A small cube-shaped spacecraft with long wing-like solar panels is shown flying towards a relatively large asteroid with an even bigger asteroid nearby.

Find out more about the historic first test, which could be used to defend our planet if a hazardous asteroid were discovered. Plus, explore lessons to bring the science and engineering of the mission into the classroom.


In an attempt to alter the orbit of an asteroid for the first time in history, NASA will crash a spacecraft into the asteroid Dimorphos on September 26. The mission, known as the Double Asteroid Redirection Test, or DART, will take place at an asteroid that poses no threat to our planet. Rather, it's an ideal target for NASA to test an important element of its planetary defense plan.

Read further to learn about DART, how it will work, and how the science and engineering behind the mission can be used to teach a variety of STEM topics.

Why It's Important

The vast majority of asteroids and comets are not dangerous, and never will be. Asteroids and comets are considered potentially hazardous objects, or PHOs, if they are 100-165 feet (30-50 meters) in diameter or larger and their orbit around the Sun comes within five million miles (eight million kilometers) of Earth’s orbit. NASA's planetary defense strategy involves detecting and tracking these objects using telescopes on the ground and in space. In fact, NASA’s Center for Near Earth Object Studies, or CNEOS, monitors all known near-Earth objects to assess any impact risk they may pose. Any relatively close approach is reported on the Asteroid Watch dashboard.

Six triangular sections fan out from a shadowed view of Earth describing the PDCO's various activities, including 'Search, Detect & Track', 'Characterize', 'Plan and Coordinate', 'Mitigate', and 'Assess'.

NASA's Planetary Defense Coordination Office runs a variety of programs and initiatives aimed at detecting and responding to threats from potentially hazardous objects, should one be discovered. The DART mission is one component and the first mission being flown by the team. Image credit: NASA | + Expand image

While there are no known objects currently posing a threat to Earth, scientists continue scanning the skies for unknown asteroids. NASA is actively researching and planning for ways to prevent or reduce the effects of a potential impact, should one be discovered. The DART mission is the first test of such a plan – in this case, whether it's possible to divert an asteroid from its predicted course by slamming into it with a spacecraft.

Eyes on Asteroids is a real-time visualization of every known asteroid or comet that is classified as a near-Earth object, or NEO. Asteroids are represented as blue dots and comets as shown as white dots. Use your mouse to explore the interactive further and learn more about the objects and how we track them. Credit: NASA/JPL-Caltech | Explore the full interactive

With the knowledge gained from this demonstration, similar techniques could be used to deflect an asteroid or comet away from Earth if it were deemed hazardous to the planet.

How It Works

With a diameter of about 525 feet (160 meters) – the length of 1.5 football fields – Dimorphos is the smaller of two asteroids in a double-asteroid system. Dimorphos orbits the larger asteroid called Didymos (Greek for "twin"), every 11 hours and 55 minutes.

Various Earth objects are shown to scale ranging from a bus at 14 meters to the Burj Khalifa skyscraper at 830 meters. Dimorphos at 163 meters is shown between the Statue of Liberty (93 meters) on its left and the Great Pyramid of Giza (139 meters) on its right. Didymos is shown between the One World Trade Center (546 meters) on its left and the Burj Khalifa on its right.

The sizes of the two asteroids in the Didymos system relative to objects on Earth. Image credit: NASA/Johns Hopkins APL | + Expand image

Neither asteroid poses a threat to our planet, which is one reason why this asteroid system is the ideal place to test asteroid redirection techniques. At the time of DART's impact, the asteroid pair will be 6.8 million miles (11 million kilometers) away from Earth as they travel on their orbit around the Sun. Regardless of how much or how little the orbit of Dimorphos is changed by DART, the asteroid will not become a threat to Earth.

The DART spacecraft is designed to collide head-on with Dimorphos to alter its orbit, shortening the time it takes the small asteroid to travel around Didymos. Compared with Dimorphos, which has a mass of about 11 billion pounds (five billion kilograms), the DART spacecraft is light. It will weigh just 1,210 pounds (550 kilograms) at the time of impact. So how can such a light spacecraft affect the orbit of a relatively massive asteroid?

You can use your mouse to explore this interactive view of DART's impact with Dimorphos from NASA's Eyes on the Solar System. Credit: NASA/JPL-Caltech | Explore the full interactive

DART is what’s known as a kinetic impactor because it will transfer its momentum and kinetic energy to Dimorphos upon impact, altering the asteroid's orbit in return. Scientists can make predictions about some of these effects thanks to principles described in Newton's laws of motion.

Newton’s first law tells us that the asteroid’s orbit will remain unchanged until something acts upon it. Using the formula for linear momentum (p = m * v), we can calculate that the spacecraft, which at the time of impact will be traveling at 3.8 miles (6.1 kilometers) per second, will have about 0.5% of the asteroid’s momentum. The momentum of the spacecraft may seem small in comparison, but it's enough to make a detectable change in the speed of Dimorphos' orbit.

But there is more to consider in testing whether the technique could be used in the future for planetary defense. For example, the formula for kinetic energy (KE = 0.5 * m * v2) tells us that a fast moving spacecraft possesses a lot of energy.

When DART hits the surface of the asteroid, its kinetic energy will be 10 billion joules! A crater will be formed and material known as ejecta will be blasted out as a result of the impact. In this case, asteroid material equalling 10-100 times the mass of the spacecraft itself will be ejected out of the crater. The force needed to push this material out will be matched by an equal reaction force pushing on the asteroid in the opposite direction, as described by Newton’s third law.

This animation shows conceptually how DART's impact is predicted to change Dimorphos' orbit from a larger orbit to a slightly smaller one that's several minutes shorter than the original. Credit: NASA/Johns Hopkins APL/Jon Emmerich | Watch on YouTube

How much material will be ejected, and its recoil momentum, is still unknown. A lot depends on the surface composition of the asteroid. Laboratory tests on Earth suggest that if the surface material is poorly conglomerated, or loosely formed, more material will be blasted out. A surface that is well conglomerated, or densely compacted, will eject less material. As a result, the impact will also tell us more about the composition of Dimorphos.

After the DART impact, scientists will use a technique called the transit method to see how much the impact changed Dimorphous' orbit. As observed from Earth, the Didymos pair is what’s known as an eclipsing binary, meaning Dimorphos passes in front of and behind Didymos from our view, creating what appears from Earth to be a subtle dip in the combined brightness of the pair. Scientists can use ground-based telescopes to measure this change in brightness and calculate how quickly Dimorphos orbits Didymos.

A large cylindrical building with faceted sides has an opening at the top where two parts of a dome appear to be pulled apart allowing the telescope to view the darkened night sky.

The Lowell Discovery Telescope at Lowell Observatory in Arizona is one of the telescopes across the globe that will be used to evaluate the result of the DART impact. Image credit: Lowell Observatory | + Expand image

One of the biggest challenges of the DART mission is navigating a small spacecraft to a head-on collision with a small asteroid millions of miles away. To solve that problem, the spacecraft is equipped with a single instrument, the DRACO camera, which works together with an autonomous navigation system called SMART Nav to guide the spacecraft without direct control from engineers on Earth. About four hours before impact, images captured by the camera will be sent to the spacecraft's navigation system, allowing it to identify which of the two asteroids is Dimorphos and independently navigate to the target.

Two white points of light are circled in a fuzzy field of stars. The slightly larger point of light near the far right of the image is labeled Didymos.

A composite of 243 images of Didymos and Dimorphos taken by the DART spacecraft's DRACO camera on July 27, 2022, as the spacecraft was navigating to its target. Image credit: JPL DART Navigation Team | + Expand image | › DART image gallery

DART is not just an experimental asteroid impactor. The mission is also using cutting-edge technology never before flown on a planetary spacecraft and testing new technologies designed to improve how we power and communicate with spacecraft.

Learn more about the engineering behind the DART mission, including the innovative Roll Out Solar Array and NEXT-C ion propulsion system, in this video featuring experts from the mission. Credit: APL | Watch on YouTube

One such technology that was first tested on the International Space Station and is being used on the solar-powered DART spacecraft, is the Roll Out Solar Array, or ROSA, power system. As its name suggests, the power system consists of flexible solar panel material that is rolled up for launch and unrolled in space.

The Roll Out Solar Array, shown in this animated image captured during a test on the International Space Station, is making its first planetary journey on DART. Image credit: NASA | + Expand image

Some of the power generated by the solar array is used for another innovative technology, the spacecraft's NEXT-C ion propulsion system. Rather than using traditional chemical propulsion, DART is propelled by charged particles of xenon pushed from its engine. Ion propulsion has been used on other missions to asteroids and comets including Dawn and Deep Space 1, but NEXT-C's ion thrusters have higher performance and efficiency.

Follow Along

There are a number of ways to follow along with this exciting event and all the science from the mission.

On September 26, watch NASA Live from 3 to 4:30 p.m. PDT (6 to 7:30 p.m. EDT) to hear commentary from experts before and during the impact at Dimorphos. Images from DART, which will impact the asteroid at 4:14 p.m. PDT (7:14 p.m. EDT), will be streamed to Earth in real-time and shown during the broadcast.

Watch here from 3 to 4:30 p.m. PDT (6 to 7:30 p.m. EDT) on Monday, Sept. 26 to hear live commentary from experts before and after the impact at Dimorphos. | Watch on YouTube

In the days following the event, NASA expects to receive images of the impact from a cubesat that will be deployed by DART before impact. The cubesat, LICIACube, which was provided by the Italian Space Agency, is designed to capture images of the impact, the ejecta cloud, and perhaps even the impact crater left behind by DART. The James Webb Space Telescope, the Hubble Space Telescope, and the Lucy spacecraft will observe Didymos to monitor how soon reflected sunlight from the ejecta plume can be seen. In the following weeks, DART team members will continue observing the asteroid system to measure the change in Dimorphos’ orbit and determine what happened on its surface. In 2024, the European Space Agency plans to launch the Hera spacecraft to conduct an in-depth post-impact study of the Didymos system.

Learn more about DART and see the latest images and updates on the mission website. Plus, explore even more resources on this handy page.

Teach It

The mission is a great opportunity to engage students in the real world applications of STEM topics. Students can even observe the results of their engineering design challenges at the same time as the results of the mission are streamed back to Earth! Start exploring these lessons and resources to get students engaging in STEM along with the mission.

Educator Guides

Expert Talks

Student Activities

Articles

Resources for Kids

Check out these related resources for kids from NASA Space Place:

Explore More

TAGS: Asteroids and Comets, DART, near-Earth objects, planetary defense, Science, K-12 Education, Teachers, Educators, Parents, Teachable Moments

  • Lyle Tavernier
READ MORE

An rocky asteroid with a large crater fills most of the frame of this hazy, blue-toned illustration.

In the News

On April 19, an asteroid named 2014 JO25 will safely fly by Earth, passing at a distance of about 1.1 million miles (1.8 million kilometers) of the planet. This asteroid poses no threat to Earth and, in fact, asteroids safely fly by Earth quite regularly. What makes the upcoming close approach of asteroid 2014 JO25 unique is that it is a rather large asteroid, measuring about 2,000 feet (more than 600 meters) across. The last time an asteroid that large, or larger, came that close to Earth was in 2004. Not much is known about asteroid 2014 JO25 other than its approximate size, its trajectory (or path around the sun) and that its surface is about twice as reflective as that of the moon. When it passes by, the asteroid will be bright enough that small optical telescopes can be used to spot it in the night sky. Scientists around the world will also study the asteroid with telescopes to determine its composition and rotation and with radar that could reveal small surface features.

Modeling an Asteroid Lesson - NASA/JPL Education

Asteroid Resources for Educators

Explore our collection of standards-aligned lessons all about asteroids!

› View Asteroid Lessons from NASA!

Why It's Important

Asteroids are some of what remains of the material that formed our solar system about 4.6 billion years ago. Unchanged by the forces that have altered rocks on our home planet, the moon, Mars and other destinations around the solar system, asteroids provide a glimpse into what conditions were like when our solar system took shape. Studying the chemical and physical properties, as well as the location and motion of asteroids, is vital to helping us understand how the sun, planets and other solar system bodies came to be.

The study of asteroids is so important, in fact, that NASA has sent several spacecraft to study some of these objects up close. For example, in 2007, the Dawn mission was sent to explore the two largest objects in the asteroid belt, Vesta and Ceres. Dawn arrived at the giant protoplanet Vesta in 2011 and orbited it for about one year before flying to the dwarf planet Ceres, which it continues to orbit and study today. Data from the Dawn mission showed Vesta to be a fascinating world more closely related to terrestrial planets than to typical asteroids and revealed clues that indicate there is a large amount of ice and maybe subsurface liquid water on Ceres. In 2016, NASA launched a spacecraft called OSIRIS-REx, which is headed for an asteroid called Bennu. When it arrives in August 2018, OSIRIS-REx will map the asteroid and collect a sample to return to Earth.

Learn more about NASA's OSIRIS-REx spacecraft and its mission to asteroid Bennu.

But there is another reason studying asteroids and their movements is important: detecting nearby asteroids and predicting any hazard they might pose to Earth.

This graphic shows the orbits of all the known 'potentially hazardous asteroids,' numbering over 1,400 as of early 2013.

This graphic shows the orbits of all the known "potentially hazardous asteroids," numbering over 1,400 as of early 2013. Being classified as a potentially hazardous asteroid does not mean that an asteroid will impact Earth. None of these asteroids depicted is a worrisome threat over the next hundred years. By continuing to observe and track these asteroids, their orbits can be refined and more precise predictions made of their future close approaches and impact probabilities. Image credit: NASA/JPL-Caltech | › Full image and caption

Both 2014 JO25 and Bennu are considered near-Earth objects, meaning their orbits bring them closer than 1.3 astronomical units (AU) from the sun. For comparison, Earth is 1 AU from the sun, or about 93,000,000 miles (150,000,000 kilometers). Also, both asteroids are classified as “potentially hazardous.” A potentially hazardous asteroid is one with an orbit that comes within 0.05 AU (about 4,650,000 miles or 7,480,000 km) of Earth’s orbit and has an absolute magnitude, a measure of brightness, of 22 or less. (On the magnitude scale, the lower the number, the brighter the object.) Absolute magnitude can be an indicator of size, so in other words, potentially hazardous asteroids are large – typically larger than about 500 feet (140 meters) across – and could get close to Earth. Having a designation of “potentially hazardous” does not necessarily indicate the object is a threat to Earth. Scientists use the classification to indicate an object deserves increased attention.

Out of more than 730,000 known asteroids, about 16,000 are near-Earth objects, and there are currently 1,784 potentially hazardous asteroids. But the risks of a large asteroid like 2014 JO25 or Bennu impacting Earth are exceedingly rare. And thanks to the Center for Near Earth Object Studies, or CNEOS, at NASA’s Jet Propulsion Laboratory, we have a very good understanding of where many of these asteroids are and where they are headed. Supporting NASA’s Planetary Defense Coordination Office, CNEOS continually uses new data acquired by telescopes and submitted to the Minor Planet Center to update orbit calculations, analyzes asteroid impact risks over the next century and provides data for every near-Earth object.

How It Works

animated gif of asteroid 2013 MZ5 moving in a fixed background of stars

This animated gif shows asteroid 2013 MZ5 as seen by the University of Hawaii's PanSTARR-1 telescope. The asteroid moves relative to a fixed background of stars. Asteroid 2013 MZ5 is in the right of the first image, towards the top, moving diagonally left/down. Image credit: PS-1/UH

Detecting near-Earth objects, or NEOs, is done by comparing multiple images, taken several minutes apart, of the same region of the sky. The vast majority of the objects appearing in these images are stars and galaxies, and their positions are fixed in the same relative position on all the images. Because a moving near-Earth object would be in a slightly different position on each image while the background stars and galaxies are in the same positions, it can be easy to identify the moving target if it is bright enough.

Surveys done by NASA-supported ground-based telescopes – including Pans-STARRS1 in Maui, Hawaii, as well as the Catalina Sky Survey near Tucson, Arizona – have identified thousands of near-Earth objects. And a space-based telescope called NEOWISE has identified hundreds of others while scanning the skies at near-infrared wavelengths of light from its polar orbit around Earth. Many ground-based telescopes perform follow-up observations to further aid in orbit calculations and to study the physical properties of the objects.

One of the ways that NASA detects and tracks asteroids is with a space telescope called NEOWISE. The spacecraft uses infrared to detect and characterize asteroids and comets. Since December 2013, NEOWISE has discovered 72 near-Earth objects and characterized 439 others. Credit: NASA-JPL/Caltech

Once a near-Earth object is detected, its orbital characteristics are analyzed and astronomers determine if it is a potentially hazardous asteroid. This information is entered into CNEOS’ database, where it is continually updated and impact risks are monitored as new data becomes available.

Teach It

Asteroid 2014 JO25 won’t be this close for another 500 years, so now is a great opportunity to share this close approach with students and remind them that while it’s a close encounter by space standards, Earthlings need not be concerned. Try these standards-aligned lessons and activities with students:

  • Grades 1-6: Whip Up a Moon-Like Crater - Use baking ingredients to whip up a moon-like crater as an asteroid-impact demonstration for students. This activity works in classrooms, camps and at home.

  • Grades 3-5: Modeling an Asteroid - Students will shape their own asteroid models out of clay as a hands-on lesson in how asteroids form, what they are made of, and where they can be found in our solar system.

  • Grades 8-12: Math Rocks: A Lesson in Asteroid Dynamics - Students use math to investigate a real-life asteroid impact.

  • All ages: If you have a telescope, consider trying to view the asteroid at night. You’ll have to know where to look. Solar System Ambassador Eddie Irizarry shares how to find 2014 JO25 here. If you’re looking for more technical information about its location, use JPL’s Solar System Dynamics site to find the asteroid’s ephemeris.

Follow @AsteroidWatch on Twitter or visit the NASA Asteroid Watch website to find out more about upcoming close approaches.

Explore More

TAGS: Asteroid Flyby, Asteroids, Near-Earth Objects, NEOs, Asteroid 2014 JO25, Dawn, OSIRIS-REx, NEOWISE

  • Lyle Tavernier
READ MORE