This illustration shows the position of NASA's Voyager 1 and Voyager 2 probes, outside of the heliosphere, a protective bubble created by the Sun that extends well past the orbit of Pluto.

In the News

The Voyager 2 spacecraft, launched in 1977, has reached interstellar space, a region beyond the heliosphere – the protective bubble of particles and magnetic fields created by the Sun – where the only other human-made object is its twin, Voyager 1.

The achievement means new opportunities for scientists to study this mysterious region. And for educators, it’s a chance to get students exploring the scale and anatomy of our solar system, plus the engineering and math required for such an epic journey.

How They Did It

Launched just 16 days apart, Voyager 1 and Voyager 2 were designed to take advantage of a rare alignment of the outer planets that only occurs once every 176 years. Their trajectory took them by the outer planets, where they captured never-before-seen images. They were also able to steal a little momentum from Jupiter and Saturn that helped send them on a path toward interstellar space. This “gravity assist” gave the spacecraft a velocity boost without expending any fuel. Though both spacecraft were destined for interstellar space, they followed slightly different trajectories.

Illustration of the trajectories of Voyager 1 and 2

An illustration of the trajectories of Voyager 1 and Voyager 2. Image credit: NASA/JPL-Caltech | + Expand image

Voyager 1 followed a path that enabled it to fly by Jupiter in 1979, discovering the gas giant’s rings. It continued on for a 1980 close encounter with Saturn’s moon Titan before a gravity assist from Saturn hurled it above the plane of the solar system and out toward interstellar space. After Voyager 2 visited Jupiter in 1979 and Saturn in 1981, it continued on to encounter Uranus in 1986, where it obtained another assist. Its last planetary visit before heading out of the solar system was Neptune in 1989, where the gas giant’s gravity sent the probe in a southward direction toward interstellar space. Since the end of its prime mission at Neptune, Voyager 2 has been using its onboard instruments to continue sensing the environment around it, communicating data back to scientists on Earth. It was this data that scientists used to determine Voyager 2 had entered interstellar space.

How We Know

Interstellar space, the region between the stars, is beyond the influence of the solar wind, charged particles emanating from the Sun, and before the influence of the stellar wind of another star. One hint that Voyager 2 was nearing interstellar space came in late August when the Cosmic Ray Subsystem, an instrument that measures cosmic rays coming from the Sun and galactic cosmic rays coming from outside our solar system, measured an increase in galactic cosmic rays hitting the spacecraft. Then on November 5, the instrument detected a sharp decrease in high energy particles from the Sun. That downward trend continued over the following weeks.

The data from the cosmic ray instrument provided strong evidence that Voyager 2 had entered interstellar space because its twin had returned similar data when it crossed the boundary of the heliosheath. But the most compelling evidence came from its Plasma Science Experiment – an instrument that had stopped working on Voyager 1 in 1980. Until recently, the space surrounding Voyager 2 was filled mostly with plasma flowing out from our Sun. This outflow, called the solar wind, creates a bubble, the heliosphere, that envelopes all the planets in our solar system. Voyager 2’s Plasma Science Experiment can detect the speed, density, temperature, pressure and flux of that solar wind. On the same day that the spacecraft’s cosmic ray instrument detected a steep decline in the number of solar energetic particles, the plasma science instrument observed a decline in the speed of the solar wind. Since that date, the plasma instrument has observed no solar wind flow in the environment around Voyager 2, which makes mission scientists confident the probe has entered interstellar space.

graph showing data from the cosmic ray and plasma science instruments on Voyager 2

This animated graph shows data returned from Voyager 2's cosmic ray and plasma science instruments, which provided the evidence that the spacecraft had entered interstellar space. Image credit: NASA/JPL-Caltech/GSFC | + Expand image

Though the spacecraft have left the heliosphere, Voyager 1 and Voyager 2 have not yet left the solar system, and won't be leaving anytime soon. The boundary of the solar system is considered to be beyond the outer edge of the Oort Cloud, a collection of small objects that are still under the influence of the Sun's gravity. The width of the Oort Cloud is not known precisely, but it is estimated to begin at about 1,000 astronomical units from the Sun and extend to about 100,000 AU. (One astronomical unit, or AU, is the distance from the Sun to Earth.) It will take about 300 years for Voyager 2 to reach the inner edge of the Oort Cloud and possibly 30,000 years to fly beyond it. By that time, both Voyager spacecraft will be completely out of the hydrazine fuel used to point them toward Earth (to send and receive data) and their power sources will have decayed beyond their usable lifetime.

Why It’s Important

Since the Voyager spacecraft launched more than 40 years ago, no other NASA missions have encountered as many planets (some of which had never been visited) and continued making science observations from such great distances. Other spacecraft, such as New Horizons and Pioneer 10 and 11, will eventually make it to interstellar space, but we will have no data from them to confirm their arrival or explore the region because their instruments already have or will have shut off by then.

Watch on YouTube

Interstellar space is a region that’s still mysterious because until 2012, when Voyager 1 arrived there, no spacecraft had visited it. Now, data from Voyager 2 will help add to scientists’ growing understanding of the region. Scientists are hoping to continue using Voyager 2’s plasma science instrument to study the properties of the ionized gases, or plasma, that exist in the interstellar medium by making direct measurements of the plasma density and temperature. This new data may shed more light on the evolution of our solar neighborhood and will most certainly provide a window into the exciting unexplored region of interstellar space, improving our understanding of space and our place in it.

As power wanes on Voyager 2, scientists will have to make tough choices about which instruments to keep turned on. Further complicating the situation is the freezing cold temperature at which the spacecraft is currently operating – perilously close to the freezing point of its hydrazine fuel. But for as long as both Voyager spacecraft are able to maintain power and communication, we will continue to learn about the uncharted territory of interstellar space.

Teach It

Use these standards-aligned lessons and related activities to get students doing math and science with a real-world (and space!) connection.

Explore More

TAGS: Teachers, Educators, Science, Engineering, Technology, Solar System, Voyager, Spacecraft, Educator Resources, Lessons, Activities

  • Ota Lutz
READ MORE

Mars Exploration Educator Workshop at JPL in Pasadena, California

You may already know about the online lessons and activities available from the Education Office at NASA’s Jet Propulsion Laboratory. (If not, check them out here.) But did you know that JPL and all NASA centers nationwide have an education specialist focused specifically on professional development for teachers – including how to use those online lessons in the classroom? It’s part of a program called the Educator Professional Development Collaborative, or EPDC, a free service for any K-12 classroom educator in the country.

During the 2016-2017 school year, the EPDC at JPL participated in more than 120 school events focusing on teacher professional development, including implementing Next Generation Science Standards, helping schools initiate science fairs and community events, and assisting with student presentations. That number includes more than 5,000 teachers and students who worked with the EPDC on initiatives designed to get NASA science and engineering into the hands of future space explorers.

As the EPDC coordinator for JPL, I schedule and help shape these events for schools and teacher preparation programs in Southern California, coordinating and consulting with educators to help them bring standards-aligned NASA STEM content into the classroom. My work and the ways in which I support educators can take many shapes. Teachers often ask me to visit during regularly scheduled professional development or early dismissal days. These represent the most common events, wherein schools choose topics or themes to focus on and the time is spent practicing hands-on activities for students. This year, teachers and schools have come up with new and especially creative formats, scheduling onsite tours and workshops at JPL for their teaching staff, or even having NASA scientists dial in to their classrooms to talk with students.

JPL's EPDC Coordinator, Brandon Rodriguez, leads an educator workshop

The EPDC helps educators bring NASA STEM content into the classroom through workshops, webinars and more. Image credit: NASA/JPL-Caltech

One school in particular took its program to another level with the help of the EPDC at JPL by building a grade-wide, multi-week mission to Mars. For their annual cross-curricular project, teachers at the San Fernando Institute for Applied Media in Los Angeles were hoping to create a more expansive offering that incorporated the Next Generation Science Standards, or NGSS. I met with teachers over several days to suggest activities and strategies that would meet their goal of getting students engaged in space science across numerous subject areas.

Students were tasked to explore the history of space exploration and the pioneers who led the charge. Using NASA lessons like those found on the JPL Education website, the students built conceptual models of Mars missions, including calculating the budget associated with such a trek. They then constructed robotic rovers capable of traversing a simulated Martian surface and the tools needed to interact with the local environment.

But what really set the program apart was its focus on collaboration. The school thought beyond the content of the lesson itself, making NASA badges for each student and having them refer to each other as “doctor.” Students designed their own team name and logo. They also used Web-based apps to capture pictures and videos of their work during each class and posted them online, allowing groups to digitally follow the revisions and lessons learned by their classmates. As a year-end culminating event, students presented their work in front of their classmates, and I was fortunate to be in attendance to celebrate the hard work of the teachers and students.

Mars mission project at the San Fernando Institute for Applied Media in Los Angeles
Working with the EPDC at JPL, educators at the San Fernando Institute for Applied Media in Los Angeles designed a multi-week project that had students create a mission to Mars. The project included testing samples of "Martian soil" for signs of microbial life (top left) and creating a hydraulic arm to interact with a simulated Mars surface (top center). Image credit: NASA/JPL-Caltech

In Chicago, Burley Elementary staff reached out to me via our distance learning program to revise an existing lesson for an elementary-level special education audience. Working together, the staff and I created a project using JPL’s NGSS-aligned Touchdown lesson to demonstrate the value of the engineering design process, revision and collaboration.

Students at Burley Elementary School in Chicago work on JPL's Touchdown lesson

Students at Burley Elementry in Chicago design lunar landers as part of JPL's NGSS-aligned Touchdown lesson. Burley Elementary teachers worked with the EPDC at JPL to modify the lesson for their students. Image credit: NASA/JPL-Caltech

At the onset of the project, students were tasked to develop a spacecraft capable of landing astronauts safely on a distant planet. Each day concluded with students testing their designs and documenting the changes they made. Again, student groups captured their revisions digitally, praising others and crediting them for ideas that influenced their work. As a result, student groups learned the value of collaboration over competition.

From the educator’s point of view, the evolution of students’ designs also provided a narrative for assessment: Each student group had three designs constructed along with written and recorded diaries discussing the changes they made. The rubric included analysis of their own trials as well as the peer designs that shaped their future trials, creating in-depth student storyboards.

In both of these cases, the educators’ creativity, expertise and interest in creating novel opportunities for professional development and student engagement helped elevate the quality of the EPDC’s offerings and expand the scope of JPL’s STEM lessons. I’ve since been able to incorporate the ideas and strategies created during these projects into other workshops and lessons, sharing them with an even wider group of educators and classrooms. While not every collaboration between the EPDC and educators need be multi-day endeavors, even when done on a small scale, they can have a big impact.

Looking to bring NASA science into your classroom or need help customizing lessons for your students and staff? The EPDC at JPL serves educators in the greater Los Angeles area. Contact JPL education specialist Brandon Rodriguez at brandon.rodriguez@jpl.nasa.gov. Note: Due to the popularity of EPDC programs, JPL may not be able to fulfill all requests.

Outside the Southern California area? The EPDC operates in all 50 states. To find an EPDC specialist near you, see https://www.txstate-epdc.net/nasa-centers/.

The Educator Professional Development Collaborative (EPDC) is managed by Texas State University as part of the NASA Office of Education. A free service for K-12 educators nationwide, the EPDC connects educators with the classroom tools and resources they need to foster students’ passion for careers in STEM and produce the next generation of scientists and engineers.

TAGS: Professional Development, Workshops, Teachers, Educators, STEM, Science, Engineering, EPDC

  • Brandon Rodriguez
READ MORE

STAR fellows at JPL

Out of the many student programs and internships offered at NASA’s Jet Propulsion Laboratory, only one focuses entirely on future math and science teachers, the individuals directly responsible for inspiring the next generations of scientists and engineers. The Science Teacher and Researcher (STAR) program provides aspiring science and math teachers with paid summer internships in national, independent and university laboratories, allowing participants to pursue a prestigious dual “teacher-researcher” career path.

JPL has hosted 28 interns during its three years of participation in the program, which is offered by the California State University system in partnership with government agencies that include the U.S. Department of Energy, the National Science Foundation and NASA, as well as private research organizations. Out of the 12 STAR undergraduate and graduate school interns participating in the program at JPL this summer, five have been offered teaching positions for the fall. The seven other interns are continuing their education.

“Providing research opportunities for STAR participants is one of many ways JPL adds to science, technology, engineering and mathematics, or STEM, education in California and nationwide,” said Petra Kneissl-Milanian, a JPL education program specialist who coordinates the STAR program. “Our scientists and engineers enable these aspiring science and math teachers to experience real, hands-on science and absorb the culture of JPL specifically and the scientific environment in general. These young teachers will carry this excitement into their future classrooms, teaching and inspiring learners.”

Bryan Rebar is the director of the STAR program and works out of Cal Poly San Luis Obispo, where the program was founded and implemented by their Center for Excellence in Science and Mathematics Education and is administered on behalf of the California State University system. “Science and math teachers benefit from firsthand experience conducting research at cutting edge labs because it gives them an understanding and a vision for how science and math skills are applied in careers,” Rebar said. “We provide STAR fellows with support to translate their experience into classroom practice.”

With the guidance of a research mentor, STAR fellows work on original science projects for eight to ten weeks. Weekly education workshops and an opening and closing conference provide context and opportunities for the participants to consider how the “doing of science” may be translated into the “teaching of science.” The ultimate goals of the STAR program are to enhance the recruitment, preparation and retention of quality science and math teachers.

Skyler Lassman worked as a STAR intern this summer in JPL’s Propulsion and Materials Engineering Section on electric propulsion systems and recently took a job at Orcutt Academy High School in Orcutt, Calif. teaching physics and biology. “What will be the most beneficial is being able to know how JPLers conduct research, what tools they use and how they solve problems,” Lassman said. “For example, I now have a clearer idea of why it is important to teach students to write lab reports and how to interpret graphs.”

JPL STAR intern Jessica Potter will be teaching biology at Arroyo Valley High School in San Bernardino this fall. This summer, she worked in the Water and Carbon Cycles Group on remote sensing as applied toward studying Earth’s ecosystem. “Perhaps the most important thing I will take away from my time at JPL will be the ability to guide my students interested in pursuing science,” she said. “I have just become the advisor of the new science club created by two students who want to attend Caltech. They were so excited that I had worked at JPL, and I am looking forward to assisting them in achieving their dreams.”

Lassman and Potter weren’t the only participants this summer who were recently hired as teachers: Shin Adachi is working at the Synergy Quantum Academy in Los Angeles, Andrew Giang at Los Altos High School in Hacienda Heights and Adorina Moshava at Taft High School in Woodland Hills.

The STAR Program hopes to change the way science and education are viewed. “We believe that STAR offers a transformative experience,” said Rebar. “Rather than entering a classroom as a teacher of science, STAR fellows arrive thinking as scientists who have the skills to teach.”

TAGS: Educators, Teachers, STEM, Science Teacher and Researcher Program

  • NASA/JPL Edu
READ MORE