Find out more about the historic first test, which could be used to defend our planet if a hazardous asteroid were discovered. Plus, explore lessons to bring the science and engineering of the mission into the classroom.


Update: Oct. 20, 2022 – The DART spacecraft successfully impacted the asteroid Dimorphos on September 26, reducing the period of the asteroid's orbit by 32 minutes. Scientists considered a change of 73 seconds to be the minimum amount for success. This article has been updated to reflect the latest data and images from the impact.


In a successful attempt to alter the orbit of an asteroid for the first time in history, NASA crashed a spacecraft into the asteroid Dimorphos on Sept. 26, 2022. The mission, known as the Double Asteroid Redirection Test, or DART, took place at an asteroid that posed no threat to our planet. Rather, it was an ideal target for NASA to test an important element of its planetary defense plan.

Read further to learn about DART, how it worked, and how the science and engineering behind the mission can be used to teach a variety of STEM topics.

Why It's Important

The vast majority of asteroids and comets are not dangerous, and never will be. Asteroids and comets are considered potentially hazardous objects, or PHOs, if they are 100-165 feet (30-50 meters) in diameter or larger and their orbit around the Sun comes within five million miles (eight million kilometers) of Earth’s orbit. NASA's planetary defense strategy involves detecting and tracking these objects using telescopes on the ground and in space. In fact, NASA’s Center for Near Earth Object Studies, or CNEOS, monitors all known near-Earth objects to assess any impact risk they may pose. Any relatively close approach is reported on the Asteroid Watch dashboard.

Six triangular sections fan out from a shadowed view of Earth describing the PDCO's various activities, including 'Search, Detect & Track', 'Characterize', 'Plan and Coordinate', 'Mitigate', and 'Assess'.

NASA's Planetary Defense Coordination Office runs a variety of programs and initiatives aimed at detecting and responding to threats from potentially hazardous objects, should one be discovered. The DART mission is one component and the first mission being flown by the team. Image credit: NASA | + Expand image

While there are no known objects currently posing a threat to Earth, scientists continue scanning the skies for unknown asteroids. NASA is actively researching and planning for ways to prevent or reduce the effects of a potential impact, should one be discovered. The DART mission was the first test of such a plan – in this case, whether it was possible to divert an asteroid from its predicted course by slamming into it with a spacecraft.

Eyes on Asteroids is a real-time visualization of every known asteroid or comet that is classified as a near-Earth object, or NEO. Asteroids are represented as blue dots and comets as shown as white dots. Use your mouse to explore the interactive further and learn more about the objects and how we track them. Credit: NASA/JPL-Caltech | Explore the full interactive

With the knowledge gained from the demonstration, similar techniques could be used in the future to deflect an asteroid or comet away from Earth if it were deemed hazardous to the planet.

How It Worked

With a diameter of about 525 feet (160 meters) – the length of 1.5 football fields – Dimorphos is the smaller of two asteroids in a double-asteroid system. Before DART's impact, Dimorphos orbited the larger asteroid called Didymos (Greek for "twin"), every 11 hours and 55 minutes.

Various Earth objects are shown to scale ranging from a bus at 14 meters to the Burj Khalifa skyscraper at 830 meters. Dimorphos at 163 meters is shown between the Statue of Liberty (93 meters) on its left and the Great Pyramid of Giza (139 meters) on its right. Didymos is shown between the One World Trade Center (546 meters) on its left and the Burj Khalifa on its right.

The sizes of the two asteroids in the Didymos system relative to objects on Earth. Image credit: NASA/Johns Hopkins APL | + Expand image

Neither asteroid poses a threat to our planet, which is one reason why this asteroid system was the ideal place to test asteroid redirection techniques. At the time of DART's impact, the asteroid pair was 6.8 million miles (11 million kilometers) away from Earth as they traveled on their orbit around the Sun.

The DART spacecraft was designed to collide head-on with Dimorphos to alter its orbit, shortening the time it takes the small asteroid to travel around Didymos. Compared with Dimorphos, which has a mass of about 11 billion pounds (five billion kilograms), the DART spacecraft was light. It weighed just 1,210 pounds (550 kilograms) at the time of impact. So how did such a light spacecraft affect the orbit of a relatively massive asteroid?

You can use your mouse to explore this interactive view of DART's impact with Dimorphos from NASA's Eyes on the Solar System. Credit: NASA/JPL-Caltech | Explore the full interactive

DART was designed as a kinetic impactor, meaning it transferred its momentum and kinetic energy to Dimorphos upon impact, altering the asteroid's orbit in return. Scientists were able to make predictions about some of these effects thanks to principles described in Newton's laws of motion.

Newton’s first law told us that the asteroid’s orbit would remain unchanged until something acted upon it. Using the formula for linear momentum (p = m * v), we could calculate that the spacecraft, which at the time of impact would be traveling at 3.8 miles (6.1 kilometers) per second, would have about 0.5% of the asteroid’s momentum. The momentum of the spacecraft may seem small in comparison, but calculations suggested it would be enough to make a detectable change in the speed of Dimorphos' orbit. However, mission planners felt that changing Dimorphos’ orbit by at least 73 seconds would be enough to consider the test a success.

But there was more to consider in testing whether the technique could be used in the future for planetary defense. For example, the formula for kinetic energy (KE = 0.5 * m * v2) tells us that a fast moving spacecraft possesses a lot of energy.

When DART hit the surface of the asteroid, its kinetic energy was 10 billion joules! A crater was formed and material known as ejecta was blasted out as a result of the impact. Scientists are still studying the data returned from the mission to determine the amount of material ejected out of the crater, but estimates prior to impact put the number at 10-100 times the mass of the spacecraft itself. The force needed to push this material out was then matched by an equal reaction force pushing on the asteroid in the opposite direction, as described by Newton’s third law.

This animation shows conceptually how DART's impact is predicted to change Dimorphos' orbit from a larger orbit to a slightly smaller one that's several minutes shorter than the original. Credit: NASA/Johns Hopkins APL/Jon Emmerich | Watch on YouTube

How much material was ejected and its recoil momentum is still unknown. A lot depends on the surface composition of the asteroid, which scientists are still investigating. Laboratory tests on Earth suggested that if the surface material was poorly conglomerated, or loosely formed, more material would be blasted out. A surface that was well conglomerated, or densely compacted, would eject less material.

After the DART impact, scientists used a technique called the transit method to see how much the impact changed Dimorphos' orbit. As observed from Earth, the Didymos pair is what’s known as an eclipsing binary, meaning Dimorphos passes in front of and behind Didymos from our view, creating what appears from Earth to be a subtle dip in the combined brightness of the pair. Scientists used ground-based telescopes to measure this change in brightness and calculate how quickly Dimorphos orbits Didymos. By comparing measurements from before and after impact, scientists determined that the orbit of Dimorphos had slowed by 32 minutes to 11 hours and 23 minutes.

A pixelated black and white image is labeled 2022 Oct 04 11:55:39 UTC and shows a thin circular line representing Dimorphos' orbit. On the line are two semi-transparent circles colored green and blue. The blue circle is at about the 9 o'clock position on the orbit. The green circle is at about the 12 o'clock position. A second similar image to the right has smaller pixels and appears to be a slightly more distant view. The image on the right is labled 2022 Oct 09 10:56:47 UTC. In the image on the right, the blue circle is also at the 9 o'clock position on the orbit, but the green circle is at the 6 o'clock position. A key on the far right of the image identifies the green circle as Dimorphos, the blue circle as Expected Dimorphos from previous 11 hr.55 min. orbit, and the line as Dimorphos orbit.

The green circle shows the location of the Dimorphos asteroid, which orbits the larger asteroid, Didymos, seen here as the bright line across the middle of the images. The blue circle shows where Dimorphos would have been had its orbit not changed due to NASA’s DART mission purposefully impacting the smaller asteroid on Sept. 26, 2022. The images were obtained from the NASA Jet Propulsion Laboratory’s Goldstone planetary radar in California and the National Science Foundation’s Green Bank Observatory in West Virginia. Image credit: NASA/Johns Hopkins APL/JPL/NASA JPL Goldstone Planetary Radar/National Science Foundation’s Green Bank Observatory | + Expand image | › DART image gallery

One of the biggest challenges of the DART mission was navigating a small spacecraft to a head-on collision with a small asteroid millions of miles away. To solve that problem, the spacecraft was equipped with a single instrument, the DRACO camera, which worked together with an autonomous navigation system called SMART Nav to guide the spacecraft without direct control from engineers on Earth. About four hours before impact, images captured by the camera were sent to the spacecraft's navigation system, allowing it to identify which of the two asteroids was Dimorphos and independently navigate to the target.

Two white points of light are circled in a fuzzy field of stars. The slightly larger point of light near the far right of the image is labeled Didymos.

A composite of 243 images of Didymos and Dimorphos taken by the DART spacecraft's DRACO camera on July 27, 2022, as the spacecraft was navigating to its target. Image credit: JPL DART Navigation Team | + Expand image | › DART image gallery

DART was not just an experimental asteroid impactor. The mission also used cutting-edge technology never before flown on a planetary spacecraft and tested new technologies designed to improve how we power and communicate with spacecraft.

Learn more about the engineering behind the DART mission, including the innovative Roll Out Solar Array and NEXT-C ion propulsion system, in this video featuring experts from the mission. Credit: APL | Watch on YouTube

One such technology that was first tested on the International Space Station and was later used on the solar-powered DART spacecraft, is the Roll Out Solar Array, or ROSA, power system. As its name suggests, the power system consisted of flexible solar panel material that was rolled up for launch and unrolled in space.

The Roll Out Solar Array, shown in this animated image captured during a test on the International Space Station, is making its first planetary journey on DART. Image credit: NASA | + Expand image

Some of the power generated by the solar array was used for another innovative technology, the spacecraft's NEXT-C ion propulsion system. Rather than using traditional chemical propulsion, DART was propelled by charged particles of xenon pushed from its engine. Ion propulsion has been used on other missions to asteroids and comets including Dawn and Deep Space 1, but DART's ion thrusters had higher performance and efficiency.

Follow Along

In the days following the event, NASA received images of the impact from a cubesat, LICIACube, that was deployed by DART before impact. The cubesat, which was provided by the Italian Space Agency, captured images of the impact and the ejecta cloud.

A flash of bright white with tendrils extending in all directions eminates from a more defined bright white blob. Overlapping rectangles show the object and ejecta in increasing contrast the closer they get to the center of the scene.

This image from LICIACube shows plumes of ejecta streaming from Dimorphos after DART's impact. Each rectangle represents a different level of contrast to better see fine structure in the plumes. By studying these streams of material, scientists will be able to learn more about the asteroid and the impact process. | + Expand image | › DART image gallery

Meanwhile, the James Webb Space Telescope, the Hubble Space Telescope, and the Lucy spacecraft observed Didymos to monitor how soon reflected sunlight from the ejecta plume could be seen. Going forward, DART team members will continue observing the asteroid system to measure the change in Dimorphos’ orbit and determine what happened on its surface. And in 2024, the European Space Agency plans to launch the Hera spacecraft to conduct an in-depth post-impact study of the Didymos system.

A starburst shape colored red grows in size and then contracts.

This animation, a timelapse of images from NASA’s James Webb Space Telescope, covers the time spanning just before DART's impact at 4:14 p.m. PDT (7:14 p.m. EDT) on Septtember 26 through 5 hours post-impact. Plumes of material from a compact core appear as wisps streaming away from where the impact took place. An area of rapid, extreme brightening is also visible in the animation. Image credit: Science: NASA, ESA, CSA, Cristina Thomas (Northern Arizona University), Ian Wong (NASA-GSFC); Joseph DePasquale (STScI) | + Expand image | › DART image gallery

Continue following along with all the science from DART, including the latest images and updates on the mission website. Plus, explore even more resources on this handy page.

Teach It

The mission is a great opportunity to engage students in the real world applications of STEM topics. Start exploring these lessons and resources to get students engaging in STEM along with the mission.

Educator Guides

Expert Talks

Student Activities

Articles

Resources for Kids

Check out these related resources for kids from NASA Space Place:

Explore More

TAGS: Asteroids and Comets, DART, near-Earth objects, planetary defense, Science, K-12 Education, Teachers, Educators, Parents, Teachable Moments

  • Lyle Tavernier
READ MORE

A slightly oblong donut-shaped ring of glowing warm dust especially bright at spots on the top, left, and right surrounds a black hole.

Find out how scientists captured the first image of Sagittarius A*, why it's important, and how to turn it into a learning opportunity for students.


Our home galaxy, the Milky Way, has a supermassive black hole at its center, but we’ve never actually seen it – until now. The Event Horizon Telescope, funded by the National Science Foundation, has released the first image of our galactic black hole, Sagittarius A* (pronounced “Sagittarius A-star” and abbreviated Sgr A*).

Read on to find out how the image was acquired and learn more about black holes and Sagittarius A*. Then, explore resources to engage learners in the exciting topic of black holes.

How Black Holes Work

A black hole is a location in space with a gravitational pull so strong that nothing, not even light, can escape it. A black hole’s outer edge, called its event horizon, defines the spherical boundary where the velocity needed to escape exceeds the speed of light. Matter and radiation fall in, but they can’t get out. Because not even light can escape, a black hole is literally black. Contrary to their name’s implication, black holes are not empty. In fact, a black hole contains a great amount of matter packed into a relatively small space. Black holes come in various sizes and can exist throughout space.

We can surmise a lot about the origin of black holes from their size. Scientists know how some types of black holes form, yet the formation of others is a mystery. There are three different types of black holes, categorized by their size: stellar-mass, intermediate-mass, and supermassive black holes.

Stellar-mass black holes are found throughout our Milky Way galaxy and have masses less than about 100 times that of our Sun. They comprise one of the possible endpoints of the lives of high-mass stars. Stars are fueled by the nuclear fusion of hydrogen, which forms helium and other elements deep in their interiors. The outflow of energy from the central regions of the star provides the pressure necessary to keep the star from collapsing under its own weight.

A bubble if gas is sucked into a swirl of glowing dust and gas around a black hole as hair-like whisps extend from the top and bottom of the swirl.

This illustration shows a binary system containing a stellar-mass black hole called IGR J17091-3624. The strong gravity of the black hole, on the left, is pulling gas away from a companion star on the right. This gas forms a disk of hot gas around the black hole, and the wind is driven off this disk. Image credit: NASA/CXC/M.Weiss | › Full image and caption

Once the fuel in the core of a high-mass star has completely burned out, the star collapses, sometimes producing a supernova explosion that releases an enormous amount of energy, detectable across the electromagnetic spectrum. If the star’s mass is more than about 25 times that of our Sun, a stellar-mass black hole can form.

Intermediate-mass black holes have masses between about 100 and 100,000 times that of our Sun. Until recently, the existence of intermediate-mass black holes had only been theorized. NASA’s Chandra X-ray Observatory has identified several intermediate-mass black hole candidates by observing X-rays emitted by the gas surrounding the black hole. The Laser Interferometer Gravitational Wave Observatory, or LIGO, funded by the National Science Foundation, detected the merger of two stellar-mass black holes with masses 65 and 85 times that of our Sun forming an intermediate-mass black hole of 142 solar masses. (Some of the mass was converted to energy and about nine solar masses were radiated away as gravitational waves.)

Supermassive black holes contain between a million and a billion times as much mass as a stellar-mass black hole. Scientists are uncertain how supermassive black holes form, but one theory is that they result from the combining of stellar-mass black holes.

A scale on the bottom shows mass (relative to the Sun) from 1 to 1 million and beyond. Stellar-mass black holes are shown on the left side of the scale between about 10 and 100 solar masses, followed on the right by intermediate-mass black holes from 100 to over 100,000 stellar masses followed by supermassive black holes from about 1 million on.

This chart illustrates the relative masses of super-dense cosmic objects, ranging from white dwarfs to the supermassive black holes encased in the cores of most galaxies. | › Full image and caption

Our local galactic center’s black hole, Sagittarius A*, is a supermassive black hole with a mass of about four million suns, which is fairly small for a supermassive black hole. NASA’s Hubble Space Telescope and other telescopes have determined that many galaxies have supermassive black holes at their center.

A bright-white collection of stars is surrounded by a berry colored swirl of stellar dust and stars.

This image shows the center of the Milky Way galaxy along with a closer view of Sagittarius A*. It was made by combining X-ray images from NASA's Chandra X-ray Observatory (blue) and infrared images from the agency's Hubble Space Telescope (red and yellow). The inset shows Sgr A* in X-rays only, covering a region half a light year wide. Image credit: X-ray: NASA/UMass/D.Wang et al., IR: NASA/STScI | › Full image and caption

Why They're Important

Black holes hold allure for everyone from young children to professional astronomers. For astronomers, in particular, learning about Sagittarius A* is important because it provides insights into the formation of our galaxy and black holes themselves.

Understanding the physics of black hole formation and growth, as well as their surrounding environments, gives us a window into the evolution of galaxies. Though Sagittarius A* is more than 26,000 light years (152 quadrillion miles) away from Earth, it is our closest supermassive black hole. Its formation and physical processes influence our galaxy as galactic matter continually crosses the event horizon, growing the black hole’s mass.

Studying black holes also helps us further understand how space and time interact. As one gets closer to a black hole, the flow of time slows down compared with the flow of time far from the black hole. In fact, according to Einstein’s theory of general relativity, the flow of time slows near any massive object. But it takes an incredibly massive object, such as a black hole, to make an appreciable difference in the flow of time. There's still much to learn about what happens to time and space inside a black hole, so the more we study them, the more we can learn.

How Scientists Imaged Sagittarius A*

Black holes, though invisible to the human eye, can be detected by observing their effects on nearby space and matter. As a result of their enormous mass, black holes have extremely high gravity, which pulls in surrounding material at rapid speeds, causing this material to become very hot and emit X-rays.

This video explains how Sagittarius A* appears to still have the remnants of a blowtorch-like jet dating back several thousand years. Credit: NASA | Watch on YouTube

X-ray-detecting telescopes such as NASA’s Chandra X-ray Observatory can image the material spiraling into a black hole, revealing the black hole’s location. NASA’s Hubble Space Telescope can measure the speed of the gas and stars orbiting a point in space that may be a black hole. Scientists use these measurements of speed to determine the mass of the black hole. Hubble and Chandra are also able to image the effects of gravitational lensing, or the bending of light that results from the gravitational pull of black holes or other high-mass objects such as galaxies.

A bright central blob is surrounded by blue halos and whisps forming a sort of target pattern.

The thin blue bull's-eye patterns in this Hubble Space Telescope image are called "Einstein rings." The blobs are giant elliptical galaxies roughly 2 to 4 billion light-years away. And the bull's-eye patterns are created as the light from galaxies twice as far away is distorted into circular shapes by the gravity of the giant elliptical galaxies. | › Full image and caption

To directly image the matter surrounding a black hole, thus revealing the silhouette of the black hole itself, scientists from around the world collaborated to create the Event Horizon Telescope. The Event Horizon Telescope harnesses the combined power of numerous telescopes around the world that can detect radio-wave emissions from the sky to create a virtual telescope the size of Earth.

Narrated by Caltech’s Katie Bouman, this video explains how she and her fellow teammates at the Event Horizon Telescope project managed to take a picture of Sagittarius A* (Sgr A*), a beastly black hole lying 27,000 light-years away at the heart of our Milky Way galaxy. Credit: Caltech | Watch on YouTube

In 2019, the team released the first image of a black hole's silhouette when they captured the glowing gasses surrounding the M87* galactic black hole nearly 53 million light-years (318 quintillion miles) away from Earth. The team then announced that one of their next endeavors was to image Sagittarius A*.

A warm glowing ring surrounds an empty blackness.

Captured by the Event Horizon Telescope in 2019, this image of the the glowing gasses surrounding the M87* black hole, was the first image ever captured of a black hole. Image credit: Event Horizon Telescope Collaboration | + Expand image

To make the newest observation, the Event Horizon Telescope focused its array of observing platforms on the center of the Milky Way. A telescope array is a group of telescopes arranged so that, as a set, they function similarly to one giant telescope. In addition to the telescopes used to acquire the M87* image, three additional radio telescopes joined the array to acquire the image of Sagittarius A*: the Greenland Telescope, the Kitt Peak 12-meter Telescope in Arizona, and the NOrthern Extended Millimeter Array, or NOEMA, in France.

This image of the center of our Milky Way galaxy representing an area roughly 400 light years across, has been translated into sound. Listen for the different instruments representing the data captured by the Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope. The Hubble data outline energetic regions where stars are being born, while Spitzer's data captures glowing clouds of dust containing complex structures. X-rays from Chandra reveal gas heated to millions of degrees from stellar explosions and outflows from Sagittarius A*. Credit: Chandra X-ray Observatory | Watch on YouTube

The distance from the center of Sagittarius A* to its event horizon, a measurement known as the Schwarzschild radius, is enormous at seven million miles (12,000,000 kilometers or 0.08 astronomical units). But its apparent size when viewed from Earth is tiny because it is so far away. The apparent Schwarzschild radius for Sagittarius A* is 10 microarcseconds, about the angular size of a large blueberry on the Moon.

Acquiring a good image of a large object that appears tiny when viewed from Earth requires a telescope with extraordinarily fine resolution, or the ability to detect the smallest possible details in an image. The better the resolution, the better the image and the more detail the image will show. Even the best individual telescopes or array of telescopes at one location do not have a good enough resolution to image Sagittarius A*.

A dense field of stars like grains of sand is surrounded by wispy clouds of glowing gas and dust.

This image captured by NASA's Hubble Space Telescope shows the star-studded center of the Milky Way towards the constellation of Sagittarius. Even though you can't see our galaxy's central black hole directly, you might be able to pinpoint its location based on what you've learned about black holes thusfar. Image credit: NASA, ESA, and G. Brammer | › Full image and caption

The addition of the 12-meter Greenland Telescope, though a relatively small instrument, widened the diameter, or aperture, of the Event Horizon Telescope to nearly the diameter of Earth. And NOEMA – itself an array of twelve 15-meter antennas with maximum separation of 2,500 feet (760 meters) – helped further increase the Event Horizon Telescope’s light-gathering capacity.

Altogether, when combined into the mighty Event Horizon Telescope, the virtual array obtained an image of Sagittarius A* spanning about 50 microarcseconds, or about 1/13th of a billionth the span of the night sky.

A slightly oblong donut-shaped ring of glowing warm dust especially bright at spots on the top, left, and right surrounds a black hole.

Sagittarius A* is more than 26,000 light years (152 quadrillion miles) away from Earth and has the mass of 4 million suns. Image credit: Event Horizon Telescope | › Full image and caption

While the Event Horizon Telescope was busy capturing the stunning radio image of Sagittarius A*, an additional worldwide contingent of astronomical observatories was also focused on the black hole and the region surrounding it. The aim of the team, known as the Event Horizon Telescope Multiwavelength Science Working Group, was to observe the black hole in other parts of the electromagnetic spectrum beyond radio. As part of the effort, X-ray data were collected by NASA’s Chandra X-ray Observatory, Nuclear Spectroscopic Telescope (NuSTAR), and Neil Gehrels Swift Observatory, additional radio data were collected by the East Asian Very Long-Baseline Interferometer (VLBI) network and the Global 3 millimeter VLBI array, and infrared data were collected by the European Southern Observatory’s Very Large Telescope.

The data from these multiple platforms will allow scientists to continue building their understanding of the behavior of Sagittarius A* and to refine their models of black holes in general. The data collected from these multiwavelength observations are crucial to the study of black holes, such as the Chandra data revealing how quickly material falls in toward the disk of hot gas orbiting the black hole’s event horizon. Data such as these will hopefully help scientists better understand black hole accretion, or the process by which black holes grow.

Teach It

Check out these resources to bring the real-life STEM of black holes into your teaching, plus learn about opportunities to involve students in real astronomy research.

Explore More

Articles

Educator Guides

Student Activities

Check out these related resources for students from NASA’s Space Place

Across the NASA-Verse


This Teachable Moment was created in partnership with NASA’s Universe of Learning. Universe of Learning materials are based upon work supported by NASA under award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and the Jet Propulsion Laboratory.

TAGS: Black hole, Milky Way, galaxy, universe, stars, teachers, educators, lessons, Teachable Moments, K-12, science

  • Ota Lutz
READ MORE

A small piece of the ISS is visible in the top corner of this view looking down from space station over Earth. A large cloud of dust takes half the view over Earth's surface.

A data map overlaid on the globe shows thick swirls of dust traveling from West Africa, across the Atlantic Ocean and all the way to the Caribbean and Southern U.S.

Learn about the role that dust plays in Earth's climate, why scientists are interested in studying dust from space, and how to engage students in the science with STEM resources from JPL.


A NASA instrument launched to the International Space Station this summer will explore how dust impacts global temperatures, cloud formation, and the health of our oceans. The Earth Surface Mineral Dust Source Investigation, or EMIT, is the first instrument of its kind, designed to collect measurements from space of some of the most arid regions on Earth to understand the composition of soils that generate dust and the larger role dust plays in climate change.

Read on to find out how the instrument works and why scientists are hoping to learn more about the composition of dust. Then, explore how to bring the science into your classroom with related climate lessons that bridge physical sciences with engineering practices.

Why It’s Important

Scientists have long studied the movements of dust. The fact that dust storms can carry tiny particles great distances was reported in the scientific literature nearly two centuries ago by none other than Charles Darwin as he sailed across the Atlantic on the HMS Beagle. What still remains a mystery all these years later is what that dust is made of, how it moves, and how that affects the health of our planet.

For example, we now know that dust deposited on snow speeds up snow melt even more than increased air temperature. That is to say, that dust traveling to cold places can cause increased snow melt.

Sharp mountain peaks are covered in splotches of snow with a fine coating of dust visible on top of the snow.

A coating of dust on snow speeds the pace of snowmelt in the spring. Credit: NASA | + Expand image

Dust can affect air temperatures as well. For example, dust with more iron absorbs light and can cause the air to warm, while dust with less iron reflects light and is responsible for local cooling. Iron in dust can also act as a fertilizer for plankton in oceans, supplying them with nutrients needed for growth and reproduction.

A plume of dust eminates from over the Copper River in Alaska, spreading out as this series of overhead satellite images progresses.

A plume of dust is shown emanating from over Alaska's Copper River in October 2016 in these images captured by the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument on NASA’s Terra and Aqua satellites. Dust storms play a key role in fueling phytoplankton blooms by delivering iron to the Gulf of Alaska. Credit: NASA | › Full image and caption

Floating dust potentially alters the composition of clouds and how quickly or slowly they form, which can ultimately impact weather patterns, including the formation of hurricanes. That’s because clouds need particles to act as seeds around which droplets of moisture in the atmosphere can form. This process of coalescing water particles, called nucleation, is one factor in how clouds form.

An overhead view of a swirl of clouds mixed with a streak of dust like a swirl of milk froth in a cappuccino

A swirl of dust mixes with the clouds in a low-pressure storm over the Gobi desert between Mongolia and China. This image was captured by the MODIS instrument on the Terra satellite in May 2019. Credit: NASA | › Full image and caption

Thanks to EMIT, we’ll take the first steps in understanding how the movements of dust particles contribute to local and global changes in climate by producing “mineral maps”. These mineral maps will reveal differences in the chemical makeup of dust, providing essential information to help us model the way dust can transform Earth’s climate.

› Learn more about what EMIT will do from JPL News

How It Works

NASA has been exploring how dust moves across the globe by combining on-the-ground field studies with cutting-edge technology.

Dr. Olga Kalashnikova, an aerosol scientist at NASA's Jet Propulsion Laboratory and a co-investigator for EMIT, has been using satellite data to study atmospheric mineral dust for many years, including tracking the movements of dust and investigating trends in the frequency of dust storms.

As Dr. Kalashnikova describes, “From the ground, we can see what types of dusts are lifted into the atmosphere by dust storms on a local scale, but with EMIT, we can understand how they differ and where they originally came from.”

EMIT is the first instrument designed to observe a key part of the mineral dust cycle from space, allowing scientists to track different dust compositions on a global scale, instead of in just one region at a time. To understand dust’s impact on Earth’s climate, scientists will use EMIT to answer key questions, including:

  • How does dust uplifted in the atmosphere alter global temperatures?
  • What role do dusts play in fertilizing our oceans when they are deposited?
  • How do dust particles in the atmosphere affect cloud nucleation; the process by which clouds are ‘seeded’ and begin to coalesce into larger clouds?
A picture of the EMIT instrument, shaped like a small megaphone, is overlaid on an picture of the International Space Station flying above Earth.

The EMIT instrument will fly aboard the International Space Station, which orbits Earth about once every 90 minutes, completing about 16 orbits per day. Credit: NASA | + Expand image

To achieve its objectives, EMIT will spend 12 months collecting what are called “hyperspectral images” of some of the most arid regions of our planet selected by scientists and engineers as areas of high dust mobility, such as Northern Africa, the Middle East, and the American Southwest.

These images are measurements of light reflected from the Earth below, calibrated to the distinct patterns, or spectra, of light we see when certain minerals are present. The EMIT team has identified 10 minerals that are most common, including gypsum, hematite, and kaolinite.

Bands of satellite images looking at a seciton of Earth are highlighted in different colors to reveal different concentrations of minerals.

This example spectra shows how scientists will be able to identify different concentrations of minerals and elements in data collected by EMIT. Credit: NASA/JPL-Caltech | + Expand image

Why are these minerals important? One key reason is the presence or absence of the element iron, found in some minerals but not others.

Dr. Bethany Ehlmann is a planetary scientist and co-investigator for the EMIT project at Caltech and explains that when it comes to heating, “a little bit of iron goes a long way.” Iron in minerals absorbs visible and infrared light, meaning that even if only a small amount is present, it will result in a much warmer dust particle. Large amounts of warm dust in our atmosphere may have an impact on temperatures globally since those dust particles radiate heat as they travel, sometimes as far as across oceans!

Collecting images from space is, of course, no easy task, especially when trying to look only at the ground below. Yet it does allow scientists to get a global picture that's not possible to capture from the ground. Field studies allow us to take individual samples from tiny places of interest, but from space, we can scan the entire planet in remote places where no scientist can visit.

Of course, there are some complications in trying to study the light reflected off the surface of Earth, such as interference from clouds. To prevent this problem, the EMIT team plans to collect data at each location several times to ensure that the images aren’t being obscured by clouds between the instrument and the minerals we’re looking for.

The data collected by EMIT will provide a map of the compositions of dust from dry, desert environments all over the world, but the team involved won’t stop there. Knowing more about what the dust is made of sets the stage for a broader understanding of a few more of the complex processes that make up our global climate cycle. Upon completion of this study, EMIT's mineral maps will support further campaigns to complete our global dust picture. For example, NASA hopes to couple the data from EMIT with targeted field campaigns, in which scientists can collect wind-blown dust from the ground to learn more about where dust particles move over time and answer questions about what types of dust are on the go.

Furthermore, missions such as the Multiangle Imager for Aerosols, or MAIA, will allow us to better understand the effects of these dust particles on air-quality and public health.

Teach it

Studying Earth’s climate is a complex puzzle, consisting of many trackable features. These can range from sea level to particles in our atmosphere, but each makes a contribution to measuring the health of our planet. Bring EMIT and NASA Earth Science into your classroom with these lessons, articles, and activities to better understand how we’re exploring climate change.

Educator Guides

Student Activities

Articles

Websites

TAGS: Earth, climate, geology, weather, EMIT, Teachers, Classroom, Lessons, Earth Science, Climate Change, Dust, Global Warming, Educators, K-12, Teachable Moments, Climate TM

  • Brandon Rodriguez
READ MORE

Learn how, why, and what Perseverance will explore on Mars, plus find out about an exciting opportunity for you and your students to join in the adventure!


In the News

On Feb. 18, NASA's Perseverance Mars rover touched down on the Red Planet after a seven-month flight from Earth. Only the fifth rover to land on the planet, Perseverance represents a giant leap forward in our scientific and technological capabilities for exploring Mars and the possibility that life may have once existed on the Red Planet.

Here, you will:

Why It's Important

You might be wondering, "Isn't there already a rover on Mars?” The answer is yes! The Curiosity rover landed on Mars in 2012 and has spent its time on the Red Planet making fascinating discoveries about the planet's geology and environment – setting the stage for Perseverance. So, why send another rover to Mars? The lessons we’ve learned from Curiosity coupled with advancements in technology over the last decade are allowing us to take the next big steps in our exploration of Mars, including looking for signs of ancient microbial life, collecting rock samples to bring to Earth one day, and setting the stage for a potential future human mission to the Red Planet.

More specifically, the Perseverance Mars rover has four science objectives:

  • Identify past environments on Mars that could have supported microbial life
  • Seek signs of ancient microbial life within the rocks and soil using a new suite of scientific instruments
  • Collect rock samples of interest to be stored on the surface for possible return by future missions
  • Pave the way for human exploration beyond the Moon

With these science objectives in mind, let's take a look at how the mission is designed to achieve these goals – from its science-rich landing site, Jezero Crater, to its suite of onboard tools and technology.

How It Works

Follow the Water

A false-color satellite image of Jezero Crater is green and yellow around the edges with a large blue circular crater in the middle.

Lighter colors represent higher elevation in this image of Jezero Crater on Mars, the landing site for the Perseverance rover. The black oval indicates the area in which the rover will touch down, also called a landing ellipse. Image Credit: NASA JPL/Caltech/MSSS/JHU-APL/ESA | › Full image and caption

While present-day Mars is a cold, barren planet, science suggests that it was once very similar to Earth. The presence of clay, dried rivers and lakes, and minerals that formed in the presence of water provide extensive evidence that Mars once had flowing water at its surface. As a result, a mission looking for signs of ancient life, also known as biosignatures, should naturally follow that water. That’s because water represents the essential ingredient for life as we know it on Earth, and it can host a wide variety of organisms.

This is what makes Perseverance's landing site in Jezero Crater such a compelling location for scientific exploration. The crater was originally formed by an ancient meteorite impact about 3.8 billion years ago, and it sits within an even larger, older impact basin. The crater also appears to have once been home to an ancient lake fed by a river that formed the delta where Perseverance will begin its exploration, by exploring the foot of the river delta.

Take a tour of Perseverance's landing site in this animated flyover of the Martian surface. Credit: NASA/JPL-Caltech | Watch on YouTube

Tools of the Trade

Perseverance will begin its scientific exploration with the assistance of an array of tools, also known as science instruments.

An illustration of the rover is shown with each of its science instruments deployed and identified.

This artist's concept shows the various science tools, or instruments, onboard the rover. Image credit: NASA/JPL-Caltech | › Learn more about the rover's science instruments

Like its predecessor, Perseverance will have a number of cameras – 23, in fact! – serving as the eyes of the rover for scientists and engineers back on Earth. Nine of these cameras are dedicated to mobility, or tracking the rover's movements; six will capture images and videos as the rover travels through the Martian atmosphere down to the surface, a process known as entry, descent, and landing; and seven are part of the science instrumentation.

The SuperCam instrument is shown on a laboratory table before being installed on the rover.

SuperCam's mast unit before being installed atop the Perseverance rover's remote sensing mast. The electronics are inside the gold-plated box on the left. The end of the laser peeks out from behind the left side of the electronics. Image credit: CNES | › Learn more about SuperCam

Six pump-like structures control a rectangular metal instrument in this animated image.

PIXL can make slow, precise movements to point at specific parts of a rock's surface so the instrument's X-ray can discover where – and in what quantity – chemicals are distributed in a given sample. This GIF has been considerably sped up to show how the hexapod moves. Image credit: NASA/JPL-Caltech | › Learn more about PIXL

A small camera sits in gold-color housing on a white rover body.

A close-up view of an engineering model of SHERLOC, one the instruments aboard NASA's Perseverance Mars rover. Credit: NASA/JPL-Caltech | › Learn more about SHERLOC

Navcam, located on the mast (or "head") of the rover, will capture images to help engineers control the rover. Meanwhile, Mastcam-Z, also on the rover’s mast, can zoom in, focus, and take 3D color pictures and video at high speed to allow detailed examination of distant objects. A third camera, Supercam, fires a small laser burst to excite compounds on the surface and determine their composition using spectroscopy. Supercam is also equipped with a microphone. This microphone (one of two on the rover) will allow scientists to hear the pop the laser makes upon hitting its target, which may give scientists additional information about the hardness of the rock.

Leaning more toward chemistry, the Planetary Instrument for X-Ray Lithochemistry (PIXL) will allow us to look at the composition of rocks and soil down to the size of a grain of salt. Elements respond to different types of light, such as X-rays, in predictable ways. So by shining an X-ray on Martian rocks and soil, we can identify elements that may be part of a biosignature.

Meanwhile, a device called SHERLOC will look for evidence of ancient life using a technique called Deep UV Raman spectroscopy. Raman spectroscopy can help scientists see the crystallinity and molecular structure of rocks and soil. For example, some molecules and crystals luminesce, or emit light, when exposed to ultraviolet – similar to how a blacklight might be used to illuminate evidence in a crime scene. Scientists have a good understanding of how chemicals considered key to life on Earth react to things like ultraviolet light. So, SHERLOC could help us identify those same chemicals on Mars. In other words, it can contribute to identifying those biosignatures we keep talking about.

Rounding out its role as a roving geologist on wheels, Perseverance also has instruments for studying beneath the surface of Mars. An instrument called the Radar Imager of Mars Subsurface Experiment (RIMFAX) will use ground-penetrating radar to analyze depths down to about 100 feet (30 meters) below the surface. Mounted on the rear of the rover, RIMFAX will help us understand geological features that can't be seen by the other cameras and instruments.

The rover's suite of instruments demonstrates how multiple scientific disciplines – chemistry, physics, biology, geology, and engineering – work in concert to further our understanding of Mars and help scientists uncover whether life ever existed on the Red Planet.

Next Generation Tech

At NASA, scientists and engineers are always looking to push the envelope and, while missions such as Perseverance are ambitious in themselves, they also provide an opportunity for NASA to test new technology that could be used for future missions. Two excellent examples of such technology joining Perseverance on Mars are MOXIE and the first ever Mars helicopter, Ingenuity.

Engineers in white smocks lower a gold-colored cube into the rover

Members of Perseverance mission team install MOXIE into the belly of the rover in the cleanroom at NASA's Jet Propulsion Laboratory in Southern California. Image credit: NASA/JPL-Caltech | › Full image and caption

MOXIE stands for the Mars Oxygen In-Situ Resource Utilization Experiment. Operating at 800 degrees Celsius, MOXIE takes in carbon dioxide (CO2) from the thin Martian atmosphere and splits those molecules into pure oxygen using what is called a catalyst. A catalyst is a chemical that allows for reactions to take place under conditions they normally wouldn’t. MOXIE provides an incredible opportunity for NASA to create something usable out of the limited resources available on Mars. Over the duration of the rover's mission, MOXIE will run for a total of one hour every time it operates, distributed over the course of the prime mission timeframe, to determine whether it can reliably produce breathable oxygen. The goal of operating this way is to allow scientists to determine the performance across a variety of environmental conditions that a dedicated, human-mission-sized oxygen plant would see during operations - day versus night, winter versus summer, etc. Oxygen is of great interest for future missions not just because of its necessity for future human life support on Mars, but also because it can be used as a rocket propellant, perhaps allowing for future small-scale sample return missions to Earth.

The helicopter with four long blades, a cube-shape body and long skinny legs sites in the forground with the wheels of the rover visible to its right.

This artist's concept shows Ingenuity, the first Mars helicopter, on the Red Planet's surface with Perseverance (partially visible on the left) in the distance. Image credit: NASA/JPL-Caltech | › Full image and caption

The Mars Ingenuity helicopter is likewise an engineering first. It is a technology demonstration to test powered flight on Mars. Because the Martian atmosphere is so thin, flight is incredibly difficult. So, the four-pound (1.8-kilogram), solar powered helicopter is specially designed with two, four-foot (1.2-meter) long counter-rotating blades that spin at 2,400 rotations per minute. In the months after Perseverance lands, Ingenuity will drop from the belly of the rover. If all goes well, it will attempt test flights of increasing difficulty, covering incrementally greater heights and distances for about 30 days. In the future, engineers hope flying robots can allow for a greater view of the surrounding terrain for robotic and human missions alike.

Teach It

Take part in a worldwide “teachable moment” and bring students along for the ride as NASA lands the Perseverance rover on Mars February 18. Science communicator and host of “Emily’s Wonder Lab” on Netflix, Emily Calandrelli, shares how you can join the adventure with your students! | Register on Eventbrite

The process of landing on Mars with such an advanced mission is no doubt an exciting opportunity to engage students across all aspects of STEM – and NASA wants to help teachers, educators and families bring students along for the adventure with the Mission to Mars Student Challenge. This challenge will lead students through designing and building a mission to Mars with a guided education plan and resources from NASA, listening to expert talks, and sharing student work with a worldwide audience. 

Learn more about the challenge and explore additional education resources related to the Perseverance Mars rover mission at https://go.nasa.gov/mars-challenge

Watch the Landing

The next chapter of Perseverance’s journey takes place on Feb. 18 at 12 p.m. PST (3 p.m. EST), when the mission reaches Mars after seven months of travelling through space. Join NASA as we countdown to landing with online events for teachers, students, and space enthusiasts! The landing day broadcast can be seen on NASA TV and the agency's website starting at 11:15 a.m. PST (2:15 p.m. EST). For a full listing of online events leading up to and on landing day, visit the mission's Watch Online page.

Follow landing updates on NASA's Twitter, Facebook and Instagram accounts.

Explore More

More Resources From NASA

  • Website: Perseverance Mars Rover
  • Website: NASA Mars Exploration
  • Website: Space Place - All About Mars
  • Video: Perseverance Mission Landing Trailer
  • Profiles: Meet the Martians
  • Simulation: Fly Along with Perseverance in Real-Time
  • Virtual Events: Watch Online – NASA Mars Exploration
  • Videos: Mars exploration videos from NASA
  • Images: Mars exploration images and graphics from NASA
  • Articles: Articles about Mars exploration from NASA
  • Share: Social Media
  • TAGS: Mars, Perseverance, Mars 2020, Science, Engineering, Robotics, Educators, Teachers, Students, Teachable Moments, Teach, Learn, Mars Landing

    • Brandon Rodriguez
    READ MORE

    Collage of images and graphics representing the science goals of the Sentinel-6 Michael Freilich mission

    Learn about the mission and find out how to make classroom connections to NASA Earth science – plus explore related teaching and learning resources.


    In the News

    A new spacecraft that will collect vital sea-surface measurements for better understanding climate change and improving weather predictions is joining the fleet of Earth science satellites monitoring our changing planet from space. A U.S.-European partnership, the Sentinel-6 Michael Freilich satellite continues a long tradition of collecting scientific data from Earth orbit. It’s named in honor of NASA’s former Earth Science Division director and a leading advocate for ocean measurements from space.

    Read on to find out how the mission will measure sea-surface height for the next 10 years and provide atmospheric data to help better predict weather. Plus, find out how to watch the launch online and explore related teaching resources to bring NASA Earth science into the classroom and incorporate sea level data into your instruction.

    How It Works

    The Sentinel-6 Michael Freilich satellite is designed to measure sea-surface height and improve weather predictions. Once in orbit, it will be able to measure sea-surface height – with accuracy down to the centimeter – over 90% of the world’s oceans every 10 days. It will do this using a suite of onboard science tools, or instruments.

    To measure sea-surface height, a radar altimeter will send a pulse of microwave energy to the ocean’s surface and record how long it takes for the energy to return. The time it takes for the signal to return varies depending on the height of the ocean – a higher ocean surface results in a shorter return time, while a lower ocean surface results in a longer return time. A microwave radiometer will measure delays that take place as the signal travels through the atmosphere to correct for this effect and provide an even more precise measurement of sea-surface height.

    A blue beam extends from the spacecraft down toward Earth as a red dot pulses back and forth between the spacecraft and the surface of the planet.

    This animation shows the radar pulse from the Sentinel-6 Michael Freilich satellite's altimeter bouncing off the sea surface in order to measure the height of the ocean. Image credit: NASA/JPL-Caltech | + Expand image

    To measure atmospheric data, Sentinel-6 Michael Freilich is equipped with the Global Navigation Satellite System - Radio Occultation, or GNSS-RO, instrument, which will measure signals from GPS satellites – the same ones you use to navigate on Earth. As these satellites move below or rise above the horizon from Sentinel-6 Michael Freilich's perspective, their signals slow down, change frequency and bend as a result of the phenomenon known as refraction. Scientists can use these changes in the GPS signal to measure small shifts in temperature, moisture content, and density in the atmosphere. These measurements can help meteorologists improve weather forecasts.

    Why It's Important

    Scientists from around the world have been collecting sea level measurements for more than a century. The data – gathered from tide gauges, sediment cores, and space satellites – paint a clear picture: sea level is rising. Looking at the average height of the sea across the planet, we see that in the last 25 years global sea level has been rising an average of 0.13 inches (3.3 mm) per year. This average is increasing each year (in the 2000s, it was 0.12 inches, or 3.0 mm, per year) as is the rate at which it’s increasing. That means that sea level is rising, and it’s rising faster and faster. Since 1880, global sea level has risen more than eight inches (20 cm). By 2100, it is projected to rise another one to four feet (30 to 122 cm).

    This satellite data show the change in Earth's global sea level since 1993. Roll over the chart to see the various data points. For more Earth vital signs, visit NASA's Global Climate Change website

    Measuring sea level from space provides scientists with global measurements of Earth’s oceans in a matter of days, including areas far from shore where measurements aren’t practical or possible. Starting in 1992 with the launch of the TOPEX/Poseidon mission, the record of sea level measurements from space has continued uninterrupted, providing an increasingly detailed picture of Earth’s rising seas. The Sentinel-6 Michael Freilich satellite – and its twin, which will launch in 2025 – will extend those measurements to 2030, allowing scientists to continue collecting vital information about Earth’s changing oceans and climate.

    Unlike previous satellites that measured sea level, Sentinel-6 Michael Freilich has the capability to measure sea level variations more accurately near coastlines, giving scientists insight into changes that can have direct impacts on communities and livelihoods, such as commercial fishing and ship navigation.

    This playlist for students and teachers features explainers about the causes and effects of sea level rise and how NASA is studying our changing planet – plus related STEM activities and experiments for students. | Watch on YouTube

    With rising seas already impacting people and communities, it's important to understand not just how much seas are rising, but also where and how quickly they are rising. Data from instruments on Sentinel-6 Michael Freilich can be combined with data from other satellites to get a clearer picture of what's contributing to sea level rise and where. For example, by looking at the satellite's radar altimeter measurements along with gravity measurements from the GRACE-FO mission, scientists can better determine how melting ice and thermal expansion are contributing to sea level rise. And by tracking the movement of warm water (which stands taller than cold water), scientists can better predict the rapid expansion of hurricanes.

    Watch the Launch

    Scheduled to launch at 9:17 a.m. PST (12:17 p.m. EST) on November 21, Sentinel-6 Michael Freilich will launch atop a SpaceX Falcon 9 rocket from Vandenberg Air Force Base in California.

    Watch a live broadcast of the launch from the Vandenberg Air Force Base on NASA TV and the agency’s website. Visit the Sentinel-6 Michael Freilich website to explore more news about the mission. Follow launch updates on NASA's Twitter, Facebook and Instagram accounts.

    Teach It

    Make classroom connections to NASA Earth science with lessons about rising seas, thermal expansion and ice melt, data collection and graphing, and engineering. Plus explore independent activities and experiments students can do at home, video playlists, and more:

    Explore More

    Recursos en Español

    TAGS: Teachable Moments, Educators, Teachers, Parents, K-12 Education, Launch, Mission, Earth, Satellite, Earth Science, Climate Change, Sentinel-6 Michael Freilich, Sea Level, Sea Level Rise, Climate TM

    • Lyle Tavernier
    READ MORE

    Satellite Image of smoke above the Western U.S.

    Data overlayed on a satellite image of the United States shows a thick cloud of aerosols over the western US

    Animated satellite image of Earth

    Update: Sept. 14, 2020 – This feature, originally published on Aug. 23, 2016, has been updated to include information on the 2020 fires and current fire research.


    In the News

    Once again, it’s fire season in the western United States with many citizens finding themselves shrouded in wildfire smoke. Late summer in the West brings heat, low humidity, and wind – optimal conditions for fire. These critical conditions have resulted in the August Complex Fire, the largest fire in California's recorded history. Burning concurrently in California are numerous other wildfires, including the SCU Lightning Complex fire, the third-largest in California history.

    Fueled by high temperatures, low humidity, high winds, and years of vegetation-drying drought, more than 7,700 fires have engulfed over 3 million acres across California already this year. And the traditional fire season – the time of year when fires are more likely to start, spread, and consume resources – has only just begun.

    Because of their prevalence and effects on a wide population, wildfires will remain a seasonal teachable moment for decades to come. Keep reading to find out how NASA studies wildfires and their effects on climate and communities. Plus, explore lessons to help students learn more about fires and their impacts.

    How It Works

    With wildfires starting earlier in the year and continuing to ignite throughout all seasons, fire season is now a year-round affair not just in California, but also around the world. In fact, the U.S. Forest Service found that fire seasons have grown longer in 25 percent of Earth's vegetation-covered areas.

    Animation of the FireSat network of satellites capturing wildfires on Earth

    This animation shows how FireSat would use a network of satellites around the Earth to detect fires faster than ever before. | + Expand image

    For NASA's Jet Propulsion Laboratory, which is located in Southern California, the fires cropping up near and far are a constant reminder that its efforts to study wildfires around the world from space, the air, and on the ground are as important as ever.

    JPL uses a suite of Earth satellites and airborne instruments to help better understand fires and aide in fire management and mitigation. By looking at multiple images and types of data from these instruments, scientists compare what a region looked like before, during, and after a fire, as well as how long the area takes to recover.

    While the fire is burning, scientists watch its behavior from an aerial perspective to get a big-picture view of the fire itself and the air pollution it is generating in the form of smoke filled with carbon monoxide and carbon dioxide.

    Natasha Stavros, a wildfire expert at JPL, joined Zach Tane with the U.S. Forest Service during a Facebook Live event to discuss some of these technologies and how they're used to understand wildfire behavior and improve wildfire recovery.

    Additionally, JPL worked with a startup in San Francisco called Quadra Pi R2E to develop FireSat, a global network of satellites designed to detect wildfires and alert firefighting crews faster. 

    Using these technologies, NASA scientists are gaining a broader understanding of fires and their impacts.

    Why It's Important

    One of the ways we often hear wildfires classified is by how much area they have burned. Though this is certainly of some importance, of greater significance to fire scientists is the severity of the fire. Wildfires are classified as burning at different levels of severity: low, medium, and high. Severity is a function of intensity, or how hot the fire was, and its spread rate, or the speed at which it travels. A high-severity fire is going to do some real damage. (Severity is measured by the damage left after the fire, but can be estimated during a fire event by calculating spread rate and measuring flame height which indicates intensity.)

    Google Earth image showing fire severity
    This image, created using data imported into Google Earth, shows the severity of the 2014 King Fire. Green areas are unchanged by the fire; yellow equals low severity; orange equals moderate severity; and red equals high severity. A KMZ file with this data is available in the Fired Up Over Math lesson linked below. Credit: NASA/JPL-Caltech/E. Natasha Stavros.

    The impacts of wildfires range from the immediate and tangible to the delayed and less obvious. The potential for loss of life, property, and natural areas is one of the first threats that wildfires pose. From a financial standpoint, fires can lead to a downturn in local economies due to loss of tourism and business, high costs related to infrastructure restoration, and impacts to federal and state budgets.

    The release of greenhouse gases like carbon dioxide and carbon monoxide is also an important consideration when thinking about the impacts of wildfires. Using NASA satellite data, researchers at the University of California, Berkeley, determined that between 2001 and 2010, California wildfires emitted about 46 million tons of carbon, around five to seven percent of all carbon emitted by the state during that time period.

    Animation showing Carbon Dioxide levels rising from the Station Fire in Southern California.
    This animation from NASA's Eyes on the Earth visualization program shows carbon monoxide rising (red is the highest concentration) around Southern California as the Station Fire engulfed the area near JPL in 2009. Image credit: NASA/JPL-Caltech

    In California and the western United States, longer fire seasons are linked to changes in spring rains, vapor pressure, and snowmelt – all of which have been connected to climate change. Wildfires serve as a climate feedback loop, meaning certain effects of wildfires – the release of CO2 and CO – contribute to climate change, thereby enhancing the factors that contribute to longer and stronger fire seasons.

    While this may seem like a grim outlook, it’s worth noting that California forests still act as carbon sinks – natural environments that are capable of absorbing carbon dioxide from the atmosphere. In certain parts of the state, each hectare of redwood forest is able to store the annual greenhouse gas output of 500 Americans.

    Studying and managing wildfires is important for maintaining resources, protecting people, properties, and ecosystems, and reducing air pollution, which is why JPL, NASA, and other agencies are continuing their study of these threats and developing technologies to better understand them.

    Teach It

    Have your students try their hands at solving some of the same fire-science problems that NASA scientists do with these two lessons that get students in grades 3 through 12 using NASA data, algebra, and geometry to approximate burn areas, fire-spread rate and fire intensity:

    Explore More


    Lyle Tavernier contributed to this feature.

    TAGS: teachable moments, wildfires, science, Earth Science, Earth, Climate Change, Climate TM

    • Ota Lutz
    READ MORE

    In the News

    On Jan. 30, 2020, the venerable Spitzer Space Telescope mission will officially come to an end as NASA makes way for a next-generation observatory. For more than 16 years, Spitzer has served as one of NASA’s four Great Observatories, surveying the sky in infrared. During its lifetime, Spitzer detected planets and signs of habitability beyond our solar system, returned stunning images of regions where stars are born, spied light from distant galaxies formed when the universe was young, and discovered a huge, previously-unseen ring around Saturn. Read on to learn more about this amazing mission and gather tools to teach your students that there truly is more than meets the eye in the infrared universe!

    How It Worked

    Human eyes can see only the portion of the electromagnetic spectrum known as visible light. This is because the human retina can detect only certain wavelengths of light through special photoreceptors called rods and cones. Everything we see with our eyes either emits or reflects visible light. But visible light is just a small portion of the electromagnetic spectrum. To "see" things that emit or reflect other wavelengths of light, we must rely on technology designed to sense those portions of the electromagnetic spectrum. Using this specialized technology allows us to peer into space and observe objects and processes we wouldn’t otherwise be able to see.

    Infographic showing the electromagnetic spectrum and applications for various wavelengths.

    This diagram shows wavelengths of light on the electromagnetic spectrum and how they're used for various applications. Image credit: NASA | + Expand image

    Infrared is one of the wavelengths of light that cannot be seen by human eyes. (It can sometimes be felt by our skin as heat if we are close enough to a strong source.) All objects that have temperature emit many wavelengths of light. The warmer they are, the more light they emit. Most things in the universe are warm enough to emit infrared radiation, and that light can be seen by an infrared-detecting telescope. Because Earth’s atmosphere absorbs most infrared radiation, infrared observations of space are best conducted from outside the planet's atmosphere.

    Learn more about the infrared portion of the electromagnetic spectrum and how NASA uses it to explore space. Credit: NASA/JPL-Caltech | Watch on YouTube

    So, to get a look at space objects that were otherwise hidden from view, NASA launched the Spitzer Space Telescope in 2003. Cooled by liquid helium and capable of viewing the sky in infrared, Spitzer launched into an Earth-trailing orbit around the Sun, where it became part of the agency's Great Observatory program along with the visible-light and near-infrared-detecting Hubble Space Telescope, Compton Gamma-Ray Observatory and Chandra X-ray Observatory. (Keeping the telescope cold reduces the chances of heat, or infrared light, from the spacecraft interfering with its astronomical observations.)

    Over its lifetime, Spitzer has been used to detect light from objects and regions in space where the human eye and optical, or visible-light-sensing, telescopes may see nothing.

    Why It's Important

    NASA's Spitzer Space Telescope has returned volumes of data, yielding numerous scientific discoveries.

    Vast, dense clouds of dust and gas block our view of many regions of the universe. Infrared light can penetrate these clouds, enabling Spitzer to peer into otherwise hidden regions of star formation, newly forming planetary systems and the centers of galaxies.

    A whisp of orange and green dust bows out beside a large blue star among a field of smaller blue stars.

    The bow shock, or shock wave, in front of the giant star Zeta Ophiuchi shown in this image from Spitzer is visible only in infrared light. The bow shock is created by winds that flow from the star, making ripples in the surrounding dust. Image credit: NASA/JPL-Caltech | › Full image and caption

    Infrared astronomy also reveals information about cooler objects in space, such as smaller stars too dim to be detected by their visible light, planets beyond our solar system (called exoplanets) and giant molecular clouds where new stars are born. Additionally, many molecules in space, including organic molecules thought to be key to life's formation, have unique spectral signatures in the infrared. Spitzer has been able to detect those molecules when other instruments have not.

    Bursts of reds, oranges, greens, blues and violets spread out in all directions from a bright center source. Reds and oranges dominate the left side of the image.

    Both NASA's Spitzer and Hubble space telescopes contributed to this vibrant image of the Orion nebula. Spitzer's infrared view exposed carbon-rich molecules, shown in this image as wisps of red and orange. Image credit: NASA/JPL-Caltech/T. Megeath (University of Toledo) & M. Robberto (STScI) | › Full image and caption

    Stars are born from condensing clouds of dust and gas. These newly formed stars are optically visible only once they have blown away the cocoon of dust and gas in which they were born. But Spitzer has been able to see infant stars as they form within their gas and dust clouds, helping us learn more about the life cycles of stars and the formation of solar systems.

    A blanket of green- and orange-colored stellar dust surrounds a grouping of purple, blue and red stars.

    Newborn stars peek out from beneath their natal blanket of dust in this dynamic image of the Rho Ophiuchi dark cloud from Spitzer. The colors in this image reflect the relative temperatures and evolutionary states of the various stars. The youngest stars are shown as red while more evolved stars are shown as blue. Image credit: NASA/JPL-Caltech/Harvard-Smithsonian CfA | › Full image and caption

    Infrared emissions from most galaxies come primarily from stars as well as interstellar gas and dust. With Spitzer, astronomers have been able to see which galaxies are furiously forming stars, locate the regions within them where stars are born and pinpoint the cause of the stellar baby boom. Spitzer has given astronomers valuable insights into the structure of our own Milky Way galaxy by revealing where all the new stars are forming.

    A bright band of crimson-colored dust stretches across the center of this image covered in tiny specs of light from hundreds of thousands of stars.

    This Spitzer image, which covers a horizontal span of 890 light-years, shows hundreds of thousands of stars crowded into the swirling core of our spiral Milky Way galaxy. In visible-light pictures, this region cannot be seen at all because dust lying between Earth and the galactic center blocks our view. Image credit: NASA/JPL-Caltech | › Full image and caption

    Spitzer marked a new age in the study of planets outside our solar system by being the first telescope to directly detect light emitted by these so-called exoplanets. This has made it possible for us to directly study and compare these exoplanets. Using Spitzer, astronomers have been able to measure temperatures, winds and the atmospheric composition of exoplanets – and to better understand their potential habitability. The discoveries have even inspired artists at NASA to envision what it might be like to visit these planets.

    Collage of exoplanet posters from NASA

    Thanks to Spitzer, scientists are learning more and more about planets beyond our solar system. These discoveries have even inspired a series of posters created by artists at NASA, who imagined what future explorers might encounter on these faraway worlds. Image credit: NASA/JPL-Caltech | › Download posters

    Data collected by Spitzer will continue to be analyzed for decades to come and is sure to yield even more scientific findings. It's certainly not the end of NASA's quest to get an infrared window into our stellar surroundings. In the coming years, the agency plans to launch its James Webb Space Telescope, with a mirror more than seven times the diameter of Spitzer's, to see the universe in even more detail. And NASA's Wide Field Infrared Survey Telescope, or WFIRST, will continue infrared observations in space with improved technology. Stay tuned for even more exciting infrared imagery, discoveries and learning!

    Teach It

    Use these lessons, videos and online interactive features to teach students how we use various wavelengths of light, including infrared, to learn about our universe:


    Explore More

    Also, check out these related resources for kids from NASA’s Space Place:

    TAGS: Teachable Moments, science, astronomy, K-12 education, teachers, educators, parents, STEM, lessons, activities, Spitzer, Space Telescope, Missions, Spacecraft, Stars, Galaxies, Universe, Infrared, Wavelengths, Spectrum, Light

    • Ota Lutz
    READ MORE

    Collage of images and illustrations of planets, spacecraft and space objects

    Whether discovering something about our own planet or phenomena billions of miles away, NASA missions and scientists unveiled a vast universe of mysteries this past decade. And with each daring landing, visit to a new world and journey into the unknown came new opportunities to inspire the next generation of explorers. Read on for a look at some of NASA's most teachable moments of the decade from missions studying Earth, the solar system and beyond. Plus, find out what's next in space exploration and how to continue engaging students into the 2020s with related lessons, activities and resources.

    1. Earth's Changing Climate

    Flat map of Earth with an animation of co2 data overlayed

    Rising sea levels, shrinking ice caps, higher temperatures and extreme weather continued to impact our lives this past decade, making studying Earth’s changing climate more important than ever. During the 2010s, NASA and National Oceanic and Atmospheric Administration, or NOAA, led the way by adding new Earth-monitoring satellites to their fleets to measure soil moisture and study carbon dioxide levels. Meanwhile, satellites such as Terra and Aqua continued their work monitoring various aspects of the Earth system such as land cover, the atmosphere, wildfires, water, clouds and ice. NASA's airborne missions, such as Operation IceBridge, Airborne Snow Observatory and Oceans Melting Greenland, returned data on water movement, providing decision makers with more accurate data than ever before. But there's still more to be done in the future to understand the complex systems that make up Earth's climate and improve the scientific models that will help the world prepare for a warmer future. Using these missions and the science they're gathering as a jumping-off point, students can learn about the water cycle, build data-based scientific models and develop an understanding of Earth's energy systems.

    Explore More

    2. Teachable Moments in the Sky

    Animated image of the Moon during a lunar eclipse

    Astronomical events are a sure-fire way to engage students, and this past decade delivered with exciting solar and lunar eclipses that provided real-world lessons about the Sun, the Moon and lunar exploration. The total solar eclipse that crossed the U.S. in 2017 gave students a chance to learn about the dynamic interactions between the Sun and Moon, while brilliant lunar eclipses year after year provided students with lessons in lunar science. There's more to look forward to in the decade ahead as another solar eclipse comes to the U.S. in 2024 – one of nine total solar eclipses around the world in the 2020s. There will be 10 total lunar eclipses in the 2020s, but observing the Moon at any time provides a great opportunity to study celestial patterns and inspire future explorers. Using the lessons below, students can develop and study models to understand the size and scale of the Earth-Moon system, predict future Moon phases and engage in engineering challenges to solve problems that will be faced by future explorers on the Moon!

    Explore More

    3. Missions to Mars

    Animation of Curiosity driving on Mars

    The past decade showed us the Red Planet in a whole new light. We discovered evidence that suggests Mars could have once supported ancient life, and we developed a better understanding of how the planet lost much of its atmosphere and surface water. The Opportunity rover continued exploring long past its expected lifespan of 90 days as NASA sent a larger, more technologically advanced rover, Curiosity, to take the next steps in understanding the planet's ability to support life. (Opportunity's nearly 15-year mission succumbed to the elements in 2019 after a global dust storm engulfed Mars, blocking the critical sunlight the rover needed to stay powered.) The InSight lander touched down in 2018 to begin exploring interior features of the Red Planet, including marsquakes, while high above, long-lived spacecraft like the Mars Reconnaissance Orbiter and Mars Odyssey were joined by NASA's MAVEN Orbiter, and missions from the European Space Agency and the Indian Space Research Organization. The next decade on Mars will get a kick-start with the July launch of the souped-up Mars 2020 rover, which will look for signs of ancient life and begin collecting samples designed to one day be returned to Earth. Mars provides students with countless opportunities to do some of the same engineering as the folks at NASA and design ideas for future Mars exploration. They can also use Mars as a basis for coding activities, real-world math, and lessons in biology and geology.

    Explore More

    4. Ocean Worlds and the Search for Life

    Image of Saturn's moon Enceladus covered in ice with giant cracks scarring its surface

    This decade marked the final half of the Cassini spacecraft's 13-year mission at Saturn, during which it made countless discoveries about the planet, its rings and its fascinating moons. Some of the most exciting findings highlighted new frontiers in our search for life beyond Earth. Cassini spotted geysers erupting from cracks in the icy shell of Saturn's moon Enceladus, suggesting the presence of an ocean below. At the moon Titan, the spacecraft peered through the hazy atmosphere to discover an Earth-like hydrologic cycle in which liquid methane and ethane take the place of water. Meanwhile, evidence for another ocean world came to light when the Hubble Space Telescope spotted what appear to be geysers erupting from the icy shell surrounding Jupiter's moon Europa. NASA is currently developing Europa Clipper, a mission that will explore the icy moon of Jupiter to reveal even more about the fascinating world. For students, these discoveries and the moons themselves provide opportunities to build scientific models and improve them as they learn more information. Students can also use math to calculate physical properties of moons throughout the solar system and identify the characteristics that define life as we know it.

    Explore More

    5. Asteroids, Comets and Dwarf Planets, Oh My!

    Animated image series of comet 67P/Churyumov-Gerasimenko in which the comet tail can be seen shooting out from the comet as it rotates slightly from the perspective of the Rosetta spacecraft

    The past decade was a big deal for small objects in space. NASA's Dawn mission started 2010 as a new arrival in the main asteroid belt. The next eight years saw Dawn explore the two largest objects in the asteroid belt, the giant asteroid Vesta and the dwarf planet Ceres. On its way to comet 67P/Churyumov-Gerasimenko, ESA's Rosetta mission (with contributions from NASA) flew by the asteroid Luticia in 2010. After more than two years at its destination – during which time it measured comet properties, captured breathtaking photos and deposited a lander on the comet – Rosetta's mission ended in dramatic fashion in 2016 when it touched down on 67P/Churyumov-Gerasimenko. In 2013, as scientists around the world eagerly anticipated the near-Earth flyby of asteroid Duende, residents of Chelyabinsk, Russia, got a surprising mid-morning wake-up call when a small, previously undetected asteroid entered the atmosphere, burned as a bright fireball and disintegrated. The team from NASA's OSIRIS-Rex mission wrapped up the decade and set the stage for discoveries in 2020 by selecting the site that the spacecraft will visit in the new year to collect a sample of asteroid Bennu for eventual return to Earth. And in 2022, NASA's Psyche mission will launch for a rendezvous with a type of object never before explored up close: a metal asteroid. The small objects in our solar system present students with chances to explore the composition of comets, use math to calculate properties such as volume, density and kinetic energy of asteroids, and use Newton's Laws in real-world applications, such as spacecraft acceleration.

    Explore More

    6. Uncovering Pluto's Mysteries

    Image of Pluto in false color from NASA's New Horizons mission

    In 2015, after nearly a decade of travel, NASA's New Horizons spacecraft arrived at Pluto for its planned flyby and became the first spacecraft to visit the dwarf planet and its moons. The images and scientific data the spacecraft returned brought into focus a complex and dynamic world, including seas of ice and mountain ranges. And there's still more left to explore. But New Horizons' journey is far from over. After its flyby of Pluto, the spacecraft continued deep into the Kuiper Belt, the band of icy bodies beyond the orbit of Neptune. In 2019, the spacecraft flew by a snowman-shaped object later named Arrokoth. In the 2020s, New Horizons will continue studying distant Kuiper Belt objects to better understand their physical properties and the region they call home. The new information gathered from the Pluto and Arrokoth flybys provides students with real-life examples of the ways in which scientific understanding changes as additional data is collected and gives them a chance to engage with the data themselves. At the same time, New Horizons' long-distance voyage through the Solar System serves as a good launchpad for discussions of solar system size and scale.

    Explore More

    7. The Voyagers' Journey Into Interstellar Space

    Animation of Voyager entering interstellar space

    In 1977, two spacecraft left Earth on a journey to explore the outer planets. In the 2010s, decades after their prime mission ended, Voyager 1 and Voyager 2 made history by becoming the first spacecraft to enter interstellar space – the region beyond the influence of solar wind from our Sun. The Voyager spacecraft are expected to continue operating into the 2020s, until their fuel and power run out. In the meantime, they will continue sending data back to Earth, shaping our understanding of the structure of the solar system and interstellar space. The Voyagers can help engage students as they learn about and model the structure of the solar system and use math to understand the challenges of communicating with spacecraft so far away.

    Explore More

    8. The Search for Planets Beyond Our Solar System

    Illustration of the TRAPPIST-1 star and its system of planets

    It was only a few decades ago that the first planets outside our solar system, or exoplanets, were discovered. The 2010s saw the number of known exoplanets skyrocket in large part thanks to the Kepler mission. A space telescope designed to seek out Earth-sized planets orbiting in the habitable zone – the region around a star where liquid water could exist – Kepler was used to discover more than 2,600 exoplanets. Discoveries from other observatories and amateur astronomers added to the count, now at more than 4,100. In one of the most momentous exoplanet findings of the decade, the Spitzer telescope discovered that the TRAPPIST-1 system, first thought to have three exoplanets, actually had seven – three of which were in the star’s habitable zone. With thousands of candidates discovered by Kepler waiting to be confirmed as exoplanets and NASA's latest space telescope, the Transiting Exoplanet Survey Satellite, or TESS, surveying the entire sky, the 2020s promise to be a decade filled with exoplanet science. And we may not have to wait long for exciting new discoveries from the James Webb Space Telescope, set to launch in 2021. Exoplanets are a great way to get students exploring concepts in science and mathematics. In the lessons linked to below, students use math to find the size and orbital period of planets, learn how scientists are using spectrometry to determine what makes up exoplanet atmospheres and more.

    Explore More

    9. Shining a Light on Black Holes

    In this historic first image of a black hole, an orange glowing donut-shaped light can be seen against the black backdrop of space. At the center of the light is a black hole.

    Even from millions and billions of light-years away, black holes made big news in the 2010s. First, a collision of two black holes 1.3 billion light-years away sent gravitational waves across the universe that finally reached Earth in 2015, where the waves were detected by the Laser Interferometer Gravitational-Wave Observatory, or LIGO. This was the first detection of gravitational waves in history and confirmed a prediction Einstein made 100 years earlier in his Theory of General Relativity. Then, in 2019, a team of researchers working on the Event Horizon Telescope project announced they had taken the first image capturing the silhouette of a black hole. To take the historic image of the supermassive black hole (named M87* after its location at the center of the M87 galaxy), the team had to create a virtual telescope as large as Earth itself. In addition to capturing the world's attention, the image gave scientists new information about scientific concepts and measurements they had only been able to theorize about in the past. The innovations that led to these discoveries are changing the way scientists can study black holes and how they interact with the space around them. More revelations are likely in the years ahead as scientists continue to analyze the data from these projects. For students, black holes and gravitational waves provide a basis for developing and modifying scientific models. Since they are a topic of immense interest to students, they can also be used to encourage independent research.

    Explore More

    TAGS: Teachable Moments, K-12 Education, Educators, Students, STEM, Lessons, Activities, Moon, Mars, Ocean Worlds, Small Objects, Pluto, Voyager, Exoplanets, Black Holes, Earth Science, Earth, Climate Change

    • Lyle Tavernier
    READ MORE

    A glowing, orange ring outlines a black hole.

    Find out how scientists created a virtual telescope as large as Earth itself to capture the first image of a black hole's silhouette.


    Accomplishing what was previously thought to be impossible, a team of international astronomers has captured an image of a black hole’s silhouette.

    Evidence of the existence of black holes – mysterious places in space where nothing, not even light, can escape – has existed for quite some time, and astronomers have long observed the effects on the surroundings of these phenomena. In the popular imagination, it was thought that capturing an image of a black hole was impossible because an image of something from which no light can escape would appear completely black. For scientists, the challenge was how, from thousands or even millions of light-years away, to capture an image of the hot, glowing gas falling into a black hole.

    An ambitious team of international astronomers and computer scientists has managed to accomplish both. Working for well over a decade to achieve the feat, the team improved upon an existing radio astronomy technique for high-resolution imaging and used it to detect the silhouette of a black hole – outlined by the glowing gas that surrounds its event horizon, the precipice beyond which light cannot escape. Learning about these mysterious structures can help students understand gravity and the dynamic nature of our universe, all while sharpening their math skills.

    How They Did It

    Though scientists had theorized they could image black holes by capturing their silhouettes against their glowing surroundings, the ability to image an object so distant still eluded them. A team formed to take on the challenge, creating a network of telescopes known as the Event Horizon Telescope, or the EHT. They set out to capture an image of a black hole by improving upon a technique that allows for the imaging of far-away objects, known as Very Long Baseline Interferometry, or VLBI.

    Telescopes of all types are used to see distant objects. The larger the diameter, or aperture, of the telescope, the greater its ability to gather more light and the higher its resolution (or ability to image fine details). To see details in objects that are far away and appear small and dim from Earth, we need to gather as much light as possible with very high resolution, so we need to use a telescope with a large aperture.

    That’s why the VLBI technique was essential to capturing the black hole image. VLBI works by creating an array of smaller telescopes that can be synchronized to focus on the same object at the same time and act as a giant virtual telescope. In some cases, the smaller telescopes are also an array of multiple telescopes. This technique has been used to track spacecraft and to image distant cosmic radio sources, such as quasars.

    More than a dozen antennas pointing forward sit on barren land surrounded by red and blue-purple mountains in the distance.

    Making up one piece of the EHT array of telescopes, the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile has 66 high-precision antennas. Image credit: NRAO/AUI/NSF | + Expand image

    The aperture of a giant virtual telescope such as the Event Horizon Telescope is as large as the distance between the two farthest-apart telescope stations – for the EHT, those two stations are at the South Pole and in Spain, creating an aperture that’s nearly the same as the diameter of Earth. Each telescope in the array focuses on the target, in this case the black hole, and collects data from its location on Earth, providing a portion of the EHT’s full view. The more telescopes in the array that are widely spaced, the better the image resolution.

    This video shows the global network of radio telescopes in the EHT array that performed observations of the black hole in the galaxy M87. Credit: C. Fromm and L. Rezzolla (Goethe University Frankfurt)/Black Hole Cam/EHT Collaboration | Watch on YouTube

    To test VLBI for imaging a black hole and a number of computer algorithms for sorting and synchronizing data, the Event Horizon Telescope team decided on two targets, each offering unique challenges.

    The closest supermassive black hole to Earth, Sagittarius A*, interested the team because it is in our galactic backyard – at the center of our Milky Way galaxy, 26,000 light-years (156 quadrillion miles) away. (An asterisk is the astronomical standard for denoting a black hole.) Though not the only black hole in our galaxy, it is the black hole that appears largest from Earth. But its location in the same galaxy as Earth meant the team would have to look through “pollution” caused by stars and dust to image it, meaning there would be more data to filter out when processing the image. Nevertheless, because of the black hole’s local interest and relatively large size, the EHT team chose Sagittarius A* as one of its two targets.

    An image showing a smattering of orange stars against the black backdrop of space with a small black circle in the middle and a rectangle identifying the location of the M87 black hole.

    A close-up image of the core of the M87 galaxy, imaged by the Chandra X-ray Observatory. Image credit: NASA/CXC/Villanova University/J. Neilsen | + Expand image

    A blue jet extends from a bright yellow point surrounded by smaller yellow stars.

    This image from NASA's Hubble Space Telescope shows a jet of subatomic particles streaming from the center of M87*. Image credits: NASA and the Hubble Heritage Team (STScI/AURA) | + Expand image

    The second target was the supermassive black hole M87*. One of the largest known supermassive black holes, M87* is located at the center of the gargantuan elliptical galaxy Messier 87, or M87, 53 million light-years (318 quintillion miles) away. Substantially more massive than Sagittarius A*, which contains 4 million solar masses, M87* contains 6.5 billion solar masses. One solar mass is equivalent to the mass of our Sun, approximately 2x10^30 kilograms. In addition to its size, M87* interested scientists because, unlike Sagittarius A*, it is an active black hole, with matter falling into it and spewing out in the form of jets of particles that are accelerated to velocities near the speed of light. But its distance made it even more of a challenge to capture than the relatively local Sagittarius A*. As described by Katie Bouman, a computer scientist with the EHT who led development of one of the algorithms used to sort telescope data during the processing of the historic image, it’s akin to capturing an image of an orange on the surface of the Moon.

    By 2017, the EHT was a collaboration of eight sites around the world – and more have been added since then. Before the team could begin collecting data, they had to find a time when the weather was likely to be conducive to telescope viewing at every location. For M87*, the team tried for good weather in April 2017 and, of the 10 days chosen for observation, a whopping four days were clear at all eight sites!

    Each telescope used for the EHT had to be highly synchronized with the others to within a fraction of a millimeter using an atomic clock locked onto a GPS time standard. This degree of precision makes the EHT capable of resolving objects about 4,000 times better than the Hubble Space Telescope. As each telescope acquired data from the target black hole, the digitized data and time stamp were recorded on computer disk media. Gathering data for four days around the world gave the team a substantial amount of data to process. The recorded media were then physically transported to a central location because the amount of data, around 5 petabytes, exceeds what the current internet speeds can handle. At this central location, data from all eight sites were synchronized using the time stamps and combined to create a composite set of images, revealing the never-before-seen silhouette of M87*’s event horizon. The team is also working on generating an image of Sagittarius A* from additional observations made by the EHT.

    This zoom video starts with a view of the ALMA telescope array in Chile and zooms in on the heart of M87, showing successively more detailed observations and culminating in the first direct visual evidence of a supermassive black hole’s silhouette. Credit: ESO/L. Calçada, Digitized Sky Survey 2, ESA/Hubble, RadioAstron, De Gasperin et al., Kim et al., EHT Collaboration. Music: Niklas Falcke | Watch on YouTube

    As more telescopes are added and the rotation of Earth is factored in, more of the image can be resolved, and we can expect future images to be higher resolution. But we might never have a complete picture, as Katie Bouman explains here (under “Imaging a Black Hole”).

    To complement the EHT findings, several NASA spacecraft were part of a large effort to observe the black hole using different wavelengths of light. As part of this effort, NASA’s Chandra X-ray Observatory, Nuclear Spectroscopic Telescope Array (NuSTAR) and Neil Gehrels Swift Observatory space telescope missions – all designed to detect different varieties of X-ray light – turned their gaze to the M87 black hole around the same time as the EHT in April 2017. NASA’s Fermi Gamma-ray Space Telescope was also watching for changes in gamma-ray light from M87* during the EHT observations. If the EHT observed changes in the structure of the black hole’s environment, data from these missions and other telescopes could be used to help figure out what was going on.

    Though NASA observations did not directly trace out the historic image, astronomers used data from Chandra and NuSTAR satellites to measure the X-ray brightness of M87*’s jet. Scientists used this information to compare their models of the jet and disk around the black hole with the EHT observations. Other insights may come as researchers continue to pore over these data.

    Why It's Important

    Learning about mysterious structures in the universe provides insight into physics and allows us to test observation methods and theories, such as Einstein’s theory of general relativity. Massive objects deform spacetime in their vicinity, and although the theory of general relativity has directly been proven accurate for smaller-mass objects, such as Earth and the Sun, the theory has not yet been directly proven for black holes and other regions containing dense matter.

    One of the main results of the EHT black hole imaging project is a more direct calculation of a black hole’s mass than ever before. Using the EHT, scientists were able to directly observe and measure the radius of M87*’s event horizon, or its Schwarzschild radius, and compute the black hole’s mass. That estimate was close to the one derived from a method that uses the motion of orbiting stars – thus validating it as a method of mass estimation.

    The size and shape of a black hole, which depend on its mass and spin, can be predicted from general relativity equations. General relativity predicts that this silhouette would be roughly circular, but other theories of gravity predict slightly different shapes. The image of M87* shows a circular silhouette, thus lending credibility to Einstein’s theory of general relativity near black holes.

    An illustration of a black hole surrounded by a bright, colorful swirl of material. Text describes each part of the black hole and its surroundings.

    This artist’s impression depicts a rapidly spinning supermassive black hole surrounded by an accretion disc. Image credit: ESO | + Expand image

    The data also offer some insight into the formation and behavior of black hole structures, such as the accretion disk that feeds matter into the black hole and plasma jets that emanate from its center. Scientists have hypothesized about how an accretion disk forms, but they’ve never been able to test their theories with direct observation until now. Scientists are also curious about the mechanism by which some supermassive black holes emit enormous jets of particles traveling at near light-speed.

    These questions and others will be answered as more data is acquired by the EHT and synthesized in computer algorithms. Be sure to stay tuned for that and the next expected image of a black hole – our Milky Way’s own Sagittarius A*.

    Update: May 12, 2022 – Scientists have released the first image of Sagittarius A* captured by the Event Horizon Telescope. › Read more from Teachable Moments

    Teach It

    Capture your students’ enthusiasm about black holes by challenging them to solve these standards-aligned math problems.

    Model black-hole interaction with this NGSS-aligned lesson:

    Explore More


    Check out these related resources for students from NASA’s Space Place

    TAGS: Black Hole, Teachable Moments, Science, K-12 Education, Teachers, Educators, Universe

    • Ota Lutz
    READ MORE