Meet JPL Interns | September 24, 2020
This Summer Intern Built a Spacecraft in Her Apartment
It sounds like a reality show: A team of six interns working remotely from their homes across the country given 10 weeks to build a prototype lunar spacecraft that can launch on a balloon over the California desert. But for Christine Yuan, a senior at Cornell University, it was just another engineering challenge.
This summer marked Yuan's second time interning with the Innovation to Flight group at NASA's Jet Propulsion Laboratory. The group brings in a collaborative team of a dozen or more interns each year. Their task is to create and test prototypes of far-flung ideas for spacecraft and space technology over the course of their internship. But this summer, with most of JPL's employees still on mandatory telework and interns required to complete their projects remotely, the team had an even bigger challenge to overcome: How could they build a spacecraft together while hundreds of miles apart?
Yuan flashed back to her days using materials from around the house to build props and costumes from her favorite TV shows and games. It was what made her want to become a mechanical engineer in the first place. She had a 3D printer and tools in the apartment she shares with a friend from school. So it was decided. She would build the spacecraft in her apartment and mail it in parts to the other interns working on electronics and software from their respective homes.
We caught up with Yuan to learn how she and the team took on the challenge of building a spacecraft from home, how her childhood hobby served as inspiration, and to find out whether the test flight was a success.
What are you working on at JPL?
I'm an intern with the Innovation to Flight group, which is a team of interns that works with JPL engineers and scientists to take ideas for new kinds of technology or spacecraft from ideation to flight in one summer. The goal is to quickly develop prototypes to see whether an idea is feasible and increase the technical readiness level of various hardware. I was part of the group last summer, too. This summer, we've been split into two groups. The group I'm working with is exploring whether we might be able to use a constellation of CubeSats [small, low-cost satellites] to support robots and astronauts on the Moon. So we're building prototypes of the CubeSats and the communications and navigation technology.
How might CubeSats support astronauts and robots on the Moon?
The goal is to have a couple of these CubeSats orbiting the Moon that can assist with various surface operations, whether it's a rover or a small robot or an astronaut trying to communicate. There are a couple parts to it. One is localization, the ability to figure out where you are on the Moon – sort of like our GPS on Earth – so different assets know where they are relative to each other. The other part is communication. If you're collecting data, the data could be sent from the surface assets to the CubeSats to another surface asset or ground station. The CubeSats could take away a lot of the onboard processing that needs to happen so assets on the Moon could use less processing power.
You're interning remotely this summer. Are you actually building the CubeSat?
Yeah. On the CubeSat team, there are six of us, so we have a couple of people working on the software and then a few of us are working on building the CubeSat itself. I have a lot of tools and a 3D printer, so I'm working on designing the structure and then prototyping it using the stuff I have at home. The team has been getting materials out to me, and I've been printing stuff on my 3D printer and building it out. Then I've been mailing out parts to our avionics people so they can load it up with all the electronics.
Wow. That's so cool. Are you building all of this at home or in your dorm room? Are the people living with you wondering what you're up to?
I spent the first half of the summer in my parents' house, so I was operating out of their garage. Now that I'm back at school, I work from my apartment. I'm living with one of my friends right now. She's also in the aerospace field so she has an idea of what I'm doing. Most of the time we're just working in our rooms, but I normally have a bit more of a "dynamic" going on in my room.
How has the team adjusted to working remotely?
Half the team is returning from last summer, so we've worked together before. But when we were at JPL, it was easier because we could walk back and forth with parts and hand things off.
When we were planning for the summer, we were talking about the different options that we had. I like to build things in my free time, so I have a bunch of different tools. I'm a mechanical engineer, so I was going to be working on the structure anyway. So I said, "I'll build the structure, ship it in pieces to the rest of the team, and give them a detailed explanation or a CAD model so they can assemble it." Our software and electronics guys are coding everything and sharing their files. Two of the team members are roommates this summer, which is really convenient. They're working on the electronics and avionics out of the basement at one of their family's homes. Then, we're just constantly messaging with each other. We talk at least once a day. It helps that we're a small team.
What's your average day like?
I'm on the East Coast, so the time difference hasn't affected me too badly. I wake up, work out, and then I start work. In the morning, I'll check in with different members of the team. I like to have a to-do list, so I normally have one for the week. Depending on what I need to do, my day ranges anywhere from trying to figure out what I need to prototype next to 3D printing something or drilling holes in this or that. I use any downtime to talk to other team members, figure out what they're doing.
How has the remote experience compared with last summer, when you were at JPL in person?
The most disappointing thing was not being able to be at JPL in person with everyone. Last summer, there were about 15 of us all working in the same room together. We'd have big brainstorming meetings, all getting together and working on the white board. It was kind of a chaotic, loud mess, but it was a lot of fun, and we got a lot of work done. I was always moving around, always talking to somebody, always building something or testing something. I really enjoyed working on a team like that. It was very fast-paced.
This summer, it's a little more difficult, because I haven't met half the team members in person, and it's just slower. We're shipping things to one another and some of us are in different time zones. It's just been a little more difficult to get things done as fast. Another big change is that at the end of last summer, we had two flight tests. We launched one of our prototypes on a tethered balloon, and then we tested some of our other projects on a high-altitude balloon. We're not going to get to do that in person this summer.
Do you feel like you still have that team comradery even though you're apart this summer?
Definitely. Half the people are returning from last summer, so we're still pretty tight, and we're all in this together. It may not be as dynamic and as fast-paced as last summer, but we're building something together pretty well and pretty quickly.
What are you studying in school, and what got you interested in that field?
I'm studying mechanical engineering. I got into mechanical engineering for a variety of reasons. When I was younger, I was a huge nerd – I still am. I would spend my summers in my parents' basement, making costumes and props from my favorite movies and TV shows. I realized that I really liked making things. I liked putting things together and seeing them work. I also think space is really cool. I want to be able to tell my future kids and grandkids, "I worked on projects that helped us discover all these things about the universe." There's so much we don't know, and I know I can't learn everything, but I want to be a part of the discovery process. So I took those two things that I'm pretty hyped about, put them together, and decided that I want to be an engineer. I want to build spaceships. I want to help advance science and make new discoveries.
What were some of the props or costumes that you designed as a kid?
I was a big fan of the "Final Fantasy" video game series, so with the little bit of money that I made from tutoring kids, I would go out and buy different materials to recreate some of the props from that game. Lightning's gunblade was one of the things I made that I thought was pretty cool. I'm also a big fan of the "Fire Emblem" series, so I recreated a couple of things from that. I also like making costumes for my friends.
I'm starting to get back into it, because I have a little bit of free time this summer. Me and my friends have plans to make our own lightsabers and just play around with what we can make and what we can do with the budget and tools we have. That's where the challenge is. As a kid, I was so limited by the materials I had available. I thought it was fun figuring out how to make stuff anyway. How can I hammer this out with what I have in my house?
What brought you to JPL for your internships?
I heard great things from friends who had interned at JPL before. It's one of the best places to be if you want to work on space missions. I'd never been to the West Coast before last summer. I'm from Maryland. I grew up in a town about 20 minutes outside of Baltimore. It was kind of scary [to travel so far from home], but I feel like life's about experiences, so I might as well just do it.
How do you feel you're contributing to NASA missions and science as an intern?
I feel like it's impossible for any one person to make an impact alone. I'm part of a team that's helping assist future lunar missions. In the grand scheme of things, it's a small piece of what humanity is going to achieve in the future, but it's rewarding to know that I'm part of it. I know I'm a small piece in the big machine, but it still feels like a lot, because if you take one piece out of the machine, it can break.
That's a great way of putting it.
When you're not in school or interning, how do you like to spend your time? What are some of your hobbies?
At school, I'm involved with a bunch of different organizations on campus. One of my main extracurriculars is that I build UAVs [unmanned aerial vehicles]. I'm also involved with a lot of the outdoorsy groups on campus.
When the weather's nice, which in Upstate New York is not always the case, I like to run. I've run some pretty crazy races – Ragnar races, If you ever heard of those – and a couple of relays around the Finger Lakes. I like to run. I like to hike. There's a lot of beautiful mountains and lakes in the Upstate New York area. I've been trying to explore them. And I like to rock climb. I have a couple of friends at school who are super involved in the rock-climbing community, so they got me into it.
When the weather's not so nice, I like to read. I also started to get back into building props and making costumes, because I finally feel like I have time again to sit down and do that. It's a pretty time-consuming hobby.
Now for a fun question: If you could build a spacecraft to go anywhere and study anything, what would it be?
Theoretically, if you had all the technology to do it, I think it would be cool to see inside a black hole. Send a spacecraft in there, and send data out.
----
Since we last talked, your team finished the CubeSat and tested it in the desert! Tell us more about that and how it went?
The tests went pretty well given the circumstances. The team performed a lot of our tests remotely. We ran simulations to test some of the software. Our mock lunar surface asset was able to drive autonomously. Some aspects of the tests were successful and others could use more work, but we laid down a good foundation for future Innovation to Flight interns to build on. Hopefully our work helped the researchers we worked with from JPL and the University of Colorado Boulder.
A novel approach to developing rapid prototypes for space exploration, the Innovation to Flight program was created in 2014 by JPL Fellow Leon Alkalai, who continues to oversee and guide activities. Coordinated by Senior Research Scientist Adrian Stoica with support over the years from Chrishma Derewa, David Atkinson, and Miles Pellazar at JPL, the program has brought in more than 50 student interns from across the country. Offering students a uniquely collaborative experience developing technology for the Moon, Mars, and beyond, Innovation to Flight has also served as a career pathway to numerous program alumni now working at JPL.
Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern
Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
TAGS: Higher Education, Internships, STEM, College Students, Careers, Jobs, Engineering, Mechanical Engineering, Innovation to Flight, Technology Demonstration, Moon, Women at NASA, Asian Pacific American Heritage Month
Meet JPL Interns | June 16, 2020
From Intern to Engineer, the Space Place is Where It's At
It only takes minutes into a conversation with Farah Alibay about her job at NASA's Jet Propulsion Laboratory to realize there's nowhere else she'd rather be. An engineer working on the systems that NASA's next Mars rover will use to maneuver around a world millions of miles away, Alibay got her start at JPL as an intern. In the six years since being hired at the Laboratory, she's worked on several projects destined for Mars and even had a couple of her own interns. Returning intern Evan Kramer caught up with Alibay to learn more about her current role with the Mars 2020 Perseverance rover, how her internships helped pave her path to JPL and how she hopes interns see the same "beauty" in the work that she does.
What do you do at JPL?
I’m a systems engineer. I have two jobs on the Mars 2020 Perseverance rover mission right now. One is the systems engineer for the rover's attitude positioning and pointing. It's my job to make sure that once it's on the surface of Mars, the rover knows where it's pointed, and as it's moving, it can update its position and inform other systems of where it is. So we use things like a gyroscope and imagery to figure out where the rover is pointed and where it's gone as it's traveling.
My other job is helping out with testing the mast [sometimes called the "head"] on the rover. I help make sure that all of the commands and movements are well understood and well tested so that once the rover gets to Mars, we know that the procedures to deploy the mast and operate all of the instruments are going to work properly.
This is probably a tough question to answer, but what is an average day like for you?
Right now, I spend a lot of time testing – either developing procedures, executing procedures in the test bed or reviewing data from the procedures to make sure we're testing all of our capabilities. We start off from requirements of what we think we should be able to do, and then we write our procedures to test out those requirements. We test them out with software, and then we come to the test bed to execute them on hardware. Things usually go wrong, so we'll repeat the procedures a few times. Eventually, once we think we've had a successful run, we have a review.
Most of my testing is on the mobility side. However, it hasn't really started in earnest yet since we're waiting for the rover's "Earth twin" [the engineering model] to be built. Once that happens, later this summer, I will be spending a good chunk of my time in the Mars Yard [a simulated Mars environment at JPL], driving the rover around and actually using real data to figure out whether the software is behaving properly.
What's the ultimate goal of your work at JPL?
All the work that I do right now is in support of the Perseverance rover mission. On the mobility team, we work on essential functions that are going to be used as the rover drives around on Mars.
One of the really neat things about Perseverance is that it can do autonomous driving. So the rover is able to drive up to 200 meters on its own, without us providing any directional information about the terrain. Working on this new ability has been the bulk of testing we're doing on the mobility team. But this new capability should speed up a lot of the driving that we do on Mars. Once we get smart in planning rover movements, we'll be able to plan a day's worth of activity and then tell the rover, "Just keep going until you're done."
You came to JPL as an intern. What was that experience like and how did it shape what you're doing now?
I spent two summers as an intern at JPL during my Ph.D. The first one was in 2012, which was the summer that the Curiosity Mars rover landed. That was a pretty incredible experience. As someone who had only spent one summer at NASA before, seeing the excitement around landing a spacecraft on Mars, well, I think it's hard not to fall in love with JPL when you see that happen. During that summer, I worked on the early days of the A-Team [JPL's mission-concept study team], where I was helping out with some of the mission studies that were going on.
My second summer, I worked in the Mars Program Office, looking at a mission concept to return samples from Mars. I was helping define requirements and look at some of the trade studies. We were specifically looking at designs for orbiters that could bring back samples from Mars. A lot of that fed into my graduate research. It's pretty cool to be able to say that I applied my research and research tools to real problems to help JPL's Mars sample return studies.
What brought you to JPL for your internship? Was working at JPL always a dream for you?
Yeah, working at NASA was always a dream, but going into my Ph.D., I became more and more interested in robotics and planetary exploration. I have a Ph.D. in aerospace engineering, but I also have a minor in planetary science. There are very few places on Earth that really put those two together besides JPL, and it's the only place that has successfully landed a spacecraft on Mars. So, given my passions and my interests, JPL emerged at the top of my list very, very quickly. Once I spent time here, I realized that I fit in. My work goals and my aspirations fit into what people were already doing here.
What moments or memories from your internships stand out the most?
The Curiosity landing was definitely one of the highlights of my first internship.
Another one of the highlights is that JPL takes the work that interns do really seriously. I was initially surprised by that, and I think that's true of every intern I've met. Interns do real work that contributes to missions or research. I remember, for example, presenting some of my work to my mentor, who was super-excited about some of the results I was getting. For me, that was quite humbling, because I saw my research actually helping a real mission. I think I'll always remember that.
How do you think your internship shaped your career path and led to what you're doing now?
My internships definitely opened a lot of doors for me. In particular, during my second internship, I also participated in the Planetary Science Summer School at JPL. Throughout the summer, we met with experts in planetary science to develop a mission concept, and then we came together as a team to design the spacecraft in one week! It was an intense week but also an extremely satisfying one. The highlight was being able to present our work to some of the leading engineers and scientists at JPL. We got grilled, and they found a whole lot of holes in our design, but I learned so much from it. How often do you get to have your work reviewed by experts in the field?
Through these experiences, I made a lot of connections and found mentors who I could reach out to. Since I knew JPL is where I wanted to be, I took it upon myself to knock on every single door and make my case as to why JPL should hire me. I actually never interviewed, because by then, they decided that I had done my own interviews!
My internships and the summer school also gave me an idea of what I wanted to do and what I didn't want to do. So I was a step ahead of other applicants. I always tell interns who come to JPL that if they're not particularly liking their work in the first few weeks, they should take the opportunity to go out and explore what else JPL has to offer. I believe that there's a place for everyone here.
Have you had your own interns before?
I had interns my first two summers working at JPL. Two of my interns are now also full-time employees, and I always remind them that they were my interns when I see them! I also have an intern this summer who I'm extremely excited to work with, as she'll be helping us prepare some of the tools we'll need for operating the Perseverance rover on Mars.
What is your mentorship style with interns?
My goal for interns is mostly for them to learn something new and discover JPL, so I usually let my interns drive in terms of what they want to achieve. Normally, I sit down with them at the start of summer and define a task, because we want them to be doing relevant work. But I encouraged them to take time off from what they're doing and explore JPL, attend events that we have organized for interns and decide whether this is a place for them or not.
It's kind of a dual mentorship. I mentor them in terms of doing their work, but also mentor them in terms of helping them evolve as students and as early career engineers.
What do you hope they take away from their experience?
I hope they take advantage of this unique place and that they fall in love with it the way I did. Mostly, though, I'm hoping they discover whether this is a place for them or not. Whatever it is, I want them to be able to find their passion.
What would be your advice for those looking to intern or work at JPL one day?
I think the way into JPL, or whatever career that you're going to end up in, is to be 100% into what you're doing. If you're in school, studying aerospace engineering or mechanical engineering, do hands-on projects. The way I found opportunities was through the Planetary Science Summer School and the Caltech Space Challenge, which were workshops. I also did something called RASC-AL, which is a different workshop from the National Institute of Aerospace. Do all of those extracurricular things that apply your skills and develop them.
If you have the opportunity to attend talks, or if your advisor gives you extra work that requires you to reach out to potential mentors, take the time to do it.
My other piece of advice is to knock on doors and talk to people who do something in your field that you're interested in. Don't be shy, and don't wait for opportunities to come to you. Especially if you're already at JPL, or if you have mentors that are. Leverage that network.
Last question: If you could play any role in NASA's mission to send humans back to the Moon and eventually on to Mars, what would it be?
I chose to come to JPL because I like working on robotic missions. However, a lot of these robotic missions are precursors to crewed lunar and Mars missions. So I see our role here as building up our understanding of Mars and the Moon [to pave the way for future human missions].
I've worked on different Mars missions, and every one has found unexpected results. We're learning new things about the environment, the soil and the atmosphere with every mission. So I already feel like my work is contributing to that. And especially with the Perseverance rover mission, one of its main intentions is to pave the way for eventually sending humans to Mars.
This story is part of an ongoing series about the career paths and experiences of JPL scientists, engineers, and technologists who got their start as interns at the Southern California laboratory. › Read more from the series
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.
TAGS: Mars, Mars Rover, Perseverance, Mars 2020, Mars 2020 Interns, PSSS, Planetary Science Summer School, Internships, Workshops, Career Advice, Mentors, Where Are They Now, Women at NASA
Career Guidance | June 16, 2020
Scientist on a Mission
Catherine Elder's office is a small, cavernous space decorated with pictures of the Moon and other distant worlds she studies as a research scientist at NASA's Jet Propulsion Laboratory. Elder has been interested in space science since she was young, but she didn't always imagine she'd be working at one of the few places that builds robotic spacecraft designed to venture to mysterious worlds. A doctorate in planetary science – the study of the evolution of planets and other bodies in space – first brought her to JPL five years ago for research into the geologic history of the Moon. She planned to eventually become a professor, but a sort of gravitational pull has kept her at the laboratory, where in addition to lunar science, she's now involved in projects studying asteroids, Jupiter's moon Europa and future missions. We met up with her earlier this year to talk about her journey, how a program at JPL helped set her career in motion and how she's paying it forward as a mentor to interns.
What do you do at JPL?
A lot of what I do is research science. So that involves interpreting data from spacecraft and doing some modeling to understand the physical properties of places like the Moon, asteroids and Jupiter's moon Europa.
I am also working on mission formulation. So in that case, my role is to work with the engineers to make sure that the missions we're designing will actually be able to obtain the data that we need in order to answer the science questions that we have.
Tell us about some of the projects you're working on.
A lot of my work right now is looking at the Moon. I'm on the team for the Diviner instrument on the Lunar Reconnaissance Orbiter. That instrument observes the Moon in infrared, which we can use to understand the geologic history, such as how rocks break down over time. We can also look at specific features, like volcanoes, and understand their material properties. I do similar work on the OSIRIS-REx mission [which aims to return a sample from the asteroid Bennu].
I'm on the Europa Clipper team right now. I'm the investigation scientist for the cameras on the mission [which is designed to make flybys of Jupiter's moon Europa]. So I serve as a liaison between the camera team and other parts of the project.
I'm also working on a project modeling the convection in the rocky portion of Europa, underneath the liquid-water layer. Our goal is to understand how likely it is that there are volcanoes on the seafloor of Europa. A lot of scientists in their previous work have suggested that life could originate in these volcanoes. So we're going back and looking at how likely it is that they exist.
Sounds like fascinating work and like you're keeping busy! What is your average day like?
When I'm analyzing the data and doing modeling, I'm usually at my computer. I do a lot of computer coding and programming. We do a lot of modeling to help interpret the data that we get. For example, if we think we know the physical properties of a surface, how are those going to affect how the surface heats up or cools down over the course of a day? I compare what we find to the observations [from spacecraft] and circle back and forth until we have a better idea of what those surface materials are like.
Then, for the mission work, it's a lot more meetings. I'm in meetings with the engineers and with other scientists, talking about mission requirements, observation plans and things like that.
Tell us a bit about your background and what brought you to JPL.
I have wanted to be an astronomer since I was nine years old. So I was an astronomy major at Cornell University in New York. I didn't really realize planetary science existed, but luckily Cornell is one of the few universities where planetary science is in the astronomy department. A lot of times it's in the geology department. I started to learn more about planetary science by taking classes and realized that was what I was really interested in. So I went to the University of Arizona for grad school and got a Ph.D. in planetary science.
I thought I eventually wanted to be a professor somewhere. A postdoc position is kind of a stepping stone between grad school and faculty positions or other more permanent positions. So I was looking for a postdoc, and I found one at JPL. It was pretty different from what my thesis work had been on, but it sounded really interesting. I didn't think I was going to stay at JPL, but I ended up really liking it, and I got hired as a research scientist.
You also took part in the Planetary Science Summer School at JPL, working on a simulated mission design project. What made you want to apply for that program and what was the experience like?
I've always been interested in missions. I began PSSS when I was a postdoc at JPL, so I was already working with mission data from the Lunar Reconnaissance Orbiter. But by the time I joined the team, LRO had been orbiting the Moon for more than five years, so it was a well oiled machine.
I was interested in thinking about future missions and how you design one. So PSSS was a really great experience. They gave us a couple targets that we could pick between, and we picked Uranus. We had to come up with all the science objectives we would want to have if we visited Uranus [with a robotic spacecraft]. We had a mix of scientists and engineers, but none of us had studied Uranus, so we had to do a lot of background reading and figure out the big outstanding questions about the planet and its moons. We came up with a ton of them. When we did our first session with Team X, which is JPL's mission formulation team, we realized that we had way too many objectives, and we were never going to be able to achieve all of them in the budget that we had. It was a big wake up call. We had to narrow the scope of what we wanted to do a lot.
Then we had two more sessions with Team X, and we eventually came up with a concept where we were within the budget and we had a couple of instruments that could answer some science questions. Then we presented the mission idea to scientists and engineers at JPL and NASA headquarters who volunteered as judges.
Participants in the Planetary Science Summer School are assigned various roles that are found on real mission design teams. What role did you play?
I had the role of principal investigator [which is the lead scientist for the mission].
How did that experience shape what you're doing today?
Actually, quite a bit. Learning how you develop a science objective and thinking through it, you start with goals like, "I want to understand the formation and evolution of the solar system." That's a huge question. You're never going to answer it in one mission. So the next step is to come up with a testable hypothesis, which for Uranus could be something like, "Is Uranus' current orbit where it originally formed?" And then you have to come up with measurement objectives that can address that hypothesis. Then you have to think about which instruments you need to make those measurements. So learning about that whole process has helped a lot, and it's similar to what I'm doing on the Europa mission now.
I also got really interested in the Uranus system, specifically the moons, because they show a lot of signs of recent geologic activity. They might be just as interesting as the moons of Saturn and Jupiter. But Voyager 2 is the only spacecraft that has visited them. At that time, only half of the moons were illuminated, so we've only seen half of these moons. I really want a mission to go back and look at the other half.
Recently, me and a few friends at JPL – two who also did PSSS and one who did a very similar mission formulation program in Europe – got really interested in the Uranus system. So now, in our free time, we're developing a mission concept to study the Uranus system and trying to convince the planetary science community that it’s worth going back to it.
Are there any other moments or memories from PSSS that stand out?
Actually, one I was thinking about recently is that I was in the same session as Jessica Watkins, who recently became a NASA astronaut. I remember I was super stressed out because we had to give this presentation, and me and the project manager, who is a good friend of mine, were disagreeing on some things. But I talked to Jess, and she was just so calm and understanding. So when she got selected as an astronaut, I was like, "That makes sense," [laughs].
But the other thing that stands out is we worked so hard that week. We were at JPL during the day. And in the evening, we would meet again and work another four hours. Now that I'm working on mission development for actual missions, I realize there's so much more that actually goes into a mission, but PSSS gives you a sense of how planetary missions are such a big endeavor. You really need to work as a team.
You've also served as a mentor, bringing interns to JPL. Tell us a bit about that experience and what made you interested in being a mentor?
I've worked with five students at this point, all undergrads. I've always been interested in being a mentor. I was a teaching assistant for a lot of grad school, and I really enjoyed that. I like working one-on-one with students. I find it really rewarding, too, because it helps you remember how cool the stuff you're doing really is. The interns are learning it for the first time, so being able to explain exciting things about the solar system to them for the first time is pretty fun.
What do you usually look for when choosing an intern?
Enthusiasm is a big one. At the undergrad level, most people haven't specialized that much yet; they have pretty similar backgrounds. So I think enthusiasm is usually what I use to identify candidates. Is this what they really want to be doing? Are they actually interested in the science of planets?
What kinds of things do you typically have interns do?
It varies. It can sometimes be repetitive, like looking at a lot of images and looking for differences between them. One of the projects I have a lot of students working on right now is looking at images of craters on the Moon. There's this class of craters on the Moon that we know are really young. By comparing the material excavated by them, we can actually learn about the Moon's subsurface. So I have students going through and looking at how rocky those craters are. We're basically trying to map the subsurface rocks on the Moon. So that can get a little repetitive, but I find that some students actually end up really liking it, and find it kind of relaxing [laughs].
For students who intern with me longer, I try to tailor it to their interests and their skill set. One student, Jose Martinez-Camacho, was really good at numerical modeling and understanding thermodynamics, so he was developing his own models to understand where ice might be stable near the lunar poles.
What's your mentorship philosophy? What do you want students to walk away with?
I think mentors are usually biased in that they want their students to turn out like them. So I'm always excited when my students decide they want to go to grad school, but grad school is not the path for everyone.
One of the important things to learn from doing research is how to solve a problem on your own. A lot of times coursework can be pretty formulaic, and you're learning how to solve one type of problem so that you can solve a similar problem. But with research, unexpected things come up, and you have to learn how to troubleshoot on your own. I think you learn a little bit about that as an intern.
What's the value of JPL internships and fellowships from your perspective?
We're lucky at JPL that we're working on really exciting things. I think we should share that with as many people as possible, and internships are a good way to do that.
Then, for me personally, participating in PSSS solidified that I was on the right path. I knew I wanted to continue to be involved in mission formulation, and that was a big part of why I decided to stay at JPL, to be really deeply involved in the formulation of space missions. There's only a handful of places in the world where you can do that.
This feature is part of an ongoing series about the stories and experiences of JPL scientists, engineers, and technologists who paved a path to a career in STEM with the help of NASA's Planetary Science Summer School program. › Read more from the series
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.
TAGS: Higher Education, Internships, STEM, Mentors, Science, Moon, Lunar Reconnaissance Orbiter, PSSS, Planetary Science Summer School, Careers, Research, Science, Women at NASA
Meet JPL Interns | May 21, 2020
New Mars Landing Tech Offers Internship and Science Opportunity
Deciding where to land on Mars has always meant striking the right balance between potential science wins and the risk of mission failure. But new technology that will allow NASA's next Mars rover, Perseverance, to adjust its trajectory to the safest spot within an otherwise riskier landing area is giving science its biggest edge yet. This past summer, it was intern Tiffany Shi's task to help prepare the new technology, called the Lander Vision System, for its debut on Mars. Analyzing data from test flights in California's Death Valley, the Stanford University student joined the team at NASA's Jet Propulsion Laboratory to make sure the new landing system will work as designed, guiding the Perseverance rover to a safe landing as the spacecraft speeds toward the surface into Mars' Jezero Crater. We caught up with Shi to find out what it was like to work on the technology, how she managed the 8-to-5 and how she found a new approach to problem-solving.
What are you working on at JPL?
I'm working with the Mars 2020 mission, building the lander system for the Perseverance Mars rover. This is new technology in that [as the rover is landing on Mars] it is going to be able to look down at the surface below and figure out where is the safest place to land within the chosen area. Because of this technology, we're going to be able to land in a place that's more geologically and scientifically interesting than anywhere else we've been on Mars.
How did previous Mars landings work?
Before, it was only really safe to land if we picked a huge, flat area and programmed the spacecraft to land somewhere in there. But for the Mars 2020 mission, the spacecraft will take images of the terrain below as it descends into the atmosphere and will match those images to reference maps that we have from the work of previous missions. This will allow us to autonomously detect potential landing hazards and divert our spacecraft from them. In other words, the spacecraft is going to be able to look below and find the safest place to land in an area that's generally more hazardous [than what previous rovers have landed in].
What is your average day like on the project?
My average day consists of coming here at 8. That is very new for me [laughs]. I sit in the basement with two office mates, and we each work on our own things. I'm doing error analysis to find any bugs in the Lander Vision System, which is what will be used to land the rover on Mars. The algorithm for the landing system is pretty much written, and I'm analyzing the field-test data that they got from the tests that were done in Death Valley in February. Both my office mates are also working on the Lander Vision System, but they're not on the same exact project. They are all super-nice and helpful, and we all talk about our work, so it's a lot of fun.
Tell me more about the field tests and how you're analyzing the results.
In February, the team took a helicopter and they attached a copy of the Lander Vision System to the front. The helicopter did a bunch of nosedives and spirals over the terrain, which is really similar to what the rover will see on Mars. The goal is to see how accurate our predictions are for our algorithm relative to our reference maps. We're using the tests to improve our algorithm before the spacecraft launches.
What are you studying at Stanford?
I'm not sure what my major will be yet. I don't have to declare it until the end of my second year. I've only just finished my freshman year. I'm thinking maybe computer science or a mix of computer science and philosophy, because I really like both.
What got you interested in those majors?
I did debate in high school, and a lot of debaters use philosophy to argue different perspectives. So that's what got me started.
What about the computer science side?
I was in Girls Who Code while I was in high school, and there were JPL mentors who came to my school every Friday and taught us everything that we wanted to know. It was a super-fun place, super-inclusive. You see a lot of shy girls who don't normally talk in classes really open up. They had great debates, great questions, and it was just really cool to see.
Had you had any experience coding before that?
No, but I started taking some classes after that, and I did an internship at Caltech my junior year.
What was the internship at Caltech?
It was actually with Christine Moran, who now works at JPL. When she was doing her postdoc at Caltech, she brought in 12 high-school student interns through a program called Summer App Space. I worked in a team that classified galaxies into 36 different categories using training and test images from an online machine-learning community.
Very cool! What has been the most uniquely JPL or NASA experience that you've had while you've been here?
I went to see the rover being built in the clean room with my mentor, and that was just surreal. Even though I am sure my contributions are going to be very small, I think it's wild that I am actually working on something that's going to Mars.
Has your internship opened your eyes to any potential career paths?
I haven't taken any aeronautics and astronautics classes, and I think I might see if I'm interested in studying that. It is so interesting working on something that is literally going to be in space. In college, you have an answer to work towards, and here you are finding the answer. I think I didn't really process what I was going to be doing before coming here.
Eventually, I know I want to go into computer science, but also I want to go into maybe social impact work. I'd love to find some intersection between those. I feel like I grew up really privileged, so I want to use my skills to help other people. But I do love computer science or something where I'd be really at the forefront of research.
If you could play any role in NASA's plans to send humans back to the Moon or on to Mars, what would you want to do?
Be there. I met Jessica Watkins, who used to intern here, and now she's one of the new NASA astronauts. She spoke to us during my Caltech internship. It was super surreal meeting her. So if I could play any part, I'd want to be up there.
This Q&A is part of an ongoing series telling the story of what it takes to design, build, land, and operate a rover on Mars, told from the perspective of students interning with NASA's Perseverance Mars rover mission. › Read more from the series
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.
TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Robotics, Mars, Rover, Mars 2020, Landing, Mars 2020 Interns, Perseverance, Asian Pacific American Heritage Month, Women at NASA
Meet JPL Interns | February 25, 2020
Spitzer's Final Voyage Marks Career Start for NASA-JPL Intern
This past month, intern Mariah Woody joined her team in mission control at NASA's Jet Propulsion Laboratory to say goodbye to the Spitzer Space Telescope, a mission that provided never-before-seen views of the cosmos for more than 16 years. Woody has only been interning with the Spitzer team since June, but she played a key role in planning the mission's final moments. And now that the mission has ended, she's helping document its legacy. While her internship has largely been about bringing the Spitzer mission to a close, the experience is marking a new beginning for Woody. Even as a master's student in engineering, Woody never thought her skills would qualify her for a career in space exploration. It wasn't until she heard about an internship opportunity with JPL through an initiative designed to foster connections with historically black colleges and universities, or HBCUs, that she decided to apply. Now at JPL, she's getting a whole new perspective on where her career path might lead. We caught up with Woody to find out what it was like to join the team for Spitzer's final voyage, how she's archiving the mountain of mission images and data, and where she's hoping to go from here.
What are you working on at JPL?
I'm working on the Spitzer Space Telescope mission. Spitzer was a telescope that was designed to observe and study the early universe. It used infrared light, which can capture images of a wide range of objects that are found in the universe. It studied and observed new galaxies, stars and exoplanets. It was launched on Aug. 25, 2003, and it was one of NASA's four Great Observatories. It was originally planned for five years, but it was extended multiple times, so it lasted for more than 16 years. We just had the end of the mission on January 30. When I started, I was working on implementing a plan to archive all the data at the end of the mission and learning about spacecraft operations. Now, I'm working on the end-of-mission closeout activities.
What was your average day like when you were working on the final days of the mission?
I didn't have an average day when I was working on the operations team. We did a lot of different tasks, so each day was different. But usually, I would meet with my mentor and co-mentor to discuss the tasks that I was working on or the timeline and deliverables for the project. I learned about mission operations for the spacecraft and the systems on the ground that support the spacecraft. The spacecraft is controlled by programmed commands that we send through various antennas on the ground. The Spitzer team would have status and coordination meetings every week. All the team leads within the project would come together and discuss updates about the spacecraft, science details and other closeout tests that needed to be completed after the mission ended.
Even though the spacecraft is no longer operational, there's still more to do on the mission. What does closing out the mission entail?
The closeout team has to archive all the information into a repository where it can be looked at later, including the information that different team members have. It could be anything from documentation to images to any records, scripts or tools that were used. Once that information has been submitted, then I go in and audit the list and make sure that all of the products that need to be delivered are there and archive them.
You got to be in mission control for Spitzer's final moments. What was that experience like?
That experience was really fun for me. We called it Spitzers' final voyage, and I was able to be a part of the operations team in mission control, monitoring the status of the spacecraft in real-time as we all said goodbye. It was amazing to see all the different team members for the Spitzer mission come together on the last day to collaborate and do all of our work at once. It was a wonderful day in history, and I was proud to be a part of it.
Have there been any other standout moments from your time at JPL?
Meeting and learning from other people at the Lab. It's very nice to be able to just reach out to someone and sit down for lunch to learn about what they do and what experiences they have. I'm able to learn a little bit about all the different things that are going on here.
You're working toward your Ph.D. at North Carolina A&T State University. What's your research focus, and what got you interested in that field?
I'm studying industrial and systems engineering. It came to my attention because it's a broad area. You can do so much with it. I wasn't quite sure what industry I wanted to go into, so that's one of the reasons that I chose it. The fact that I can work in space exploration is very cool. I know that I like to explore different areas, improve things and make things more efficient. So I thought that this would be the perfect field for me to study.
What made you interested in engineering in the first place?
I've always loved math and science, and I performed very well in those subject areas when I was in school. When it comes to new ideas, I'm very creative. So I always wondered, "What can I do with this?" A lot of my teachers mentioned that I should look into becoming an engineer, so that's what I did.
What brought you to JPL for this internship?
I heard JPL was coming to my campus – they had an info session. I was notified about it at the last minute, so I missed out. I told myself, "I should still apply even though I missed the info session." So I applied, and then I received a call and got the offer.
But I feel like there was more to what brought me here than just applying and receiving the offer. I know that the offer was based on my hard work and saying yes to the challenges and opportunities that have come my way. I've always known about JPL, but I never pictured myself actually working here. I thought that it would be challenging, and I would be coming from so far away. It was a lot all at once, but I accepted the opportunity because I wanted to be exposed to and have the experience to work in space exploration. It's an area that I'd never really thought I'd go into coming from industrial and systems engineering. Now that I have some experience in the aerospace field, I have realized how much it impacts the industry in general and the economy of this country. It's a great field for my background.
Now that you've got some experience at JPL, how has it shaped your career path?
It's provided focus for my career path. I really want to stay within this industry. It's opened my eyes to see where I can branch off and where I can contribute and apply my skills. There's so much I can do with my background just in space exploration. I'm happy that my career path went in this direction.
What did you imagine that you would be doing before you came to JPL?
I wanted to be a part of designing something to improve a process at an organization or company. I didn't really have a specific job in mind. I've always thought that I'd maybe work in the medical industry, designing and improving medical devices. I've always had a lot of different ideas of what I wanted to do. I've kind of just explored and applied to many areas that were of interest.
Now for the fun question: If, you could have any role in NASA's plans to send humans to the Moon or on to Mars, what would you want it to be?
I think that I'd want to be involved in the training process – not necessarily me going through the training, but maybe coming up with ideas or requirements to get astronauts ready to go to space efficiently and safely.
This Q&A is part of an ongoing series highlighting the stories and experiences of students and faculty who came to JPL as part of the laboratory's collaboration with historically black colleges and universities, or HBCUs. › Read more from the series
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.
TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Black History Month, Spitzer, Universe, HBCU, Women at NASA
Meet JPL Interns | February 6, 2020
Intern Helps Mars Rover Drivers Make All the Right Moves
To remotely operate NASA's next Mars rover on a planet millions of miles away, mission team members will need to carefully plan out every drive, head swivel and arm extension before sending their coded commands to the vehicle. A wrong move could jeopardize the mission and, at the least, eat into the rover's precious energy supply. So this past summer, it was intern Vivian Li's task to design a web tool that will let mission operators ensure they're sending all the right moves to Mars. The internship at NASA's Jet Propulsion Laboratory gave Li, an information and computer science major at Cornell University, a chance to bring her design skills to a team that's typically more focused on building interfaces for robots rather than for humans. We caught up with Li to learn how she's adding a human touch to robotic navigation on the Mars 2020 mission.
What are you working on at JPL?
I'm working on a user interface for the Mars 2020 rover that takes in commands and produces a 3D simulation of the commands. So a rover driver could input what they want the rover to do – for example, drive 100 meters forward – and then, based on the terrain and all the other external factors, the program would take in the commands and simulate the path of the rover.Is this something completely new for Mars 2020?
They've had the simulation software for a really long time. This is just a different way to package it and for people to be able to easily use it. The current version only runs on certain computers, so we're moving it to a web-based platform that can run on pretty much any modern browser.
What's your average day like at JPL?
I get in around 7:30 a.m., and at that time I just sort of warm up for the day in that I don't do anything that's super-taxing. I check my meetings and get set up. Then right after that, I jump into what I need to do. Right now, my primary project is creating the front end for the interface, writing a little bit of code and fixing bugs in the flight software simulation for Mars 2020.
If I'm not in meetings, I'll be writing code all day and doing a lot of planning. I'm in a different office than my team, so me and my co-intern will sometimes ask for help with our project, but it's a lot of independent work. It's great because my co-intern and I help each other a lot. Our mentors tell us what they want – like yesterday, they wanted us to incorporate a camera view into the simulation – then, we're the ones who figure out how to do it.
Pretty soon, we'll be going into user testing. There are a couple of people who would actually be using the technology who volunteered to test it out. Once they do, we can edit it based on how they feel about what we have right now.
What has been the most uniquely JPL or NASA experience that you've had so far?
Two things: First, just getting to stroll in and watch the Mars 2020 rover being built in the clean room. Second is meeting the people who work here. The people here all share a similar love of science and exploration research, which is really different from how a lot of computer science is oriented. All the engineers and even people who are in physics or communications share a common goal. I've learned so much from just talking to people and even other interns. It's been so cool, because I don't really get that exposure at school.
What made you decide to study information and computer science?
I actually went into college studying biology and English. I had done a year of coding in my senior year of high school, so I knew a little bit of [the programming language] Python. When I got to college, I decided to study biology, and I kind of started orienting toward computational biology. I worked in a lab, and the people there told me, "If you have computer science skills, you can kind of go into any field you want." So I had this career crisis moment when I was like, "I don't want to study biology anymore," because I had been in a microbiology lab all summer and it was not very fun. I figured if I did computer information sciences, it would give me more time to decide.
Even though I know a lot of people here have a lot more experience than me and they started a lot younger, I feel like my skills are so much more adaptable now, and that is what made me stay in the major.
So you still wanted to have that science focus?
Yeah. I don't want to fully isolate myself from the thing that I wanted to study originally, because I still do love biology, just not the career path that goes with it.
What about the user-interface side? Is that something that you're interested in, or did you get thrown into it for your internship?
That's what's special about my major in computer information science: Not only are we technically-based, but also we're user-and-society-based. So for our core classes, we take communications, law, ethics and policy, and all that. Through all those classes, I learned just how important the user-interface side is and accessibility design, and just how much easier life gets if the engineer really understands the user. I think having a good understanding of society and technology is what we should all be focusing on.
Are you bringing some of that user focus to your work with the Mars 2020 mission?
With my mentors being more on the software side and my co-intern being more on the development side, I think my having the user-interface design skills is unique in a very technical workspace. For Mars 2020, even though I'm not working on the design of the rover or one of the software systems, being here allows me to reinforce that the users are still really important, and we want to make it as easy as possible for someone to understand the technology even though it's super-complex.
What brought you to JPL for this internship?
A year and a half ago, I went on a trip to Texas with my friend from school. She brought her friend from home, who brought his friend. The two of them had interned at JPL. They spent the entire week talking about JPL nonstop, on all of our hikes [laughs]. I had never met people who loved their work so much that they wanted to talk about it 24/7. That made me think that JPL must be a great workplace and somewhere that everyone is really passionate. Since then, I've just wanted to come here.
How do you feel you're contributing to the Mars 2020 mission and making it a success?
I feel like the work I am doing is really important. And because I'm bringing a unique skill set to my team, it makes me feel like I'm valued at JPL. I've also been working with other teams who might also want to use my software. Because of that, I think that this concept could be developed for other missions and be really useful in the future as well.
What is your ultimate career goal?
I don't know yet. I just really wanted to work at JPL this summer because I felt like I would get exposed to a lot more. I think now I'm more stressed, because I have seen so many things I want to do [laughs]. But I definitely want to be somewhere in the realm of tech and society. My overarching goal is that I want to have an ethical career, something that can help humanity. And I think JPL is doing that.
If you could play any role in NASA's plans to send humans to the Moon or on to Mars, what would it be?
I really enjoy the work I'm doing now and would love to continue doing that in the future. I don't think I personally want to be an astronaut. I want to stay on Earth for everything that this planet has to offer.
This Q&A is part of an ongoing series telling the story of what it takes to design, build, land, and operate a rover on Mars, told from the perspective of students interning with NASA's Perseverance Mars rover mission. › Read more from the series
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.
TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Robotics, Mars, Rover, Mars 2020, Coding, Computer Science, Mars 2020 Interns, Perseverance, Asian Pacific American Heritage Month, Women at NASA
Edu News | January 24, 2020
Mentors Point the Way to STEM for Interns at NASA-JPL
Each year, 1,000 students come to NASA's Jet Propulsion Laboratory for internships at the place where space robots are born and science is made. Their projects span the STEM spectrum, from engineering the next Mars rover to designing virtual-reality interfaces to studying storms on Jupiter and the possibility of life on other planets. But the opportunity for students to "dare mighty things" at JPL wouldn't exist without the people who bring them to the Laboratory in the first place – the people known as mentors.
A community of about 500 scientists, engineers, technologists and others serve as mentors to students annually as part of the internship programs managed by the JPL Education Office. Their title as mentors speaks to the expansiveness of their role, which isn't just about generating opportunities for students, but also guiding and shaping their careers.
"Mentors are at the core of JPL's mission, pushing the frontiers of space exploration while also guiding the next generation of explorers," says Adrian Ponce, who leads the team that manages JPL's internship programs. "They are an essential part of the career pipeline for future innovators who will inspire and enable JPL missions and science."
Planetary scientist Glenn Orton has been bringing students to JPL for internships studying the atmospheres of planets like Jupiter and Saturn since 1985. He keeps a list of their names and the year they interned with him pinned to his office wall in case he's contacted as a reference. The single-spaced names take up 10 sheets of paper, and he hasn't even added the names of the students he's brought in since just last year.
It makes one wonder what he could need that many students to do – until he takes out another paper listing the 11 projects in which he's involved.
"I think I probably have the record for the largest number of [projects] at JPL," says Orton, who divides his time between observing Jupiter with various ground- and space-based telescopes, comparing his observations with the ones made by NASA's Juno spacecraft, contributing to a database where all of the above is tracked and producing science papers about the team's discoveries.
"Often, you get to be the first person in the world who will know about something," says Orton. "That's probably the best thing in the world. The most exciting moment you have in this job is when you discover something."
Over the years, Orton's interns have been authors on science papers and have even taken part in investigating unexpected stellar phenomena – like the time when a mysterious object sliced into Jupiter's atmosphere, sparking an urgent whodunnit that had Orton and his team of interns on the case.
Orton says his passion for mentoring students comes from the lack of mentorship he received as a first-generation college student. At the same time, he acknowledges the vast opportunities he was given and says he wants students to have them, too.
"As a graduate student, it was close to my first experience doing guided research, so I had no idea how research was communicated or conducted," says Orton of his time at Caltech, when he often worried that his classmates and professors would discover he wasn't "Nobel material." "I want to be able to work with students, which I sincerely enjoy, to instruct them on setting down a research goal, determining an approach, modifying it when things inevitably hit a bump, as well as communicating results and evaluating next steps."
For Alexandra Holloway and Krys Blackwood, the chance to provide new opportunities isn't just what drives them to be mentors, but also something they look for when choosing interns.
"I look for underdogs, students who are not representing themselves well on paper," says Holloway. "Folks from underrepresented backgrounds are less likely to have somebody guide them through, 'Here's how you make your résumé. Here's how you apply.' The most important thing is their enthusiasm for learning something new or trying something new."
It's for this reason that Holloway and Blackwood have become evangelists for JPL's small group of high-school interns, who come to the Laboratory through a competitive program sponsored by select local school districts. While less experienced than college students, high-school interns more than make up for it with perseverance and passion, says Blackwood.
"[High-school interns] compete to get a spot in the program, so they are highly motivated kids," she says. "Your results may vary on their level of skill when they come in, but they work so hard and they put out such great work."
Holloway and Blackwood met while working on the team that designs the systems people use to operate spacecraft and other robotic technology at JPL – that is, the human side of robotics. Holloway has since migrated back to robots as the lead software engineer for NASA's next Mars rover. But the two still often work together as mentors for the students they bring in to design prototypes or develop software used to operate rovers and the antennas that communicate with spacecraft across the solar system.
It's important to them that students get a window into different career possibilities so they can discover the path that speaks to them most. The pair say they've seen several students surprised by the career revelation that came at the end of their internships.
"For all of our interns, we tailor the project to the intern, the intern's abilities, their desires and which way they want to grow," says Holloway. "This is such a nice place where you can stretch for just a little bit of time, try something new and decide whether it's for you or not. We've had interns who did design tasks for us and at the end of the internship, they were like, 'You know what? I've realized that this is not for me.' And we were like, 'Awesome! You just saved yourself five years.'"
The revelations of students who intern with Parag Vaishampayan in JPL's Planetary Protection group come from something much smaller in scale – microscopic, even.
Vaishampayan's team studies some of the most extreme forms of life on Earth. The group is trying to learn whether similar kinds of tough microbes could survive on other worlds – and prevent those on Earth from hitching a ride to other planets on NASA spacecraft. An internship in Planetary Protection means students may have a chance to study these microbes, collect samples of bacteria inside the clean room where engineers are building the latest spacecraft or, for a lucky few, name bacteria.
"Any researcher who finds a new kind of bacteria gets a chance to name it," says Vaishampayan. "So we always give our students a chance to name any bacterium they discover after whoever they want. People have named bacteria after their professors, astronauts, famous scientists and so forth. We just published a paper where we named a bacterium after Carl Sagan."
The Planetary Protection group hosts about 10 students a year, and Vaishampayan says he's probably used every JPL internship program to bring them in. Recently, he's become a superuser of one designed for international students and another that partners with historically black colleges and universities, or HBCUs, to attract students from diverse backgrounds and set them on a pathway to a career at the Laboratory.
"I can talk for hours and hours about JPL internships. I think they are the soul of the active research we are doing here," says Vaishampayan. "Had we not had these programs, we would not have been able to do so much research work." In the years ahead, the programs might become even more essential for Vaishampayan as he takes on a new project analyzing 6,000 bacteria samples collected from spacecraft built in JPL's clean rooms since 1975.
With interns making up more than 15 percent of the Laboratory population each year, Vaishampayan is certainly not alone in his affection for JPL's internship programs. And JPL is equally appreciative of those willing to lend time and support to mentoring the next generation of explorers.
Says Adrian Ponce of those who take on the mentorship role through the programs his team manages, "Especially with this being National Mentoring Month, it's a great time to highlight the work of our thriving mentor community. I'd like to thank JPL mentors for their tremendous efforts and time commitment as they provide quality, hands-on experiences to students that support NASA missions and science, and foster a diverse and talented future workforce."
Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern
Career opportunities in STEM and beyond can be found at: jpl.jobs
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
TAGS: Higher Education, Internships, Mentors, Research, Researchers, STEM, Interns, Juno, Jupiter, Science, Astrobiology, Planetary Protection, Computer Science, Design, Mentoring, Careers, Women at NASA
Meet JPL Interns | January 10, 2020
From Interns to Astronauts: Former JPL Interns Join NASA Astronaut Class
Former JPL Interns Graduate From NASA Astronaut Class
Update: Jan. 10, 2020 – In a ceremony at NASA’s Johnson Space Center, Jessica Watkins, Loral O’Hara and Warren Hoburg graduated from basic training along with fellow astronaut candidates. As members of NASA’s Astronaut Corps, they are now eligible for spaceflight, including assignments to the International Space Station, Artemis missions to the Moon, and ultimately, missions to Mars.
Originally published June 15, 2017:
Three former interns of NASA’s Jet Propulsion Laboratory are joining the agency’s newest class of astronaut candidates. Jessica Watkins, Loral O’Hara and Warren "Woody" Hoburg were among 12 selected for the coveted spots announced by the agency on Wednesday.
Adrian Ponce, manager of JPL’s Higher Education Programs, congratulated the new astronaut candidates and emphasized the value of the laboratory’s internship programs, which bring in about 1,000 students each year to work with researchers in science, technology, engineering and mathematics (STEM) fields.
"JPL is recognized in the world as a place of innovation, and interns have the opportunity to operate alongside researchers, contribute to NASA missions and science, develop technology and participate in making new discoveries," said Ponce, adding that the internship experience serves as a pathway to careers at JPL, aerospace companies, tech giants – and now the NASA astronaut corps.
While there’s no single formula for becoming an astronaut, experience at a NASA center certainly helps. In fact, many NASA scientists and engineers already working in their dream jobs landing rovers on Mars or discovering planets beyond our solar system, still aspire to become astronauts.
Watkins, who as a graduate student participated in several internships at JPL that had her analyzing near-Earth asteroids and planning ground operations for the Mars Curiosity rover, says that becoming an astronaut was a childhood dream that just “never went away.” In a video interview during her internship with the Maximizing Student Potential, or MSP, program in 2014, she talked about how she saw her experiences at JPL as a key step to fulfilling her goal.
“When you walk away from having an internship at JPL, I think you just have a broader perspective on what’s possible and what’s feasible,” said Watkins, who in 2016 participated in another program from JPL’s Education Office, an intensive, one-week mission formulation program called Planetary Science Summer Seminar. “I think you set a new standard for yourself just by being around people who have set the standard really high for themselves. You learn to appreciate the possibilities and the things that you really are capable of achieving.”
This story is part of an ongoing series about the career paths and experiences of JPL scientists, engineers, and technologists who got their start as interns at the Southern California laboratory. › Read more from the series
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.
TAGS: Women in STEM, Astronaut, Internship, Career Advice, Jessica Watkins, Loral O'Hara, PSSS, Planetary Science Summer School, NASA Science Mission Design Schools, SMDS, Where Are They Now, Women at NASA
Meet JPL Interns | November 21, 2019
NASA-JPL Intern Comes In For Mars Rover Landing
They've been called the minutes of terror – the moments during which spacecraft perform a series of seemingly impossible maneuvers to get from the top of Mars' atmosphere down to its surface and mission controllers anxiously await the signal heralding a successful landing. This past summer, it was intern Samalis Santini De Leon's task to make sure that when NASA's next Mars rover lands in February 2021, those minutes are as terror-free as possible. That meant bringing her Ph.D. research on the process known as entry, descent and landing, or EDL, to NASA's Jet Propulsion Laboratory, where she could apply it to a real space mission. The Puerto Rico native says she never imagined she would one day play a key role in landing a spacecraft on the Red Planet – especially as an intern. But now that she's worked on the Mars 2020 mission, she'll be just as anxious as the rest of the team when those final minutes arrive. We caught up with the Texas A&M University student to find out how you test a Mars landing while on Earth and how she set herself on a trajectory to NASA.
What are you working on at JPL?
I'm working on Mars 2020 entry, descent and landing simulations. I'm evaluating different scenarios, such as a hardware failure, and I'm trying to assess whether the mission will still land safely on Mars. I'm making sure that the system is robust enough that even if something goes wrong, the mission is not in danger and can still land safely. After all that work, we want the rover to land in one piece and do the science we want to do.
What does entry, descent and landing entail?
It's a series of events and maneuvers required to land safely on a planet. So once you enter the atmosphere, there are things you have to do – steps to ensure that the vehicle lands safely.
What's different about this landing from the one used for NASA's Curiosity Mars rover?
One difference is that we have a new trigger for deploying the spacecraft's parachute. This trigger will help reduce the landing footprint size, meaning we can land closer to the intended landing spot. The mission will also be using Terrain Relative Navigation for the first time. The rover will take images of the surface as it's descending and compare them to its onboard reference maps so it can locate itself with respect to the landing site and avoid any hazards.
What's your average day like?
It's mostly gathering all the concerns from other people on the entry, descent and landing team. Then I run simulations, and I look at the overall behavior of the system and communicate with the teams about what's happening. For example, if there was a hardware concern, I would do simulations to analyze the system's performance and ensure there's no significant effect on the success of the mission.
On the side, I'm doing my Ph.D. work in entry, descent and landing, using artificial intelligence to help analyze very large simulations and communicate critical issues to the experts. As humans, there is only so much we can analyze manually. We hope that these tools can help engineers for future missions.
What lead you to focus on entry, descent and landing for your Ph.D.?
I have no idea. [Laughs.] I did my undergraduate work in mechanical engineering back in Puerto Rico, where I'm from. I volunteered on a project run by Space Grant, building experiments that involved launching sounding rockets from NASA's Wallops Flight Facility. I started to get into space at that time. After that, I tried to pursue aerospace engineering, which is not a possibility in Puerto Rico. So I left Puerto Rico, and I ended up initially working with satellites. Then my advisor said, "I have a friend in EDL, and he's talked about the challenges. Why don't we write a proposal on this?" I got a NASA Science and Technology Research Fellowship for that, and now I'm doing EDL. I was always secretly leaning towards space exploration and getting my hands on a mission.
What made you want to study mechanical engineering initially?
I think it was the closest I could get to aerospace engineering back home. Also, space is very interdisciplinary. I always liked robots. Building robots in high school for competitions got me very interested in that.
What brought you to JPL for this internship?
This is my first summer at JPL. With my fellowship, I do rotations at the NASA centers, so I work with people who do similar stuff.
How many different NASA centers have you interned at now?
I've interned at three. I did two summers at NASA's Ames Research Center, last summer at Langley Research Center, now here at JPL. And in my Space Grant project and undergrad, I did frequent visits to Wallops to put our experiments in the rockets, so that was very cool.
That was all part of the buildup to get here. Coming from an island, it seemed not even possible at the time [that I would ever be at NASA].
What were the challenges that you faced coming from Puerto Rico and trying to pursue aerospace engineering?
The options for aerospace engineering in Puerto Rico are limited. But getting into the Space Grant program was a very good thing to expose me to those fields. After that, the hard part was trying to find a place to do my graduate studies outside of Puerto Rico – where to go, how to get in. There's not a lot of orientation back in Puerto Rico about these things, so you're a little bit on your own. After that, the big problem is dealing with grad school. [Laughs.]
What's your ultimate career goal? Do you think you'd like to go back to Puerto Rico someday?
I would definitely like to continue working on space missions for a while. Whether it's here at JPL or other NASA centers. Just the exposure and the experience – nothing can compare to that. But at some point later on, I would like to go back and consider teaching at the University of Puerto Rico to bring back what I've learned. They're trying to make an aerospace department at the university, so I could bring new perspectives and maybe motivate more people to do what I'm doing.
Speaking of future careers: If you could play any role in NASA's plans to send humans back to the Moon and on to Mars, what would you want to do?
Maybe I'm biased now that I'm in EDL, but it's one of the biggest challenges. I think getting enough knowledge and expertise in it and playing a role in landing people on the Moon or on Mars would be incredible, because it's a problem we still haven't found a solution to. Being able to help achieve that by whatever means is probably the most amazing thing I could ever do.
What do you hope to accomplish in your role on the Mars 2020 mission?
I definitely want to demonstrate that they've built an amazing system – that it works. I guess the goals are more personal, like getting exposure to the testing side of things, more of the real-life aspects. I'm more locked on the computer simulations. So I'm hoping to get the whole picture of how EDL works and how it all comes together.
Your mentor is Allen Chen, who is the lead for Mars 2020 entry, descent and landing, so he'll be calling the shots on landing day. What is it like having him as a mentor?
It's amazing. I feel very lucky and very proud that I get to work directly with him. He's someone who has so much expertise. I am learning a lot from him. Just sitting in meetings and hearing what he and the team have to say is amazing. He's great, too – easy to talk to, knows way too much about EDL. [Laughs.]
What's been the most unique experience that you've had at JPL this summer?
What I've found the most shocking is seeing the actual rover that's going to Mars and seeing the rover getting built. That has definitely been quite cool. I think JPL is known for stuff like this. It's here that you can see it and you can see the progress. It also seems like a very collaborative environment. That's not common, so that's really cool.
The rover is scheduled to land in February 2021, after your internship has ended. Will you be able to come back to JPL for landing?
It is possible. My mentor [for my Ph.D.] will definitely be here when the rover arrives on Mars. He'll actually spend two months here doing shifts in mission control. He told me he will try to have me here for that to learn about how it all works. I will definitely try to make that happen. The excitement in that room and the fear will collide. It must be very interesting to be in there.
Are you already picturing what it will be like on landing day?
Yeah. Now that I've had some role in it, wherever I am – whether it's here or at home – I'm going to be freaking out. Regardless of how confident we are, it's a challenging process.
This Q&A is part of an ongoing series telling the story of what it takes to design, build, land, and operate a rover on Mars, told from the perspective of students interning with NASA's Perseverance Mars rover mission. › Read more from the series
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.
TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Robotics, Mars, Rover, Mars 2020, Ph.D., Doctorate, Space Grant, Students, Mars 2020 Interns, Perseverance, Hispanic Heritage Month, Women at NASA