Animated image of Mercury passing in front of the Sun during the 2019 transit of Mercury

In the News

It only happens about 13 times a century and won’t happen again until 2032, so don’t miss the transit of Mercury on Monday, Nov. 11! A transit happens when a planet crosses in front of a star. From our perspective on Earth, we only ever see two planets transit the Sun: Mercury and Venus. This is because these are the only planets between us and the Sun. (Transits of Venus are especially rare. The next one won’t happen until 2117.) During the upcoming transit of Mercury, viewers around Earth (using the proper safety equipment) will be able to see a tiny dark spot moving slowly across the disk of the Sun.

Read on to learn how transits contributed to past scientific discoveries and for a look at how scientists use them today. Plus, find resources for engaging students in this rare celestial event!

Why It's Important

Then and Now

In the early 1600s, Johannes Kepler discovered that both Mercury and Venus would transit the Sun in 1631. It was fortunate timing: The telescope had been invented just 23 years earlier, and the transits of both planets wouldn’t happen in the same year again until 13425. Kepler didn’t survive to see the transits, but French astronomer Pierre Gassendi became the first person to see the transit of Mercury. Poor weather kept other astronomers in Europe from seeing it. (Gassendi attempted to view the transit of Venus the following month, but inaccurate astronomical data led him to mistakenly believe it would be visible from his location.) It was soon understood that transits could be used as an opportunity to measure apparent diameter – how large a planet appears from Earth – with great accuracy.

After observing the transit of Mercury in 1677, Edmond Halley predicted that transits could be used to accurately measure the distance between the Sun and Earth, which wasn’t known at the time. This could be done by having observers at distant points on Earth look at the variation in a planet’s apparent position against the disk of the Sun – a phenomenon known as parallax shift. This phenomenon is what makes nearby objects appear to shift more than distant objects when you look out the window of a car, for example.

Today, radar is used to measure the distance between Earth and the Sun with greater precision than transit observations. But the transits of Mercury and Venus still provide scientists with opportunities for scientific investigation in two important areas: exospheres and exoplanets.

Exosphere Science

Some objects, like the Moon and Mercury, were originally thought to have no atmosphere. But scientists have discovered that these bodies are actually surrounded by an ultrathin atmosphere of gases called an exosphere. Scientists want to better understand the composition and density of the gases in Mercury’s exosphere, and transits make that possible.

“When Mercury is in front of the Sun, we can study the exosphere close to the planet,” said NASA scientist Rosemary Killen. “Sodium in the exosphere absorbs and re-emits a yellow-orange color from sunlight, and by measuring that absorption, we can learn about the density of gas there.”

Exoplanet Discoveries

When Mercury transits the Sun, it causes a slight dip in the Sun’s brightness as it blocks a tiny portion of the Sun’s light. Scientists discovered they could use that phenomenon to search for planets orbiting distant stars. These planets, called exoplanets, are otherwise obscured from view by the light of their star. When measuring the brightness of far-off stars, a slight recurring dip in the light curve (a graph of light intensity) could indicate an exoplanet orbiting and transiting its star. NASA’s Kepler space telescope found more than 2,700 exoplanets by looking for this telltale drop in brightness. NASA’s TESS mission is surveying 200,000 of the brightest stars near our solar system and is expected to potentially discover more than 10,000 transiting exoplanets.

Animated cartoon image of a planet crossing in front of a star and an inset that shows a graph dipping as the planet does so

This animation shows one method scientists use to hunt for planets outside our solar system. When exoplanets transit their parent star, we can detect the dip in the star’s brightness using space telescopes. Credit: NASA/JPL-Caltech | + Expand image

Additionally, scientists have been exploring the atmospheres of exoplanets. Similarly to how we study Mercury’s exosphere, scientists can observe the spectra – a measure of light intensity and wavelength – that passes through an exoplanet’s atmosphere. As a result, they’re beginning to understand the evolution and composition of exoplanet atmospheres, as well as the influence of stellar wind and magnetic fields.

Collage of exoplanet posters from NASA

Using the transit method and other techniques, scientists are learning more and more about planets beyond our solar system. These discoveries have even inspired a series of posters created by artists at NASA, who imagine what future explorers might encounter on these faraway worlds. Credit: NASA | › Download posters

Watch It

During the transit of Mercury, the planet will appear as a tiny dot on the Sun’s surface. To see it, you’ll need a telescope or binoculars outfitted with a special solar filter.

WARNING! Looking at the Sun directly or through a telescope without proper protection can lead to serious and permanent vision damage. Do not look directly at the Sun without a certified solar filter.

The transit of Mercury will be partly or fully visible across much of the globe. However, it won’t be visible from Australia or most of Asia and Alaska.

Graphic showing Mercury's path across the Sun on Nov. 11, 2019 and the times that it will be at each location

The transit of Mercury on Nov. 11, 2019, begins at 4:35 a.m. PST (7:35 a.m. EST), but it won’t be visible to West Coast viewers until after sunrise. Luckily, viewers will have several more hours to take in the stellar show, which lasts until 10:04 a.m. PST (1:04 p.m. EST). Credit: NASA/JPL-Caltech | + Expand image

Mercury’s trek across the Sun begins at 4:35 a.m. PST (7:35 a.m. EST), meaning viewers on the East Coast of the U.S. can experience the entire event, as the Sun will have already risen before the transit begins. By the time the Sun rises on the West Coast, Mercury will have been transiting the Sun for nearly two hours. Fortunately, the planet will take almost 5.5 hours to completely cross the face of the Sun, so there will be plenty of time for West Coast viewers to witness this event. See the transit map below to learn when and where the transit will be visible.

Graphic showing a flat map of the world with areas where the transit of Mercury on Nov. 11, 2019 will be partially to fully visible indicated along with transit start and end times

This map shows where and when the transit will be visible on November 11. Image credit: NASA/JPL-Caltech | + Expand image

Don’t have access to a telescope or binoculars with a solar filter? Visit the Night Sky Network website to find events near you where amateur astronomers will have viewing opportunities available.

During the transit, NASA will share near-real-time images of the Sun directly from the Solar Dynamics Observatory. Beginning at 4:41 a.m. PST (7:41 a.m. EST) you can see images of Mercury passing in front of the Sun at NASA’s 2019 Mercury Transit page, with updates through the end of the transit at 10:04 a.m. PST (1:04 p.m. EST).

If you’re in the U.S., don’t miss the show, as this is the last time a transit will be visible from the continental United States until 2049!

Watch this month's installment of "What's Up" to learn more about how to watch the Nov. 11 transit of Mercury. Credit: NASA/JPL-Caltech | Watch on YouTube

Teach It

Use these lessons and activities to engage students in the transit of Mercury and the hunt for planets beyond our solar system:

Explore More

Transit Resources:

Exoplanet Resources:

Check out these related resources for kids from NASA’s Space Place:

TAGS: K-12 Education, Teachers, Students, Educators, Mercury, Transit, Transit of Mercury, What's Up, Astronomy, Resources for Educators, Exoplanets, Kepler, TESS

  • Lyle Tavernier
READ MORE

Image showing the difference in size and brightness between a full moon at apogee and a full moon at perigee, also called a "supermoon"

The term “supermoon” has been popping up a lot in the news and on social media over the past few years. But what are supermoons, why do they occur and how can they be used as an educational tool. Plus, are they really that super?

How it Works

As the Moon orbits Earth, it goes through phases, which are determined by its position relative to Earth and the Sun. When the Moon lines up on the opposite side of Earth from the Sun, we see a full moon. The new moon phase occurs when the Moon and the Sun are lined up on the same side of Earth.

The Moon doesn’t orbit in a perfect circle. Instead, it travels in an ellipse that brings the Moon closer to and farther from Earth in its orbit. The farthest point in this ellipse is called the apogee and is about 405,500 kilometers from Earth on average. Its closest point is the perigee, which is an average distance of about 363,300 kilometers from Earth. During every 27-day orbit around Earth, the Moon reaches both its apogee and perigee.

Full moons can occur at any point along the Moon’s elliptical path, but when a full moon occurs at or near the perigee, it looks slightly larger and brighter than a typical full moon. That’s what the term “supermoon" refers to.

What makes a supermoon super? Watch this short animation to find out. Credit: NASA/JPL-Caltech

Because supermoon is not an official astronomical term, there is no definition about just how close to perigee the full moon has to be in order to be called “super." Generally, supermoon is used to refer to a full moon 90 percent or closer to perigee. (When the term supermoon was originally coined, it was also used to describe a new moon in the same position, but since the new moon isn’t easily visible from Earth, it’s rarely used in that context anymore.)

A more accurate and scientific term is “perigee syzygy.” Syzygy is the alignment of three celestial bodies, in this case the Sun, Moon and Earth. But that doesn’t quite roll off the tongue as easily as supermoon.

Why It’s Important

As the largest and brightest object in the night sky, the Moon is a popular focal point for many amateur and professional astronomers pointing their telescopes to the sky, and the source of inspiration for everyone from aspiring space scientists to engineers to artists.

The supermoon is a great opportunity for teachers to connect concepts being taught in the classroom to something students will undoubtedly be hearing about. Students can practice writing skills in a Moon journal, study Moon phases and apply their math skills to observing the supermoon. (Click here for related activities from JPL’s Education Office.)

Incorrect and misleading information about the Moon (and supermoons) can lead to confusion and frustration. It’s important to help students understand what to expect and be able to identify inaccurate info.

What to Expect

Size

As with anything that moves closer to the person viewing it, the supermoon will appear bigger than an average full moon. At its largest, it can appear 14% larger in diameter than the smallest full moon. Keep in mind that a 14% increase in the apparent size of something that can be covered with a fingernail on an outstretched arm won’t seem significantly bigger. Unlike side-by-side comparisons made in science and everyday life, students will not have seen the full moon for at least 30 days, and won’t see another for at least 30 more days. Comparing a supermoon with a typical full moon from memory is very difficult.

A nearly full Moon sets as the space shuttle Discovery sits atop Launch pad 39A at the Kennedy Space Center in Cape Canaveral, Florida, Wednesday, March 11, 2009. Photo Credit: (NASA/Bill Ingalls

While they make for great photographs, images like this one that rely on a special photographic technique aren't an accurate representation of what the supermoon will look like to the naked eye. Credit: NASA/Bill Ingalls | Full image and caption on Flickr

Graphic showing the position of the moon at apogee and perigee

A supermoon looks bigger than a "micromoon" (when the full moon is at apogee) because it's about 40,000 kilometers closer to Earth on average. Credit: NASA/JPL-Caltech

Graphic showing the position of the moon at apogee and perigee

It's nearly impossible to compare the apparent size of the supermoon with a micromoon from memory, but when seen side-by-side as in this graphic, it becomes clear. Credit: NASA/JPL-Caltech

Leading up to a supermoon, there are often misleading images on popular media. A technique that involves using a long telephoto lens to take photographs of the Moon next to buildings or other objects makes the Moon look huge compared with its surroundings. This effect can make for great photographs, but it has nothing to do with the supermoon. In fact, these photos can be taken during any Moon phase, but they will likely be used in stories promoting the supermoon.

There are also images that have been edited to inaccurately dramatize the size of the supermoon. Both of these can lead students, and adults, taking pictures with their cell phone to think that they’ve done something wrong or just aren’t cut out for observing the sky, which isn’t true!

Your students may have noticed that when they see a full moon low on the horizon, it appears huge and then seems to shrink as it rises into the night sky. This can happen during any full moon. Known as the Moon Illusion, it has nothing to do with a supermoon. In fact, scientists still aren’t sure what causes the Moon Illusion.

Brightness

The full moon is bright and the supermoon is even brighter! Sunlight reflecting off the Moon during its full phase is bright enough to cast shadows on the ground. During a supermoon, that brightness can increase up to 30 percent as a result of the Moon being closer to Earth, a phenomenon explained by the inverse square law. (Introduce students to the inverse square law with this space-related math lesson for 6th- through 8th-graders.) As with the size of the Moon, students may not remember just how bright the last full moon was or easily be able to compare it. Powerful city lights can also diminish how bright a supermoon seems. Viewing it away from bright overhead street lights or outside the city can help viewers appreciate the increase in brightness.

What Not to Expect

A supermoon will not cause extreme flooding, earthquakes, fires, volcanic eruptions, severe weather, nor tsunamis, despite what incorrect and non-scientific speculators might suggest. Encourage your students to be good scientists and research this for themselves.

Teach It

The excitement and buzz surrounding a supermoon is a great opportunity to teach a variety of Moon topics with these lessons from JPL’s Education Office:

  • *NEW* Observing the Moon (Grades K-6) – Students identify the Moon’s location in the sky and record their observations over the course of the moon-phase cycle in a journal.
  • *NEW* Measuring the Supermoon (Grades 5-12) – Students take measurements of the Moon during its full phase over multiple Moon cycles to compare and contrast results.
  • *NEW* Moon Phases Calendar and Calculator – Like a decoder wheel for the Moon, this calendar will show you where and when to see the Moon and every moon phase throughout the year!
  • *NEW* Look at the Moon! Journaling Project – Draw what you see in a Moon Journal and see if you can predict the moon phase that comes next.
  • Moon Phases (Grades 1-6) – Students learn about the phases of the Moon by acting them out. In 30 minutes, they will act out one complete Moon cycle.
  • Whip Up a Moon-Like Crater (Grades 1-6) – Whip up a Moon-like crater with baking ingredients as a demonstration for students.
  • Modeling the Earth-Moon System (Grades 6-8) – Using an assortment of playground and toy balls, students will measure diameter, calculate distance and scale, and build a model of the Earth-Moon system.

Explore More


For the record: This story originally stated a supermoon would be visible in January and February 2018. The two supermoons of 2018 are both in January.

TAGS: Supermoon, Moon Phases, Moon, Earth's Moon, What's Up, Astronomy, K-12, Educators

  • Lyle Tavernier
READ MORE