Collage of images from the events and lessons featured in this article.

With 180 lessons in our online catalog, you can explore Earth and space with us all year long. We show you how with this handy NASA-JPL school year calendar.


We just added the 180th lesson to our online catalog of standards-aligned STEM lessons, which means JPL Education now has a lesson for every day of the school year. To celebrate and help you make the year ahead stellar, we've put together this monthly calendar of upcoming NASA events along with links to our related lessons, Teachable Moments articles, and student projects you can use to engage students in STEM while they explore Earth and space with us all year long.


August

The Voyagers Turn 45

The twin Voyager spacecraft launched in 1977 on a journey to explore the outer planets and beyond – and they're still going. Now more than 12 billion miles (19 billion kilometers) from Earth in a region known as interstellar space, they're the most distant human-made objects in space.

Get a primer on these fascinating spacecraft from Teachable Moments, then use it as a jumping off point for lessons on the scale, size, and structure of our solar system and how we communicate with distant spacecraft.

Lessons & Resources:


September

Rendezvous with an Asteroid

A distant asteroid system 6.8 million miles (11 million kilometers) from Earth was the site of NASA's first attempt at redirecting an asteroid. On September 26, the Double Asteroid Redirection Test, or DART, mission impacted the asteroid Dimorphos in an attempt to alter its speed and path around a larger asteroid known as Didymos. Dimorphos and Didymos do not pose a threat to Earth, which makes them a good proving ground for testing whether a similar technique could be used to defend Earth against potential impacts by hazardous asteroids in the future.

Get a primer on the DART mission and find related resources for the classroom in this article from our Teachable Moments series. Plus, explore our collection of standards-aligned lessons and activities all about asteroids to get students learning about different kinds of space rocks, geology, and meteoroid math.

Lessons & Resources:

A Closer Look at Europa

Just a few days later, on September 29, the Juno spacecraft that had been orbiting Jupiter since 2016 captured the closest views of Jupiter’s moon Europa in more than 20 years. The ice-covered moon is thought to contain a subsurface liquid-water ocean, making it an exciting new frontier in our search for life beyond Earth. NASA's Europa Clipper mission, which is scheduled to launch in 2024 is designed to study the moon in more detail. But until Europa Clipper arrives at the Jovian system in 2030, these observations from Juno are our best chance to get a closer look at this fascinating moon.

Learn more about Europa and why it is interesting to scientists in this talk from our Teaching Space With NASA series featuring a Europa Clipper mission scientist. Then, explore our Ocean Worlds Lesson Collection for ideas on making classroom connections.

Lessons & Resources:


October

Celebrate Halloween Like a Space Explorer

The month of October is the perfect time to get students exploring our STEM activities with a Halloween twist. Students can learn how to carve a pumpkin like a JPL engineer, take a tour of mysterious locations throughout the solar system, and dig into the geology inside their Halloween candy.

October 31 is also JPL's 86th birthday, which makes October a great time to learn more about JPL history, including the team of female mathematicians known as "human computers" who performed some of the earliest spacecraft-tracking calculations and the Laboratory's role in launching the first U.S. space satellite.

Lessons & Resources:


November

Watch a Total Lunar Eclipse

Look up in the early morning hours of November 8 to watch one of the most stunning spectacles visible from Earth: a total lunar eclipse. This one will be viewable in North and South America, as well as Asia and Australia.

Learn more about lunar eclipses and how to watch them from our Teachable Moments series. Then, get students of all ages outside and observing the Moon with lessons on moon phases and the hows and whys of eclipses. Students can even build a Moon calendar so they always know when and where to look for the next eclipse.

Lessons & Resources:

Artemis Takes a Giant Leap

NASA is making plans to send astronauts back to the Moon for the first time since 1972 – this time to establish a sustainable presence and prepare for future human missions to Mars. The first major step is Artemis I, which is testing three key components required to send astronauts beyond the Moon: the Orion spacecraft, the Space Launch System, or SLS, rocket and the ground systems at Kennedy Space Center in Florida. The uncrewed Artemis I mission marks the first test of all three components at once.

Get your K-12 students following along with lessons in rocketry and what it takes to live in space. Plus, register to follow along with the mission with resources and updates from NASA's Office of STEM Engagement.

Lessons & Resources:


December

Satellite Launches on a Mission to Follow the Water

As crucial as water is to human life, did you know that no one has ever completed a global survey of Earth’s surface water? That is about to change with the launch of the SWOT mission. SWOT, which stands for Surface Water Ocean Topography, will use a state-of-the-art radar to measure the elevation of water in major lakes, rivers, wetlands, and reservoirs. It will also provide an unprecedented level of detail on the ocean surface. This data will help scientists track how these bodies of water are changing over time and improve weather and climate models.

Engage your students in learning about Earth’s water budget and how we monitor Earth from space with these lessons. And be sure to check out our Teachable Moments article for more about the SWOT mission and the science of our changing climate.

Prepare for the Science Fair

Before you know it, it'll be science fair time. Avoid the stress of science fair prep by getting students organized and thinking about their projects before the winter recess. Start by watching our video series How to Do a Science Fair Project. A scientist and an engineer from JPL walk your students through all the steps they will need to create an original science fair project by observing the world around them and asking questions. You can also explore our science fair starter pack of lessons and projects to get students generating ideas and thinking like scientists and engineers.

Lessons & Resources:


January

Explore STEM Careers

January is the time when many of us set goals for the year ahead, so it's the perfect month to get students exploring their career goals and opportunities in STEM. Students can learn more about careers in STEM and hear directly from scientists and engineers working on NASA missions in our Teaching Space video series. Meanwhile, our news page has more on what it takes to be a NASA astronaut and what it's like to be a JPL intern.

For students already in college and pursuing STEM degrees, now is the time to start exploring internship opportunities for the summer. The deadline for JPL summer internships is in March, so it's a good idea to refresh your resume and get your application started now. Learn how to stand out with this article on how to get an internship at JPL – which also includes advice for pre-college students.

Resources:


February

Mars Rover Celebrates 2-Year 'Landiversary'

NASA's Perseverance Mars rover celebrates its "landiversary" on February 18, which marks two years since the rover made its nail-biting descent on the Red Planet. The rover continues to explore Jezero Crater using science tools to analyze rocks and soil in search of signs of ancient microbial life. As of this writing, the rover has collected twelve rock core samples that will be sent to Earth by a future mission. Perseverance even witnessed a solar eclipse! Meanwhile, the Ingenuity Mars helicopter, which the rover deployed shortly after landing, has gone on to achieve feats of its own.

The Mission to Mars Student Challenge is a great way to get students of all ages exploring STEM and the Red Planet right along with the Perseverance rover. The challenge includes seven weeks of education content that can be customized for your classroom as well as education plans, expert talks, and resources from NASA.

Lessons & Resources:


March

Take On the Pi Day Challenge

Math teachers, pie-lovers, and pun-aficionados rejoice! March 14 is Pi Day, the annual celebration of the mathematical constant used throughout the STEM world – and especially for space exploration. This year's celebration brings the 10th installment of the NASA Pi Day Challenge, featuring four new illustrated math problems involving pi along with NASA missions and science.

Explore the full collection of pi math lessons, get students learning about how we use pi at NASA, and hear from a JPL engineer on how many decimals of pi we use for space exploration at the links below.

Lessons & Resources:


April

Celebrate Earth Day With NASA

You may not immediately think of Earth science when you think of NASA, but it's a big part of what we do. Earth Day on April 22 is a great time to explore Earth science with NASA, especially as new missions are taking to the skies to study the movements of dust, measure surface water across the planet, and track tiny land movements to better predict natural disasters.

Whether you want to focus on Earth’s surface and geology, climate change, extreme weather, or the water budget, we have an abundance of lessons, student projects and Teachable Moments to guide your way.

Lessons & Resources:


May

Summer Learning Adventures

As the school year comes to a close, send your students off on an adventure of summer learning with our do-it-yourself STEM projects. Additionally, our Learning Space With NASA at Home page and video series is a great resource for parents and families to help direct students' learning during out-of-school time.

Lessons & Resources:

TAGS: K-12 Education, Teachers, Students, Lessons, Resources, Projects, Events, Artemis, Voyager, DART, Asteroids, Europa, Ocean Worlds, Halloween, History, Earth, Climate, SWOT, Lunar Eclipse, Science Fair, Career Advice, Mars, Perseverance, Pi Day, Earth Day, Summer STEM

  • Kim Orr
READ MORE

Collage of intern photos that appear in this article

Most years, summertime at NASA's Jet Propulsion Laboratory arrives with an influx of more than 800 interns, raring to play a hands-on role in exploring Earth and space with robotic spacecraft.

Perhaps as exciting as adding NASA to their resumes and working alongside the scientists and engineers they have long admired is the chance to explore the laboratory's smorgasbord of science labs, spacecraft assembly facilities, space simulators, the historic mission control center and a place called the Mars Yard, where engineers test drive Mars rovers.

But this year, as the summer internship season approached with most of JPL's more than 6,000 employees still on mandatory telework, the laboratory – and the students who were offered internships at the Southern California center – had a decision to make.

"We asked the students and the mentors [the employees bringing them in] whether their projects could still be achieved remotely and provide the educational component we consider to be so crucial to these experiences," said Adrian Ponce, deputy section manager of JPL's Education Office, which runs the laboratory's STEM internship programs.

The answer was a resounding yes, which meant the laboratory had just a matter of weeks to create virtual alternatives for every aspect of the internship experience, from accessing specialized software for studying Earth and planetary science to testing and fine-tuning the movements of spacecraft in development and preparing others for launch to attending enrichment activities like science talks and team building events.

“We were able to transition almost all of the interns to aspects of their projects that are telework-compatible. Others agreed to a future start date,” said Ponce, adding that just 2% of the students offered internships declined to proceed or had their projects canceled.

Now, JPL's 600-plus summer interns – some who were part-way through internships when the stay-at-home orders went into effect, others who are returning and many who are first-timers – are getting an extended lesson in the against-the-odds attitude on which the laboratory prides itself.

We wanted to hear about their experiences as JPL's first class of remote interns. What are their routines and home offices like in cities across the country? How have their teams adapted to building spacecraft and doing science remotely? Read a collection of their responses below to learn how JPL interns are finding ways to persevere, whether it's using their engineering skills to fashion homemade desks, getting accustomed to testing spacecraft from 2,000 miles away or working alongside siblings, kids, and pets.


In the image on the left, Jennifer Brag stands in front of a series of observatories. In the image on the right, her bird is pirched on top of open laptop.

Courtesy of Jennifer Bragg | + Expand image

"I am working with an astronomer on the NEOWISE project, which is an automated system that detects near-Earth objects, such as asteroids. The goal of my project is to identify any objects missed by the automated system and use modeling to learn more about their characteristics. My average day consists of writing scripts in Python to manipulate the NEOWISE data and visually vet that the objects in the images are asteroids and not noise or stars.

My office setup consists of a table with scattered books, papers, and pencils, a laptop, television, a child in the background asking a million questions while I work, and a bird on my shoulder that watches me at times."

– Jennifer Bragg will be studying optics at the University of Arizona as an incoming graduate student starting this August. She is completing her summer internship from Pahoa, Hawaii.


Radina Yanakieva poses in front of a model of the Curiosity Mars rover at JPL

Courtesy of Radina Yanakieva | + Expand image

"I'm helping support the Perseverance Mars rover launch this summer. So far, I have been working remotely, but I'm lucky enough to have the opportunity to go to Pasadena, California, in late July to support the launch from JPL! On launch day, I will be in the testbed, where myself and a few other members of my group will be 'shadowing' the spacecraft. This means that when operators send their commands to the actual spacecraft, when it’s on the launch pad and during its first day or so in space, we'll send the same instructions to the test-bed version. This way, if anything goes wrong, we'll have a high-fidelity simulation ready for debugging.

I have a desk in my bedroom, so my office setup is decent enough. I bought a little whiteboard to write myself notes. As for my average working day, it really depends on what I'm doing. Some days, I'm writing procedures or code, so it's a text editor, a hundred internet tabs, and a messenger to ask my team members questions. Other days, I'm supporting a shift in the test bed, so I'm on a web call with a few other people talking about the test we're doing. Luckily, a large portion of my team's work can be done on our personal computers. The biggest change has been adding the ability to operate the test bed remotely. I'm often amazed that from New York, I can control hardware in California.

I was ecstatic that I was still able to help with the Perseverance Mars rover mission! I spent the second half of 2019 working on launch and cruise testing for the mission, so I'm happy to be able to see it through."

– Radina Yanakieva is an undergraduate student studying aerospace engineering at Georgia Tech and interning from Staten Island, New York.


Aditya Khuller stands with his arms outstretched and poses in front of a model Mars rover in a garage at JPL.

Courtesy of Aditya Khuller | + Expand image

"Our team is using radar data [from the European Space Agency’s Mars Express spacecraft] to find out what lies beneath the large icy deposits on Mars' south pole. My average day consists of analyzing this radar data on my computer to find and map the topography of an older surface that lies below the ice on Mars’ south pole, while my plants look on approvingly.

I was delighted to be offered the chance to work at JPL again. (This is my fourth JPL internship.) Even though it's better to be 'on lab,' it is an honor to get to learn from the coolest and smartest people in the world."

– Aditya Khuller is a graduate student working toward a Ph.D. in planetary science at Arizona State University and interning from Tempe, Arizona.


Breanna Ivey wears a Georgia Tech T-Shirt and poses in front of a river with her arms outstretched on concrete railing.

Courtesy of Breanna Ivey | + Expand image

"I am working on the Perseverance Mars rover mission [launching this summer]. As a member of the mobility team, I am testing the rover's auto-navigation behaviors. If given a specific location, flight software should be able to return data about where that location is relative to the rover. My project is to create test cases and develop procedures to verify the data returned by the flight software when this feature is used.

My average day starts with me eating breakfast with my mom who is also working from home. Then, I write a brief plan for my day. Next, I meet with my mentor to discuss any problems and/or updates. I spend the rest of my day at my portable workstation working on code to test the rover's behaviors and analyzing the data from the tests. I have a mini desk that I either set up in my bedroom in front of my Georgia Tech Buzz painting or in the dining room.

If I could visit in person, the first thing I would want to see is the Mars rover engineering model "Scarecrow." I would love to visit the Mars Yard [a simulated Mars environment at JPL] and watch Scarecrow run through different tests. It would be so cool to see a physical representation of the things that I've been working on."

– Breanna Ivey is an undergraduate student studying electrical engineering at the Georgia Institute of Technology and interning from Macon, Georgia.


Kaelan Oldani wears her graduation gown and holds her cap while posing in front of a sign that reads 'Michigan Union.'

Courtesy of Kaelan Oldani | + Expand image

"I am working on the Psyche mission as a member of the Assembly Test and Launch Operations team, also known as ATLO. (We engineers love our acronyms!) Our goal is to assemble and test the Psyche spacecraft to make sure everything works correctly so that the spacecraft will be able to orbit and study its target, a metal asteroid also called Psyche. Scientists theorize that the asteroid is actually the metal core of what was once another planet. By studying it, we hope to learn more about the formation of Earth.

I always start out my virtual work day by giving my dog a hug, grabbing a cup of coffee and heading up to my family's guest bedroom, which has turned into my office for the summer. On the window sill in my office are a number of space-themed Lego sets including the 'Women of NASA' set, which helps me get into the space-exploration mood! Once I have fueled up on coffee, my brain is ready for launch, and I log in to the JPL virtual network to start writing plans for testing Psyche's propulsion systems. While the ATLO team is working remotely, we are focused on writing test plans and procedures so that they can be ready as soon as the Psyche spacecraft is in the lab for testing. We have a continuous stream of video calls set up throughout the week to meet virtually with the teams helping to build the spacecraft."

– Kaelan Oldani is a master's student studying aerospace engineering at the University of Michigan and interning from Ann Arbor, Michigan. She recently accepted a full-time position at JPL and is starting in early 2021.


In the image on the left, Richardo Isai Melgar poses in front of a model of the Curiosity Mars rover at JPL. In the image on the right, he kneels in front of a model Mars rover in the Mars Yard at JPL.

Courtesy of Ricardo Isai Melgar | + Expand image

"NASA's Deep Space Network is a system of antennas positioned around the world – in Australia, Spain, and Goldstone, California – that's used to communicate with spacecraft. My internship is working on a risk assessment of the hydraulic system for the 70-meter antenna at the Goldstone facility. The hydraulic system is what allows the antenna and dish surrounding it to move so it can accurately track spacecraft in flight. The ultimate goal of the work is to make sure the antenna's hydraulic systems meet NASA standards.

My average day starts by getting ready for work (morning routine), accessing my work computer through a virtual interface and talking with my mentor on [our collaboration tool]. Then, I dive into work, researching hydraulic schematics, JPL technical drawings of the antenna, and NASA standards, and adding to a huge spreadsheet that I use to track every component of the antenna's hydraulic system. Currently, I'm tracking every flexible hydraulic fluid hose on the system and figuring out what dangers a failure of the hose could have on personnel and the mission."

– Ricardo Isai Melgar is an undergraduate student studying mechanical engineering at East Los Angeles College and interning from Los Angeles.


Susanna Eschbach poses in front of a mirrored background.

Courtesy of Susanna Eschbach | + Expand image

"My project this summer is to develop a network of carbon-dioxide sensors to be used aboard the International Space Station for monitoring the levels of carbon dioxide that crewmembers experience.

My 'office setup' is actually just a board across the end of my bed balanced on the other side by a small dresser that I pull into the middle of the room every day so that I can sit and have a hard surface to work on.

At first I wasn't sure if I was interested in doing a virtual engineering internship. How would that even work? But after talking to my family, I decided to accept. Online or in person, getting to work at JPL is still a really cool opportunity."

– Susanna Eschbach is an undergraduate student studying electrical and computer engineering at Northern Illinois University and interning from DeKalb, Illinois.


Izzie Torres poses in front of an ancient pyramid.

Courtesy of Izzie Torres | + Expand image

"I'm planning test procedures for the Europa Clipper mission [which is designed to make flybys of Jupiter's moon Europa]. The end goal is to create a list of tests we can perform that will prove that the spacecraft meets its requirements and works as a whole system.

I was very excited when I got the offer to do a virtual internship at JPL. My internship was originally supposed to be with the Perseverance Mars rover mission, but it required too much in-person work, so I was moved to the Europa Clipper project. While I had been looking forward to working on a project that was going to be launching so soon, Jupiter's moon Europa has always captured my imagination because of the ocean under its surface. It was an added bonus to know I had an internship secured for the summer."

– Izzie Torres is an undergraduate student studying aerospace engineering and management at MIT and interning from Seattle.


Jared Blanchard poses in front of a visualization in the VIVID lab at JPL.

Courtesy of Jared Blanchard | + Expand image

"I am investigating potential spacecraft trajectories to reach the water worlds orbiting the outer planets, specifically Jupiter's moon Europa. If you take both Jupiter and Europa into account, their gravitational force fields combine to allow for some incredibly fuel-efficient maneuvers between the two. The ultimate goal is to make it easier for mission designers to use these low-energy trajectories to develop mission plans that use very little fuel.

I'm not a gamer, but I just got a new gaming laptop because it has a nice graphics processing unit, or GPU. During my internship at JPL last summer, we used several GPUs and a supercomputer to make our trajectory computations 10,000 times faster! We plan to use the GPU to speed up my work this summer as well. I have my laptop connected to a second monitor up in the loft of the cabin where my wife and I are staying. We just had a baby two months ago, so I have to make the most of the quiet times when he's napping!"

– Jared Blanchard is a graduate student working toward a Ph.D. in aeronautics and astronautics at Stanford University.


Yohn Ellis, wearing a suit and tie, poses in front of yellow and gold balloons.

Courtesy of Yohn I. Ellis Jr. | + Expand image

"I'm doing a theory-based project on the topic of nanotechnology under the mentorship of Mohammad Ashtijou and Eric Perez.

I vividly remember being infatuated with NASA as a youth, so much so that my parents ordered me a pamphlet from Space Center Houston with posters and stickers explaining all of the cool things happening across NASA. I will never forget when I was able to visit Space Center Houston on spring break in 2009. It was by far the most amazing thing I have ever witnessed as a youth. When I was offered the internship at JPL, I was excited, challenged, and motivated. There is a great deal of respect that comes with being an NASA intern, and I look forward to furthering my experiences.

But the challenges are prevalent, too. Unfortunately, the internship is completely virtual and there are limitations to my experience. It is hard working at home with the multiple personalities in my family. I love them, but have you attempted to conduct research with a surround system of romantic comedies playing in the living room, war video games blasting grenades, and the sweet voice of your grandmother asking for help getting pans from the top shelf?"

– Yohn I. Ellis Jr. is a graduate student studying electrical engineering at Prairie View A&M University and interning from Houston.


Mina Cezairli wears a NASA hat and poses in front of a landscape of green mountains a turqoise ocean and puffy white and grey clouds.

Courtesy of Mina Cezairli | + Expand image

"This summer, I am supporting the proposal for a small satellite mission concept called Cupid’s Arrow. Cupid’s Arrow would be a small probe designed to fly through Venus’ atmosphere and collect samples. The ultimate goal of the project is to understand the “origin story” of Venus' atmosphere and how, despite their comparable sizes, Earth and Venus evolved so differently geologically, with the former being the habitable, friendly planet that we call home and the latter being the hottest planet in our solar system with a mainly carbon dioxide atmosphere.

While ordinary JPL meetings include discussions of space probes, rockets, and visiting other planets, my working day rarely involves leaving my desk. Because all of my work can be done on my computer, I have a pretty simple office setup: a desk, my computer, and a wall full of posters of Earth and the Solar System. An average day is usually a combination of data analysis, reading and learning about Venus, and a number of web meetings. The team has several different time zones represented, so a morning meeting in Pacific time accommodates all of Pacific, Eastern and European time zones that exist within the working hours of the team."

– Mina Cezairli is an undergraduate student studying mechanical engineering at Yale University and is interning from New Haven, Connecticut.


Izabella Zamora sits on steps leading up to a building with pumpkins decorating the steps to her right.

Courtesy of Izabella Zamora | + Expand image

“I'm characterizing the genetic signatures of heat-resistant bacteria. The goal is to improve the techniques we use to sterilize spacecraft to prevent them from contaminating other worlds or bringing contaminants back to Earth. Specifically, I'm working to refine the amount of time spacecraft need to spend getting blasted by dry heat as a sanitation method.

"As someone who has a biology-lab heavy internship, I was quite skeptical of how an online internship would work. There was originally supposed to be lab work, but I think the project took an interesting turn into research and computational biology. It has been a really cool intersection to explore, and I have gained a deeper understanding of the math and analysis involved in addition to the biology concepts."

– Izabella Zamora is an undergraduate student studying biology and computer science at the Massachusetts Institute of Technology and interning from Brimfield, Massachusetts.


Leilani Trautman poses for a photo at an outside table. The back of her open laptop has dozens of stickers attached to it, including a NASA meatball.

Courtesy of Leilani Trautman | + Expand image

"I am working on the engineering operations team for the Perseverance Mars rover. After the rover lands on Mars, it will send daily status updates. Every day, an engineer at JPL will need to make sure that the status update looks healthy so that the rover can continue its mission. I am writing code to make that process a lot faster for the engineers.

When I was offered the internship back in November, I thought I would be working on hardware for the rover. Once the COVID-19 crisis began ramping up and I saw many of my friends' internships get cancelled or shortened, I was worried that the same would happen to me. One day, I got a call letting me know that my previous internship wouldn't be possible but that there was an opportunity to work on a different team. I was so grateful to have the opportunity to retain my internship at JPL and get the chance to work with my mentor, Farah Alibay, who was once a JPL intern herself."

– Leilani Trautman is an undergraduate student studying electrical engineering and computer science at MIT and interning from San Diego, California.


Kathryn Chamberlin poses for an outdoor photo in front of a green hedge.

Courtesy of Kathryn Chamberlin | + Expand image

"I am working on electronics for the coronagraph instrument that will fly aboard the Nancy Grace Roman Space Telescope. The Roman Space Telescope will study dark energy, dark matter, and exoplanets [planets outside our solar system]. The science instrument I'm working on will be used to image exoplanets. It's also serving as a technology demonstration to advance future coronagraphs [which are instruments designed to observe objects close to bright stars].

I was both nervous and excited to have a virtual internship. I’m a returning intern, continuing my work on the coronagraph instrument. I absolutely love my work and my project at JPL, so I was really looking forward to another internship. Since I’m working with the same group, I was relieved that I already knew my team, but nervous about how I would connect with my team, ask questions, and meet other 'JPLers.' But I think my team is just as effective working virtually as we were when working 'on lab.' My mentor and I have even figured out how to test hardware virtually by video calling the engineer in the lab and connecting remotely into the lab computer."

– Kathryn Chamberlin is an undergraduate student studying electrical engineering at Arizona State University and interning from Phoenix.


Daniel Stover is shown in a screengrab from a web meeting app pointing to an illustration of the Perseverance Mars rover.

Courtesy of Daniel Stover | + Expand image

"I am working on the flight system for the Perseverance Mars rover. The first half of my internship was spent learning the rules of the road for the entire flight system. My first task was updating command-line Python scripts, which help unpack the data that is received from the rover. After that, I moved on to testing a part of the flight software that manages which mechanisms and instruments the spacecraft can use at a certain time. I have been so grateful to contribute to the Perseverance Mars rover project, especially during the summer that it launches!

I have always been one to be happy with all the opportunities I am granted, but I do have to say it was hard to come to the realization that I would not be able to step foot on the JPL campus. However, I was truly grateful to receive this opportunity, and I have been so delighted to see the JPL spirit translate to the online video chats and communication channels. It's definitely the amazing people who make JPL into the place that everybody admires. Most important, I would like to thank my mentor, Jessica Samuels, for taking the time to meet with me every day and show me the true compassion and inspiration of the engineers at JPL."

– Daniel Stover is an undergraduate student studying electrical and computer engineering at Virginia Tech and interning from Leesburg, Virginia.


In the image on the left, Sophia Yoo poses for a selfie. In the image on the right, her laptop, mouse, headphones and open notebook are shown at a table outside surrounded by a wooden porch and a green landscape.

Courtesy of Sophia Yoo | + Expand image

"I'm working on a project called the Multi-Angle Imager for Aerosols, or MAIA. It's an instrument that will go into lower Earth orbit and collect images of particulate matter to learn about air pollution and its effects on health. I'm programming some of the software used to control the instrument's electronics. I'm also testing the simulated interface used to communicate with the instrument.

I was ecstatic to still have my internship! I'm very blessed to be able to do all my work remotely. It has sometimes proven to be a challenge when I find myself more than four layers deep in virtual environments. And it can be confusing to program hardware on the West Coast with software that I wrote all the way over here on the East Coast. However, I've learned so much and am surprised by and grateful for the meaningful relationships I've already built."

– Sophia Yoo is an incoming graduate student studying electrical and computer engineering at Princeton University and is interning from Souderton, Pennsylvania.


Natalie Maus can be seen in the right corner of the image as she looks at a graph on her laptop.

Courtesy of Natalie Maus | + Expand image

"My summer research project is focused on using machine-learning algorithms to make predictions about the density of electrons in Earth’s ionosphere [a region of the planet's upper atmosphere]. Our work seeks to allow scientists to forecast this electron density, as it has important impacts on things such as GPS positioning and aircraft navigation.

Despite the strangeness of working remotely, I have learned a ton about the research process and what it is like to be part of a real research team. Working alongside my mentors to adapt to the unique challenges of working remotely has also been educational. In research, and in life, there will always be new and unforeseen problems and challenges. This extreme circumstance is valuable in that it teaches us interns the importance of creative problem solving, adaptability, and making the most out of the situation we are given."

– Natalie Maus is an undergraduate student studying astrophysics and computer science at Colby College and interning from Evergreen, Colorado.


Lucas Lange wears hiking gear and poses next to an American Flag at the top of a mountain with a valley visible in the background.

Courtesy of Lucas Lange | + Expand image

"I have two projects at JPL. My first project focuses on the Europa Clipper mission [designed to make flybys of Jupiter's moon Europa]. I study how the complex topography on the icy moon influences the temperature of the surface. This work is crucial to detect 'hot spots,' which are areas the mission (and future missions) aim to study because they might correspond to regions that could support life! My other work consists of studying frost on Mars and whether it indicates the presence of water-ice below the surface.

JPL and NASA interns are connected through social networks, and it's impressive to see the diversity. Some talks are given by 'JPLers' who make themselves available to answer questions. When I came to JPL, I expected to meet superheroes. This wish has been entirely fulfilled. Working remotely doesn't mean working alone. On the contrary, I think it increases our connections and solidarity."

– Lucas Lange is an undergraduate student studying aerospace engineering and planetary science at ISAE-SUPAERO [aerospace institute in France] and interning from Pasadena, California.


Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, College Students, Virtual Internships, Telework, Mars 2020 interns, Mars 2020, Perseverance, DSN, Deep Space Network, Mars, Asteroids, NEOWISE, Science, Technology, Engineering, Computer Science, Psyche, International Space Station, ISS, Europa, Jupiter, Europa Clipper, trajectory, nanotechnology, Cupid's Arrow, Proposal, Venus, Planetary Protection, Biology, Nancy Grace Roman Space Telescope, Dark Matter, Exoplanets, Multi-Angle Imager for Aerosols, MAIA, Earth, Earth science, air pollution, Hispanic Heritage Month, Black History Month, Asian Pacific American Heritage Month, Earth Science, Earth, Climate Change, Sea Level Rise

  • Kim Orr
READ MORE

Lean Teodoro at JPL

When Lean Teodoro was growing up on the remote island of Saipan in the middle of the Pacific Ocean, her dream of one day working for NASA always seemed a bit far-fetched to those around her. Now, a geophysics student on the premed track at the University of Hawaii and a summer 2018 intern at NASA’s Jet Propulsion Laboratory, Teodoro is making her dream a reality. This summer, she took a short break from her internship searching for asteroids with NASA’s NEOWISE team to tell us about her career journey so far, what inspired her to study STEM and how she hopes to play a role in human space exploration of the future.

What are you working on at JPL?

I work with the NEOWISE team, the Near-Earth Object Wide-field Infrared Survey Explorer. My focus is on near-Earth asteroids. I do a lot of image analysis and processing. Not all of the time do asteroids get detected through our automated system, so my job is to look at archives to find previously undetected asteroids.

What is a near-Earth object and how do you look for them?

Near-Earth objects are objects [such as asteroids and comets] that are very near to Earth's orbit. There are other asteroids that are located roughly between the orbits of Mars and Jupiter, but my focus is on those that are closer to Earth. The way that we detect them is we have this [space telescope called NEOWISE] that surveys the sky in two wavelengths. It senses the heat of asteroids. So I look at images from NEOWISE and, if I see a red dot that is bright, then that's usually an asteroid. But I go through several search techniques to see if the signal-to-noise ratio is good. So there are several processes that work.

NASA's asteroid-hunting NEOWISE mission uses infrared to detect and characterize asteroids and comets. Since the mission was restarted in December 2013, NEOWISE has observed or detected more than 29,000 asteroids in infrared light, of which 788 were near-Earth objects. Credit: NASA/JPL-Caltech | Watch on YouTube

What is the ultimate goal of the project?

My ultimate goal is to try to increase the number of known near-Earth objects so that, in the future, we can get more precise measurements for their positions and movements -- just in case they pose a risk to Earth.

What's an average day like for you?

I go through, I'd say, hundreds of images per day. I also took part in a side project where I had to get the measurements of an asteroid that was observed 39 years before it was officially discovered. We looked at this astronomical plate from the 1950s. You can see a very small arrow pointing to an asteroid. Positions for the asteroid hadn’t been discovered yet, so my job was also to find those. It had a lot to do with coding and I had very little experience with coding, so it was nice.

What other skills have you been able to pick up at JPL?

My major is geophysics, so I had little knowledge about astronomy. My whole research team exposed me to an exciting world of astronomy, so that was really nice. They were very encouraging. I've learned so much more about astronomy this summer than I did throughout my whole undergrad career. I mean, there is some connection between geophysics and astronomy, in a way, but this summer, I really learned so much.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

You grew up on the remote island of Saipan in the Northern Mariana Islands. How did you get exposed to STEM and what got interested in pursuing it as a career?

When I was young, my dad would always make us go fly kites at night on the beach. There was this one night where I was just looking at the Moon. I was like, "Oh my god, I really want to learn more about astronomy.” I think since then, I've been interested in STEM. But when you're coming from a really small island, you feel very limited. So I didn't have that strong foundation in STEM. And that's the reason why I wanted to move off the island -- because I knew that I couldn't get the opportunities if I stayed. That's the reason I moved to the University of Hawaii. They have a strong geology and geophysics program, and it's a great research university. Since I started there, I've been doing research related to NASA -- like the NASA Hawaii Space Grant Consortium. I feel like if I didn't move to the University of Hawaii, I wouldn't be where I am today, interning at JPL.

So you moved from one island to another?

[Laughs.] Yeah, I couldn't leave the island vibe, I guess. I think it's just a little closer to home. I feel more at home when I'm in Hawaii. Not only that, but also they have a great program, so that was a plus, too. And they have close affiliations with NASA, so that was really great, because my goal was to work for NASA.

Was it a challenge to move away from the island where you grew up?

It was definitely a challenge leaving family and friends behind. I was there on my own. The reason why I chose the University of Hawaii is because of their program. I had a really hard time choosing my major because I was interested in health, but I was interested in geology as well. I'm doing premed as well [as geology and geophysics]. I'm really interested in how humans or organisms can adapt to extreme environments and in learning about geology – for example on Mars – and health, and seeing how we can combine those two fields to contribute to future human space exploration.

JPL intern Lean Teodoro with her mentors

Teodoro's first mentor at the University of Hawaii, Heather Kaluna (middle), helped connect her with JPL scientist Joseph Masiero (left) for an internship at the laboratory. Photo courtesy Lean Teodoro | + Expand image

What do your family and people back home think of your career path?

It's so funny because I remember, in middle school, I would always tell my friends and family how I wanted to work for NASA, and they would laugh about it because I don't think anyone back home has ever done something big like that. Having them see me working here -- it just kind of opened their eyes, like, “Wow, it's possible,” you know? Most of the time, people back home just stay for financial reasons. It was really expensive moving to Hawaii. But I really wanted to do it. So here I am, and I'm so happy.

Did you know that we have a group of student teachers from the Northern Mariana Islands that has come to NASA’s MUREP Educator Institute at JPL the past couple summers?

Yeah! So three weeks ago, I was walking to my office, and I saw a few friends from back home. I was like, “Oh my god, what are you guys doing here?” We all went to the same high school and everything! They were telling me about that whole program. I was like, “Oh my god, I feel so happy. That's so great.” The chances -- it was mind-blowing. I'm so happy for them. I'm really excited for the future of Saipan and the whole Northern Mariana Islands.

What's the most JPL- or NASA-unique experience you've had so far?

Of all the internships I've had in the past, JPL is really unique because everyone is just so passionate about the work that they do, so it really rubs off on you. Not only that, but also the intern community here is just amazing. And not only the interns, but also my mentors and the other scientists and engineers I've met. I've made so many friends throughout my summer here from all over the nation and all over the world, which is nice because I'm from this small island, and it just makes me realize how big the world is.

I feel like interning at JPL builds a foundation for me. And with my mentors here at JPL and in Hawaii, I do feel more confident in being a minority and a woman in STEM. I feel more driven to be successful and to inspire people from back home to go and pursue what they want to do. Don't let the confinements of your environment stop you from what you want to do.

What’s your ultimate career goal?

My ultimate goal is to try and contribute to future human space exploration. That's what I really want to do. I'm still trying to figure out how I can pave my path by combining health and geosciences. We'll see how it goes.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Women in STEM, Internships, Higher Education, Science, Astronomy, Asteroids and Comets, NEOWISE, Asian Pacific American Heritage Month, Asteroids, Women at NASA

  • Kim Orr
READ MORE

Pi in the Sky 5 promo graphic

Update: March 15, 2018 – The answers to the 2018 NASA Pi Day Challenge are here! View the illustrated answer key


In the News

Pi in the Sky 5

The 2018 NASA Pi Day Challenge

Can you solve these stellar mysteries with pi? Click to get started.

Pi Day, the annual celebration of one of mathematics’ most popular numbers, is back! Representing the ratio of a circle’s circumference to its diameter, pi has many practical applications, including the development and operation of space missions at NASA’s Jet Propulsion Laboratory.

The March 14 holiday is celebrated around the world by math enthusiasts and casual fans alike – from memorizing digits of pi (the current Pi World Ranking record is 70,030 digits) to baking and eating pies.

JPL is inviting people to participate in its 2018 NASA Pi Day Challenge – four illustrated math puzzlers involving pi and real problems scientists and engineers solve to explore space, also available as a free poster! Answers will be released on March 15. 

Why March 14?

Pi is what’s known as an irrational number, meaning its decimal representation never ends and it never repeats. It has been calculated to more than one trillion digits, but NASA scientists and engineers actually use far fewer digits in their calculations (see “How Many Decimals of Pi Do We Really Need?”). The approximation 3.14 is often precise enough, hence the celebration occurring on March 14, or 3/14 (when written in U.S. month/day format). The first known celebration occurred in 1988, and in 2009, the U.S. House of Representatives passed a resolution designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi.

NASA’s Pi Day Challenge

Pi in the Sky 5

Lessons: Pi in the Sky

Explore the entire NASA Pi Day Challenge lesson collection, including free posters and handouts!

To show students how pi is used at NASA and give them a chance to do the very same math, the JPL Education Office has once again put together a Pi Day challenge featuring real-world math problems used for space exploration. This year’s challenge includes exploring the interior of Mars, finding missing helium in the clouds of Jupiter, searching for Earth-size exoplanets and uncovering the mysteries of an asteroid from outside our solar system.

Here’s some of the science behind this year’s challenge:

Scheduled to launch May 5, 2018, the InSight Mars lander will be equipped with several scientific instruments, including a heat flow probe and a seismometer. Together, these instruments will help scientists understand the interior structure of the Red Planet. It’s the first time we’ll get an in-depth look at what’s happening inside Mars. On Earth, seismometers are used to measure the strength and location of earthquakes. Similarly, the seismometer on Insight will allow us to measure marsquakes! The way seismic waves travel through the interior of Mars can tell us a lot about what lies beneath the surface. This year’s Quake Quandary problem challenges students to determine the distance from InSight to a hypothetical marsquake using pi!

Also launching in spring is NASA’s Transiting Exoplanet Survey Satellite, or TESS, mission. TESS is designed to build upon the discoveries made by NASA’s Kepler Space Telescope by searching for exoplanets – planets that orbit stars other than our Sun. Like Kepler, TESS will monitor hundreds of thousands of stars across the sky, looking for the temporary dips in brightness that occur when an exoplanet passes in front of its star from the perspective of TESS. The amount that the star dims helps scientists determine the radius of the exoplanet. Like those exoplanet-hunting scientists, students will have to use pi along with data from Kepler to find the size of an exoplanet in the Solar Sleuth challenge.

Jupiter is our solar system’s largest planet. Shrouded in clouds, the planet’s interior holds clues to the formation of our solar system. In 1995, NASA’s Galileo spacecraft dropped a probe into Jupiter’s atmosphere. The probe detected unusually low levels of helium in the upper atmosphere. It has been hypothesized that the helium was depleted out of the upper atmosphere and transported deeper inside the planet. The extreme pressure inside Jupiter condenses helium into droplets that form inside a liquid metallic hydrogen layer below. Because the helium is denser than the surrounding hydrogen, the helium droplets fall like rain through the liquid metallic hydrogen. In 2016, the Juno spacecraft, which is designed to study Jupiter’s interior, entered orbit around the planet. Juno’s initial gravity measurements have helped scientists better understand the inner layers of Jupiter and how they interact, giving them a clearer window into what goes on inside the planet. In the Helium Heist problem, students can use pi to find out just how much helium has been depleted from Jupiter’s upper atmosphere over the planet’s lifetime.

In October 2017, astronomers spotted a uniquely-shaped object traveling in our solar system. Its path and high velocity led scientists to believe ‘Oumuamua, as it has been dubbed, is actually an object from outside of our solar system – the first ever interstellar visitor to be detected – that made its way to our neighborhood thanks to the Sun’s gravity. In addition to its high speed, ‘Oumuamua is reflecting the Sun’s light with great variation as the asteroid rotates on its axis, causing scientists to conclude it has an elongated shape. In the Asteroid Ace problem, students can use pi to find the rate of rotation for ‘Oumuamua and compare it with Earth’s rotation rate.

Explore More

Join the Conversation

Standards-Aligned Lessons

Multimedia

Facts and Figures

Missions

Websites

TAGS: Pi Day, Math, Science, Engineering, NASA Pi Day Challenge, K-12, Lesson, Activity, Slideshow, Mars, Jupiter, Exoplanets, Kepler, Kepler-186f, Juno, InSight, TESS, ‘Oumuamua, asteroid, asteroids, NEO, Nearth Earth Object

  • Lyle Tavernier
READ MORE

An rocky asteroid with a large crater fills most of the frame of this hazy, blue-toned illustration.

In the News

On April 19, an asteroid named 2014 JO25 will safely fly by Earth, passing at a distance of about 1.1 million miles (1.8 million kilometers) of the planet. This asteroid poses no threat to Earth and, in fact, asteroids safely fly by Earth quite regularly. What makes the upcoming close approach of asteroid 2014 JO25 unique is that it is a rather large asteroid, measuring about 2,000 feet (more than 600 meters) across. The last time an asteroid that large, or larger, came that close to Earth was in 2004. Not much is known about asteroid 2014 JO25 other than its approximate size, its trajectory (or path around the sun) and that its surface is about twice as reflective as that of the moon. When it passes by, the asteroid will be bright enough that small optical telescopes can be used to spot it in the night sky. Scientists around the world will also study the asteroid with telescopes to determine its composition and rotation and with radar that could reveal small surface features.

Modeling an Asteroid Lesson - NASA/JPL Education

Asteroid Resources for Educators

Explore our collection of standards-aligned lessons all about asteroids!

› View Asteroid Lessons from NASA!

Why It's Important

Asteroids are some of what remains of the material that formed our solar system about 4.6 billion years ago. Unchanged by the forces that have altered rocks on our home planet, the moon, Mars and other destinations around the solar system, asteroids provide a glimpse into what conditions were like when our solar system took shape. Studying the chemical and physical properties, as well as the location and motion of asteroids, is vital to helping us understand how the sun, planets and other solar system bodies came to be.

The study of asteroids is so important, in fact, that NASA has sent several spacecraft to study some of these objects up close. For example, in 2007, the Dawn mission was sent to explore the two largest objects in the asteroid belt, Vesta and Ceres. Dawn arrived at the giant protoplanet Vesta in 2011 and orbited it for about one year before flying to the dwarf planet Ceres, which it continues to orbit and study today. Data from the Dawn mission showed Vesta to be a fascinating world more closely related to terrestrial planets than to typical asteroids and revealed clues that indicate there is a large amount of ice and maybe subsurface liquid water on Ceres. In 2016, NASA launched a spacecraft called OSIRIS-REx, which is headed for an asteroid called Bennu. When it arrives in August 2018, OSIRIS-REx will map the asteroid and collect a sample to return to Earth.

Learn more about NASA's OSIRIS-REx spacecraft and its mission to asteroid Bennu.

But there is another reason studying asteroids and their movements is important: detecting nearby asteroids and predicting any hazard they might pose to Earth.

This graphic shows the orbits of all the known 'potentially hazardous asteroids,' numbering over 1,400 as of early 2013.

This graphic shows the orbits of all the known "potentially hazardous asteroids," numbering over 1,400 as of early 2013. Being classified as a potentially hazardous asteroid does not mean that an asteroid will impact Earth. None of these asteroids depicted is a worrisome threat over the next hundred years. By continuing to observe and track these asteroids, their orbits can be refined and more precise predictions made of their future close approaches and impact probabilities. Image credit: NASA/JPL-Caltech | › Full image and caption

Both 2014 JO25 and Bennu are considered near-Earth objects, meaning their orbits bring them closer than 1.3 astronomical units (AU) from the sun. For comparison, Earth is 1 AU from the sun, or about 93,000,000 miles (150,000,000 kilometers). Also, both asteroids are classified as “potentially hazardous.” A potentially hazardous asteroid is one with an orbit that comes within 0.05 AU (about 4,650,000 miles or 7,480,000 km) of Earth’s orbit and has an absolute magnitude, a measure of brightness, of 22 or less. (On the magnitude scale, the lower the number, the brighter the object.) Absolute magnitude can be an indicator of size, so in other words, potentially hazardous asteroids are large – typically larger than about 500 feet (140 meters) across – and could get close to Earth. Having a designation of “potentially hazardous” does not necessarily indicate the object is a threat to Earth. Scientists use the classification to indicate an object deserves increased attention.

Out of more than 730,000 known asteroids, about 16,000 are near-Earth objects, and there are currently 1,784 potentially hazardous asteroids. But the risks of a large asteroid like 2014 JO25 or Bennu impacting Earth are exceedingly rare. And thanks to the Center for Near Earth Object Studies, or CNEOS, at NASA’s Jet Propulsion Laboratory, we have a very good understanding of where many of these asteroids are and where they are headed. Supporting NASA’s Planetary Defense Coordination Office, CNEOS continually uses new data acquired by telescopes and submitted to the Minor Planet Center to update orbit calculations, analyzes asteroid impact risks over the next century and provides data for every near-Earth object.

How It Works

animated gif of asteroid 2013 MZ5 moving in a fixed background of stars

This animated gif shows asteroid 2013 MZ5 as seen by the University of Hawaii's PanSTARR-1 telescope. The asteroid moves relative to a fixed background of stars. Asteroid 2013 MZ5 is in the right of the first image, towards the top, moving diagonally left/down. Image credit: PS-1/UH

Detecting near-Earth objects, or NEOs, is done by comparing multiple images, taken several minutes apart, of the same region of the sky. The vast majority of the objects appearing in these images are stars and galaxies, and their positions are fixed in the same relative position on all the images. Because a moving near-Earth object would be in a slightly different position on each image while the background stars and galaxies are in the same positions, it can be easy to identify the moving target if it is bright enough.

Surveys done by NASA-supported ground-based telescopes – including Pans-STARRS1 in Maui, Hawaii, as well as the Catalina Sky Survey near Tucson, Arizona – have identified thousands of near-Earth objects. And a space-based telescope called NEOWISE has identified hundreds of others while scanning the skies at near-infrared wavelengths of light from its polar orbit around Earth. Many ground-based telescopes perform follow-up observations to further aid in orbit calculations and to study the physical properties of the objects.

One of the ways that NASA detects and tracks asteroids is with a space telescope called NEOWISE. The spacecraft uses infrared to detect and characterize asteroids and comets. Since December 2013, NEOWISE has discovered 72 near-Earth objects and characterized 439 others. Credit: NASA-JPL/Caltech

Once a near-Earth object is detected, its orbital characteristics are analyzed and astronomers determine if it is a potentially hazardous asteroid. This information is entered into CNEOS’ database, where it is continually updated and impact risks are monitored as new data becomes available.

Teach It

Asteroid 2014 JO25 won’t be this close for another 500 years, so now is a great opportunity to share this close approach with students and remind them that while it’s a close encounter by space standards, Earthlings need not be concerned. Try these standards-aligned lessons and activities with students:

  • Grades 1-6: Whip Up a Moon-Like Crater - Use baking ingredients to whip up a moon-like crater as an asteroid-impact demonstration for students. This activity works in classrooms, camps and at home.

  • Grades 3-5: Modeling an Asteroid - Students will shape their own asteroid models out of clay as a hands-on lesson in how asteroids form, what they are made of, and where they can be found in our solar system.

  • Grades 8-12: Math Rocks: A Lesson in Asteroid Dynamics - Students use math to investigate a real-life asteroid impact.

  • All ages: If you have a telescope, consider trying to view the asteroid at night. You’ll have to know where to look. Solar System Ambassador Eddie Irizarry shares how to find 2014 JO25 here. If you’re looking for more technical information about its location, use JPL’s Solar System Dynamics site to find the asteroid’s ephemeris.

Follow @AsteroidWatch on Twitter or visit the NASA Asteroid Watch website to find out more about upcoming close approaches.

Explore More

TAGS: Asteroid Flyby, Asteroids, Near-Earth Objects, NEOs, Asteroid 2014 JO25, Dawn, OSIRIS-REx, NEOWISE, Asteroid TM

  • Lyle Tavernier
READ MORE