you kind of have to figure things out as you go. It's a little embarrassing to say that I'm here and I didn't even know about this place about a year ago. But at the same time, I figured it out and that's kind of how it goes. Just learn as you go.

What has been your impression of JPL so far?

I love it here. I've been working since I was legally able to work, and this is the first time I've ever enjoyed my job. I'm a night person, but I'm waking up early perfectly fine – not complaining about it, not having bad days. Every day, it's been really good for me. That's something that I don't take for granted, because I've worked jobs that I didn't like in the past. Being out here, being around the people at JPL, it's a really cool experience. It's also my first time away from the East Coast, so I'm just completely thrown into it. I love it. It's been a really great experience.

What's your ultimate career goal?

It's hard for me to say for sure because I have a lot of aspirations. I love the idea of continuing to work with NASA, working on things that are going to space and potentially getting into some of the human space flight projects going on. But I'm also very interested in management positions, maybe learning about some of the business side. Right now, I'm just taking all the experiences for what they are. I know that I want to be in and around aerospace, but as far as in what capacity – whether that's aerodynamics, systems engineering, mechanical engineering – I'm still trying to figure that out.

How do you feel you're contributing to NASA and JPL missions and science?

If we can finish our project by the end of the summer – which would kind of be impressive in itself – and prove that our design does work and is capable of being scaled up to use for an actual Mars ascent vehicle, then I'm sure that would be valuable. Not to mention, I'm learning a lot while I'm here, understanding a lot more and familiarizing myself with everything. So hopefully I can contribute in the future, too.

How does it feel to be working on something that could go to another planet and has never been tried before?

Honestly, it's somewhat unreal to be working on something that's so important and so new. It's not monotonous work. It's not like you're just punching numbers. Everything that I'm working on has the potential to be implemented in some sense for the very first time on another planet. That's something that makes me excited to go to work every day.

Speaking of historic missions: If you could play any role in NASA's plans to send humans back to the Moon or on to Mars, what would your dream role be?

I would love to go. But if our launcher mechanism works, there's no reason we couldn't use it for applications on the Moon or on Mars. I also really like the idea of being in mission control, working with the astronauts, working with the Space Station or Gateway in the future.

Have you ever considered applying to be an astronaut?

Only recently. It's one of those things that if you don't grow up with it in your scope, you don't acknowledge it as a possibility. It's just something that doesn't really seem attainable.

Throughout my college career and my life, I've been realizing that almost anything is attainable. It's just going to take time and effort. So [being an astronaut] is something that I was actually looking into last night, and recently, I was having a discussion with my mentors about it. It's definitely something that I think I'll try to do.

What inspired you to start looking into being an astronaut?

I have always had a fascination with the natural world and been enamored with the night sky. Becoming an astronaut had never been on my radar as a possibility, but seeing the world from a perspective beyond its surface is what motivated me to want to become a pilot, which eventually materialized into pursuing engineering. Once I did research and recognized that astronauts really are regular people with similar interests to mine, I began looking into it as a possibility.

Also, the idea of seeing these worlds for myself is something that I can't really get past.

What's been the most JPL- or NASA-unique experience that you've had during your internship?

Probably the fact that everything is just open to you. The work going on at my previous internship was only shared on a need-to-know basis. Here, everyone is very open to telling you what they're doing. They're open to showing you what's going on, all the brand-new things being built. You can just walk around and look at them. It makes it so much more exciting to be here because it's not that you're just placed on one project and stuck with it. It's, "Please explore." They encourage it. "Please come learn and experience everything."

You recently accepted a full-time position at JPL. Congrats! What is the position and what will you be working on?

Thank you! I am thrilled for the opportunity. I will be working in the Flight Systems Engineering, Integration & Test Section. Interestingly, I am not sure which group I will be in yet, because I was offered the position on the spot, at the conclusion of a day of interviews. I was told by my section manager that they are unsure which group I will work in specifically but that they want me to be a part of their team for sure. The plan is for me to start in June 2020.

Explore JPL’s summer and year-round internship programs and apply at:

Career opportunities in STEM and beyond can be found at:

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Robotics, Mars, Rover, Mars 2020, Mars Sample Return, HBCU, Students, Careers

  • Kim Orr

Graphic of the planets superimposed on a keyboard

NASA's Scientist for a Day Essay Contest is back for its 15th year, inviting students in grades 5 through 12 to investigate three distant worlds and write an essay about one they would want to explore further.

The worlds chosen for this year's contest are some of the most mysterious and distant in our solar system: Uranus' moon Miranda, Neptune's moon Triton and Pluto's moon Charon. Each has been visited by spacecraft during a single, brief flyby. NASA's Voyager 2 spacecraft flew by Miranda and Triton in the 1980s, and the New Horizons spacecraft flew by Charon in 2015. All three flybys provided the only up-close – and stunning – images we have of these worlds.

To enter the contest, which is hosted in the U.S. and more than a dozen countries, students must submit an essay of up to 500 words explaining why they would want to send a spacecraft to explore the world of their choosing. Essays can also be submitted by teams of up to four students.

Winning essays will be chosen for each topic and grade group (5 to 6, 7 to 8 and 9 to 12) and featured on the NASA Solar System Exploration website. Additionally, U.S. contest winners and their classes will have the chance to participate in a video conference or teleconference with NASA.

Entries for the U.S. contest are due Feb. 20, 2020, on the NASA Scientist for a Day website. (Deadlines for the international contests may vary by host country.) Visit the website for more information, including rules, international contest details and past winners.

For teachers interested in using the contest as a classroom assignment, learn more here. Plus, explore these standards-aligned lessons and activities to get students engaged in space travel and planetary science:

TAGS: K-12 Education, Teachers, Educators, Students, Contests, Competitions, Essay, Language Arts, Science, Planets, Solar System, Moons

  • Kim Orr

Samalis Santini De Leon poses for a photo with a jar of lucky peanuts in JPL's Space Flight Operations Center.

They've been called the minutes of terror – the moments during which spacecraft perform a series of seemingly impossible maneuvers to get from the top of Mars' atmosphere down to its surface and mission controllers anxiously await the signal heralding a successful landing. This past summer, it was intern Samalis Santini De Leon's task to make sure that when NASA's next Mars rover lands in February 2021, those minutes are as terror-free as possible. That meant bringing her Ph.D. research on the process known as entry, descent and landing, or EDL, to NASA's Jet Propulsion Laboratory, where she could apply it to a real space mission. The Puerto Rico native says she never imagined she would one day play a key role in landing a spacecraft on the Red Planet – especially as an intern. But now that she's worked on the Mars 2020 mission, she'll be just as anxious as the rest of the team when those final minutes arrive. We caught up with the Texas A&M University student to find out how you test a Mars landing while on Earth and how she set herself on a trajectory to NASA.

What are you working on at JPL?

I'm working on Mars 2020 entry, descent and landing simulations. I'm evaluating different scenarios, such as a hardware failure, and I'm trying to assess whether the mission will still land safely on Mars. I'm making sure that the system is robust enough that even if something goes wrong, the mission is not in danger and can still land safely. After all that work, we want the rover to land in one piece and do the science we want to do.

What does entry, descent and landing entail?

It's a series of events and maneuvers required to land safely on a planet. So once you enter the atmosphere, there are things you have to do – steps to ensure that the vehicle lands safely.

Graphic showing how Mars 2020 will land on the Red Planet

This graphic shows the new technology that will be used to land the Mars 2020 rover in February 2021. Image credit: NASA/JPL-Caltech | › Take an interactive look at the Mars 2020 landing

What's different about this landing from the one used for NASA's Curiosity Mars rover?

One difference is that we have a new trigger for deploying the spacecraft's parachute. This trigger will help reduce the landing footprint size, meaning we can land closer to the intended landing spot. The mission will also be using Terrain Relative Navigation for the first time. The rover will take images of the surface as it's descending and compare them to its onboard reference maps so it can locate itself with respect to the landing site and avoid any hazards.

What's your average day like?

It's mostly gathering all the concerns from other people on the entry, descent and landing team. Then I run simulations, and I look at the overall behavior of the system and communicate with the teams about what's happening. For example, if there was a hardware concern, I would do simulations to analyze the system's performance and ensure there's no significant effect on the success of the mission.

On the side, I'm doing my Ph.D. work in entry, descent and landing, using artificial intelligence to help analyze very large simulations and communicate critical issues to the experts. As humans, there is only so much we can analyze manually. We hope that these tools can help engineers for future missions.

Santini De Leon sits in the Space Flight Operations center at JPL in a room with red and blue lighting and looks up at a screen showing live spacecraft communications.

Image credit: NASA/JPL-Caltech | + Expand image

What lead you to focus on entry, descent and landing for your Ph.D.?

I have no idea. [Laughs.] I did my undergraduate work in mechanical engineering back in Puerto Rico, where I'm from. I volunteered on a project run by Space Grant, building experiments that involved launching sounding rockets from NASA's Wallops Flight Facility. I started to get into space at that time. After that, I tried to pursue aerospace engineering, which is not a possibility in Puerto Rico. So I left Puerto Rico, and I ended up initially working with satellites. Then my advisor said, "I have a friend in EDL, and he's talked about the challenges. Why don't we write a proposal on this?" I got a NASA Science and Technology Research Fellowship for that, and now I'm doing EDL. I was always secretly leaning towards space exploration and getting my hands on a mission.

What made you want to study mechanical engineering initially?

I think it was the closest I could get to aerospace engineering back home. Also, space is very interdisciplinary. I always liked robots. Building robots in high school for competitions got me very interested in that.

What brought you to JPL for this internship?

This is my first summer at JPL. With my fellowship, I do rotations at the NASA centers, so I work with people who do similar stuff.

How many different NASA centers have you interned at now?

I've interned at three. I did two summers at NASA's Ames Research Center, last summer at Langley Research Center, now here at JPL. And in my Space Grant project and undergrad, I did frequent visits to Wallops to put our experiments in the rockets, so that was very cool.

That was all part of the buildup to get here. Coming from an island, it seemed not even possible at the time [that I would ever be at NASA].

What were the challenges that you faced coming from Puerto Rico and trying to pursue aerospace engineering?

The options for aerospace engineering in Puerto Rico are limited. But getting into the Space Grant program was a very good thing to expose me to those fields. After that, the hard part was trying to find a place to do my graduate studies outside of Puerto Rico – where to go, how to get in. There's not a lot of orientation back in Puerto Rico about these things, so you're a little bit on your own. After that, the big problem is dealing with grad school. [Laughs.]

What's your ultimate career goal? Do you think you'd like to go back to Puerto Rico someday?

I would definitely like to continue working on space missions for a while. Whether it's here at JPL or other NASA centers. Just the exposure and the experience – nothing can compare to that. But at some point later on, I would like to go back and consider teaching at the University of Puerto Rico to bring back what I've learned. They're trying to make an aerospace department at the university, so I could bring new perspectives and maybe motivate more people to do what I'm doing.

Speaking of future careers: If you could play any role in NASA's plans to send humans back to the Moon and on to Mars, what would you want to do?

Maybe I'm biased now that I'm in EDL, but it's one of the biggest challenges. I think getting enough knowledge and expertise in it and playing a role in landing people on the Moon or on Mars would be incredible, because it's a problem we still haven't found a solution to. Being able to help achieve that by whatever means is probably the most amazing thing I could ever do.

What do you hope to accomplish in your role on the Mars 2020 mission?

I definitely want to demonstrate that they've built an amazing system – that it works. I guess the goals are more personal, like getting exposure to the testing side of things, more of the real-life aspects. I'm more locked on the computer simulations. So I'm hoping to get the whole picture of how EDL works and how it all comes together.

Your mentor is Allen Chen, who is the lead for Mars 2020 entry, descent and landing, so he'll be calling the shots on landing day. What is it like having him as a mentor?

It's amazing. I feel very lucky and very proud that I get to work directly with him. He's someone who has so much expertise. I am learning a lot from him. Just sitting in meetings and hearing what he and the team have to say is amazing. He's great, too – easy to talk to, knows way too much about EDL. [Laughs.]

What's been the most unique experience that you've had at JPL this summer?

What I've found the most shocking is seeing the actual rover that's going to Mars and seeing the rover getting built. That has definitely been quite cool. I think JPL is known for stuff like this. It's here that you can see it and you can see the progress. It also seems like a very collaborative environment. That's not common, so that's really cool.

The rover is scheduled to land in February 2021, after your internship has ended. Will you be able to come back to JPL for landing?

It is possible. My mentor [for my Ph.D.] will definitely be here when the rover arrives on Mars. He'll actually spend two months here doing shifts in mission control. He told me he will try to have me here for that to learn about how it all works. I will definitely try to make that happen. The excitement in that room and the fear will collide. It must be very interesting to be in there.

Are you already picturing what it will be like on landing day?

Yeah. Now that I've had some role in it, wherever I am – whether it's here or at home – I'm going to be freaking out. Regardless of how confident we are, it's a challenging process.

Explore JPL’s summer and year-round internship programs and apply at:

Career opportunities in STEM and beyond can be found at:

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Robotics, Mars, Rover, Mars 2020, Ph.D., Doctorate, Space Grant, Students, Mars 2020 Interns

  • Kim Orr

Animated image of Mercury passing in front of the Sun during the 2019 transit of Mercury

In the News

It only happens about 13 times a century and won’t happen again until 2032, so don’t miss the transit of Mercury on Monday, Nov. 11! A transit happens when a planet crosses in front of a star. From our perspective on Earth, we only ever see two planets transit the Sun: Mercury and Venus. This is because these are the only planets between us and the Sun. (Transits of Venus are especially rare. The next one won’t happen until 2117.) During the upcoming transit of Mercury, viewers around Earth (using the proper safety equipment) will be able to see a tiny dark spot moving slowly across the disk of the Sun.

Read on to learn how transits contributed to past scientific discoveries and for a look at how scientists use them today. Plus, find resources for engaging students in this rare celestial event!

Why It's Important

Then and Now

In the early 1600s, Johannes Kepler discovered that both Mercury and Venus would transit the Sun in 1631. It was fortunate timing: The telescope had been invented just 23 years earlier, and the transits of both planets wouldn’t happen in the same year again until 13425. Kepler didn’t survive to see the transits, but French astronomer Pierre Gassendi became the first person to see the transit of Mercury. Poor weather kept other astronomers in Europe from seeing it. (Gassendi attempted to view the transit of Venus the following month, but inaccurate astronomical data led him to mistakenly believe it would be visible from his location.) It was soon understood that transits could be used as an opportunity to measure apparent diameter – how large a planet appears from Earth – with great accuracy.

After observing the transit of Mercury in 1677, Edmond Halley predicted that transits could be used to accurately measure the distance between the Sun and Earth, which wasn’t known at the time. This could be done by having observers at distant points on Earth look at the variation in a planet’s apparent position against the disk of the Sun – a phenomenon known as parallax shift. This phenomenon is what makes nearby objects appear to shift more than distant objects when you look out the window of a car, for example.

Today, radar is used to measure the distance between Earth and the Sun with greater precision than transit observations. But the transits of Mercury and Venus still provide scientists with opportunities for scientific investigation in two important areas: exospheres and exoplanets.

Exosphere Science

Some objects, like the Moon and Mercury, were originally thought to have no atmosphere. But scientists have discovered that these bodies are actually surrounded by an ultrathin atmosphere of gases called an exosphere. Scientists want to better understand the composition and density of the gases in Mercury’s exosphere, and transits make that possible.

“When Mercury is in front of the Sun, we can study the exosphere close to the planet,” said NASA scientist Rosemary Killen. “Sodium in the exosphere absorbs and re-emits a yellow-orange color from sunlight, and by measuring that absorption, we can learn about the density of gas there.”

Exoplanet Discoveries

When Mercury transits the Sun, it causes a slight dip in the Sun’s brightness as it blocks a tiny portion of the Sun’s light. Scientists discovered they could use that phenomenon to search for planets orbiting distant stars. These planets, called exoplanets, are otherwise obscured from view by the light of their star. When measuring the brightness of far-off stars, a slight recurring dip in the light curve (a graph of light intensity) could indicate an exoplanet orbiting and transiting its star. NASA’s Kepler space telescope found more than 2,700 exoplanets by looking for this telltale drop in brightness. NASA’s TESS mission is surveying 200,000 of the brightest stars near our solar system and is expected to potentially discover more than 10,000 transiting exoplanets.

Animated cartoon image of a planet crossing in front of a star and an inset that shows a graph dipping as the planet does so

This animation shows one method scientists use to hunt for planets outside our solar system. When exoplanets transit their parent star, we can detect the dip in the star’s brightness using space telescopes. Credit: NASA/JPL-Caltech | + Expand image

Additionally, scientists have been exploring the atmospheres of exoplanets. Similarly to how we study Mercury’s exosphere, scientists can observe the spectra – a measure of light intensity and wavelength – that passes through an exoplanet’s atmosphere. As a result, they’re beginning to understand the evolution and composition of exoplanet atmospheres, as well as the influence of stellar wind and magnetic fields.

Collage of exoplanet posters from NASA

Using the transit method and other techniques, scientists are learning more and more about planets beyond our solar system. These discoveries have even inspired a series of posters created by artists at NASA, who imagine what future explorers might encounter on these faraway worlds. Credit: NASA | › Download posters

Watch It

During the transit of Mercury, the planet will appear as a tiny dot on the Sun’s surface. To see it, you’ll need a telescope or binoculars outfitted with a special solar filter.

WARNING! Looking at the Sun directly or through a telescope without proper protection can lead to serious and permanent vision damage. Do not look directly at the Sun without a certified solar filter.

The transit of Mercury will be partly or fully visible across much of the globe. However, it won’t be visible from Australia or most of Asia and Alaska.

Graphic showing Mercury's path across the Sun on Nov. 11, 2019 and the times that it will be at each location

The transit of Mercury on Nov. 11, 2019, begins at 4:35 a.m. PST (7:35 a.m. EST), but it won’t be visible to West Coast viewers until after sunrise. Luckily, viewers will have several more hours to take in the stellar show, which lasts until 10:04 a.m. PST (1:04 p.m. EST). Credit: NASA/JPL-Caltech | + Expand image

Mercury’s trek across the Sun begins at 4:35 a.m. PST (7:35 a.m. EST), meaning viewers on the East Coast of the U.S. can experience the entire event, as the Sun will have already risen before the transit begins. By the time the Sun rises on the West Coast, Mercury will have been transiting the Sun for nearly two hours. Fortunately, the planet will take almost 5.5 hours to completely cross the face of the Sun, so there will be plenty of time for West Coast viewers to witness this event. See the transit map below to learn when and where the transit will be visible.

Graphic showing a flat map of the world with areas where the transit of Mercury on Nov. 11, 2019 will be partially to fully visible indicated along with transit start and end times

This map shows where and when the transit will be visible on November 11. Image credit: NASA/JPL-Caltech | + Expand image

Don’t have access to a telescope or binoculars with a solar filter? Visit the Night Sky Network website to find events near you where amateur astronomers will have viewing opportunities available.

During the transit, NASA will share near-real-time images of the Sun directly from the Solar Dynamics Observatory. Beginning at 4:41 a.m. PST (7:41 a.m. EST) you can see images of Mercury passing in front of the Sun at NASA’s 2019 Mercury Transit page, with updates through the end of the transit at 10:04 a.m. PST (1:04 p.m. EST).

If you’re in the U.S., don’t miss the show, as this is the last time a transit will be visible from the continental United States until 2049!

Watch this month's installment of "What's Up" to learn more about how to watch the Nov. 11 transit of Mercury. Credit: NASA/JPL-Caltech | Watch on YouTube

Teach It

Use these lessons and activities to engage students in the transit of Mercury and the hunt for planets beyond our solar system:

Explore More

Transit Resources:

Exoplanet Resources:

Check out these related resources for kids from NASA’s Space Place:

TAGS: K-12 Education, Teachers, Students, Educators, Mercury, Transit, Transit of Mercury, What's Up, Astronomy, Resources for Educators, Exoplanets, Kepler, TESS

  • Lyle Tavernier

Side-by-side images of Clara Ma, wearing braces, in 2009 posing for a picture in front of a Curiosity rover model and Ma in 2019 posing for a photo in Europe

Students have just over one week more to enter NASA’s Name the Rover Essay Contest. While they put the finishing touches on their essays (due Nov. 1, 2019), meet the most recent naming contest winner, Clara Ma. Find out what Ma is up to more than 10 years after submitting her winning name for the Mars rover now known as Curiosity and why she says the experience changed her life.

› Read more on JPL News

› Find related resources for educators


TAGS: Curiosity, Rover, Contest, Mars, Students, K-12, Teachers, Language Arts, Essay

  • Kim Orr

NASA is inviting students to help name its next Mars rover! Set to launch from Florida in the summer of 2020, NASA’s fifth rover to visit the Red Planet is designed to study past environments capable of supporting life, seek signs of ancient microbial life, collect rock and soil samples for a possible future return to Earth, and test technologies that could produce oxygen from the Martian atmosphere for use by humans one day. But before it can do that, it needs a name.

Following in the tracks of NASA’s four previous Mars rovers, the agency is asking students to suggest a name. The first Mars rover, which landed in 1997, was called the Microrover Flight Experiment until a 12-year old student from Connecticut suggested the name Sojourner, in honor of abolitionist and women’s rights activist Sojourner Truth. In 2004, a third-grade student from Arizona named NASA’s twin rovers Spirit and Opportunity. Curiosity, which landed in 2012 and is the most recent rover to visit Mars, was named by a sixth-grade student in Kansas.

To enter the Name the Rover Essay Contest, individual students must submit an essay of up to 150 words by Nov. 1, 2019. In their essay, students will need to propose the name they think best suits the rover and explain their reasoning. Judges will select three finalists (one each from grades K-4, 5-8 and 9-12) from every state and U.S. territory. From there, judges will narrow down the finalists further before they select a final name in the spring of 2020.

So what makes a good name? There are lots of ways to become inspired, but students should start by learning about the rover as well as the Red Planet and why we explore. But they shouldn’t stop there. There are many ways to spark ideas from students, including writing planetary poetry, making cosmic art, and having them build rovers of their own. Get students thinking and writing creatively, and encourage them to submit their essay!

› Enter the contest

The contest is open to U.S. residents enrolled in kindergarten through 12th grade in a U.S. school (including U.S. territories and schools operated by the U.S. for the children of American personnel overseas). Home-school students can also submit a name!

Explore More

TAGS: Mars, rover, contest, Mars 2020, K-12 education, STEM, language arts, essay, science, students

  • Lyle Tavernier

A large group of students and teachers stand in front of a full-size model of the Curiosity rover.

This past school year, the Education Office at NASA's Jet Propulsion Laboratory supported a comprehensive, multischool physics project that served as a capstone project for high-school students. Seven schools in three school districts across the Los Angeles area participated, tasked by their teachers with building a habitat including working circuitry and renewable power sources that was capable of withstanding seismic events.

Hundreds of physics students from underserved communities participated in the project, constructing their habitats as part of a Next Generation Science Standards, or NGSS, curriculum. One of the key components of NGSS, which was adopted by California in 2013, is its inclusion of science content areas, such as Earth science and physics. The project, drawing upon the lessons found on the JPL Education website, was a chance for students to apply their knowledge of numerous high-school science courses into one summative project. It was also a rare opportunity for the students, who were coming from underserved communities, to see connections between classroom content and real-world science.

"It is difficult for [students] to connect what they do in school with their future," wrote Joshua Gagnier, a physics teacher at Santa Ana High School, who participated in the project. "The only advice they receive is to study, work hard and get help, which without clear goals, are abstract concepts. It is opportunities such as the JPL challenge, which had a tangible academic award, that my students need."

To help students apply their knowledge in a real-world context, teachers presented a challenge to build functional habitats, complete with power, wiring and the ability to withstand the elements. Each school focused on and contributed different components to the habitats, such as solar power or thermodynamics. Students were given broad freedom to construct rooms and devices that were of interest to them while still demonstrating their knowledge throughout the school year. Gagnier had his classes focus on the electromagnetic spectrum and use their understanding of waves – for example, the threat of seismic waves to physical stability and the availability of light waves for solar power – to select a habitat location. He also had students examine the use of solar energy to power their habitats.

"The students used JPL and NASA resources to understand the elevation of [electromagnetic] penetration in combination with Google Earth to find the altitude of the geography they were evaluating," he wrote. "When students were trying to find a way to heat water for their habitat using the limited available supplies, JPL's Think Green lesson was one of the main sources for their solution." This lesson, in particular, allowed students to measure flux and available solar energy at different regions in the country using NASA data available online.

Students crowd around a large desk and use tape and cardboard to begin constructing their habitats. Two of the students look at a laptop.

Students at Santa Ana High School begin constructing their habitats. Image courtesy Joshua Gagnier | + Expand image

Students sit around a red table, one holding a solar panel in the air with wires attached to a small device. Other students examine the data on the device and write the results.

Students measure the current generated by their habitat's solar panels. Image courtesy Joshua Gagnier | + Expand image

Ultimately, it was up to the students to design and craft their habitats based on the lessons they learned. So the final prototype structures varied dramatically from class to class and even more from school to school. One school focused on habitats powered solely by renewable energy, while another school focused more on the structure's ability to withstand earthquakes via a shake table. Vaughn International Studies Academy worked across class periods to build "modular" homes – with each group building a single room instead of a whole habitat. These rooms, which included a living room, bedroom and even a sauna, were connected to a central power supply. In all cases, students had to quantify the amount of energy produced, determine how to disperse it throughout their home and present a sales pitch for their habitat, describing how it satisfied their criteria.

Small cardboard boxes with dioramas of living rooms, an outdoor scene and a bedroom sit side-by-side on a large black desk.

Participating schools elected to focus on certain features for their habitats, such as solar efficiency, circuity and wiring, or modular rooms that could be combined into larger homes. Image courtesy Brandon Rodriguez | + Expand image

At the end of the challenge, a winning group from each school was invited to JPL with their teachers to meet students from participating schools and tour the laboratory. It was also a chance for students and teachers to compare their projects. Due to the success of the pilot program, the participating teachers are already making plans for next school year, discussing ways to improve the challenge and expand the program to several more schools in the Los Angeles area.

Have a great idea for implementing NASA research in your class or looking to bring NASA science into your classroom? Contact JPL education specialist Brandon Rodriguez at

Special thanks to Kris Schmidt, Joshua Gagnier, Sandra Hightower and Jill Mayorga for their participation and dedication to bringing NASA science to their students.

TAGS: K-12 education, STEM, educators, teachers, science, engineering, physics, resources, lessons, students

  • Brandon Rodriguez

Jose Martinez-Camacho stands in front of a Moon display, featuring a lunar rock sample, in the Visitor Center at JPL.

In high school, science was the last thing on Jose Martinez-Camacho's mind. But one day, he was flipping through his chemistry textbook, and a diagram caught his eye. It described an experiment that was the first to identify the structure of an atom. Martinez-Camacho was amazed that a science experiment could reveal the inner workings of something so mysterious. He was hooked. Now a physics major at Cal Poly Pomona and in his fourth year interning at NASA's Jet Propulsion Laboratory, Martinez-Camacho is immersed in unveiling the details of other mysterious objects: lunar craters. Using a simulation he developed, Martinez-Camacho is working to understand how the temperatures inside and around craters in the permanently shadowed regions of the Moon might point the way to water ice. We caught up with him to find out more about his internship and his career journey so far.

You've done several internships at JPL, starting in 2015. What are the projects you've worked on?

My first internship in the summer of 2015 was with the Lunar Flashlight mission. The idea of the mission is to reflect sunlight into the permanent shadowed regions of the Moon to detect water ice. My project was testing and characterizing the photodetectors that would be used to identify the water ice. So most of that project involved setting up an experiment to test those detectors.

My next internship was still with the Lunar Flashlight mission, but my project was to model the amount of stray light that the detector was expected to receive from the lunar surface.

After that, I started to work with the Lunar Reconnaissance Orbiter Diviner team. [Diviner is an instrument on the Lunar Reconnaissance Orbiter that creates detailed daytime and nighttime temperature maps of the Moon.] In that project, I was working with Catherine Elder to validate one of her algorithms that can identify the abundance and size distribution of lunar rocks in a single pixel of an image taken by Diviner. So I used the algorithm to analyze the rock populations around the Surveyor landers, which took images on the lunar surface that we could use to validate our results.

What I'm working on now is 2D thermal modeling of craters in the polar regions of the Moon. The end goal is to better understand the thermal environments of the Moon's permanently shadowed regions, which can harbor water ice. Because the stability of water ice is very sensitive to temperatures, knowing the thermal environment can tell us a lot about where these water-ice deposits might exist.

Bright greens, purples and red indicate temperatures of craters on a section of the Moon in this data image

This temperature map from the Diviner instrument on the Lunar Reconnaissance Orbiter shows the locations of several intensely cold impact craters that are potential cold traps for water ice as well as a range of other icy compounds commonly observed in comets. Image credit: NASA/GSFC/UCLA | + Expand image

What is your average day like on your current project?

I'm using MATLAB to write code [that I use to model the craters]. I wrote the code from scratch. Right now I'm at the point where I've written the program, I've gone through most of the debugging and the derivations of the equations and picking the algorithm, so I'm just running the model and waiting for results. So an average day would be to come in and run the model for different cases. There's a range of crater diameters and a range of latitudes where permanent shadows exist, so I run the model for these different cases, wait for the results and interpret the results at the end of the simulations. I also do some debugging now and then to deal with problems in the code.

What got you interested in a science career?

I think it happened in my junior year of high school. I was always disinterested in school and never paid attention. In chemistry class, we were learning about the atom, and for some reason, I opened up my chemistry book at home and started looking at the diagrams. I found a section on the Rutherford gold foil experiment, which showed that atoms consist of a tightly packed positive nucleus surrounded by electrons. I was amazed that someone could deduce that from a simple experiment. So that sparked my interest in science. After that, I started to read about chemistry and astronomy and all types of science. That was the pivotal moment.

How did you pursue that career path, and were there any challenges along the way?

I knew I'd have to go to community college because, at the time, my GPA wasn't going to get me anywhere. So I knew I had to start at the very, very beginning. But I had a very clear plan: Just keep studying, keep getting good grades until you get to where you want to be.

Sometimes students – especially community college students – feel intimidated applying for JPL internships, even though they should absolutely apply! Did you feel that way at all, and if so, how did you overcome that fear?

I was almost not going to submit my application just because I thought I wasn't good enough to intern at JPL. But ultimately, I had nothing to lose if I got rejected. It would be the same outcome as if I didn't apply, so I submitted my application. And I was really surprised when I got the acceptance letter.

What was your first experience at JPL like?

Everything was super-unfamiliar. I was in a lab, working on a science instrument, and I wasn't an instruments guy. But I got a lot of help from other people who were on the project. Even though it was difficult, it made it very enjoyable to always have someone there with the right answer or a suggestion.

How has your time at JPL molded your career path?

I think it established it. Next year, I'm going to Southern Methodist University to start a geophysics Ph.D. and my graduate advisor is someone who I met at one of the Diviner team meetings. Being at JPL has made that connection for me. And through JPL, I found what I want to do as a career.

What is your ultimate career goal?

After grad school, it would be really, really nice to come back here as a research scientist.

Are you interested in lunar research or anything planetary?

I think I'm really biased toward the Moon just because it's been my focus throughout my JPL internships. But I could see myself studying other planets or bodies. Mercury is very similar to the Moon. Anything without an atmosphere will do. That's what I'm comfortable with. If you add an atmosphere, the science is different. Ultimately, I think I'm interested in planetary science; it's just a matter of learning new science and learning about new planetary bodies.

Well, that leads nicely into my fun question: If you could travel to any place in space, where would you go and what would you do there?

I think I'd go somewhere around Saturn, or a moon of Saturn. Looking up from one of Saturn's moons would be a pretty amazing sight, with Saturn and its rings on the horizon.

Going back to your career path so far, did you have any mentors along the way?

In high school, I don't think so. I just needed to graduate. But in community college, I was part of this program called EOPS, or Extended Opportunity Programs and Services. It's for minorities and disadvantaged groups. There's counseling involved with people who knew what someone like me might be struggling with. There was that support group throughout my time at Citrus College. And there was also the Summer Research Experience Program [at Citrus.] That's the one I applied to in order to get the summer internship here. It was through Citrus College's partnership with JPL. One of the people who was in charge of that, Dr. Marianne Smith, she was always encouraging me, saying, "Just because you come from a community college doesn't mean you're any less than someone who is at UCLA or any other university." So that was another source of support.

Did you see advantages to going the community college route?

Yeah, definitely. It's a smaller community, so you get to form connections a lot easier than you would at a larger college. The quality of education there is probably on par with other universities. So, there was certainly no disadvantage. And then there was that advantage of the smaller community. It's more personalized and easier to get help.

What would you recommend to other students in community college who are interested in coming to JPL?

Apply to the program. Take advantage of the summers and apply to internships. At Citrus College they have the Summer Research Experience Program, and they probably have something similar at other community colleges. Take advantage of that. If I hadn't applied to that program that summer, my life would be totally different. Those decisions can shape your future.

Explore JPL’s summer and year-round internship programs and apply at:

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, College, Internships, Interns, Science, Moon, Community College, Students

  • Kim Orr