Meet JPL Interns | May 19, 2022
Interns Lead the Way in DARPA Robotics Challenge and Find Their Futures
To gain an edge in one of the world's premier robotics competitions, JPL brought in a team of experts at the forefront of their field – college students. The experience gave the interns and the Laboratory a new perspective on what's possible.
You know that movie trope where a talented mastermind recruits a ragtag team of experts to pull off a seemingly impossible task. That's what I imagine when Ali Agha talks about the more than 30 interns brought to NASA's Jet Propulsion Laboratory to take part in one of the world's premier robotics competitions.
In 2018, a group led by Agha was one of only 12 teams chosen worldwide to compete in the Defense Advanced Research Projects Agency, or DARPA, Subterranean Challenge, a three-year-long competition that concluded this past September and brought together some of the brightest minds in robotics. Their goal was to develop robotic systems for underground rescue missions, or as Agha puts it, "solutions that are so state-of-the-art, there's not even a clear definition of what you're creating."
Calling themselves Team CoSTAR, which stands for Collaborative SubTerranean Autonomous Resilient Robots, the group also included engineers from Caltech, Massachusetts Institute of Technology, Korea Advanced Institute of Science and Technology, Sweden’s Lulea University of Technology, and several industry partners.
Meet some of the researchers, engineers, and interns who make up Team CoSTAR. Credit: NASA/JPL-Caltech | Watch on YouTube
Interns from across the country and around the world came to JPL to help conceive of, build, and test CoSTAR – a coordinated rescue team of flying, crawling, and rolling robots designed to operate autonomously, or with little to no help from humans. But the interns didn't just come to the laboratory to learn from engineers already well versed in building robots to explore extreme environments. In many cases, the interns were the experts.
"The problem we needed to solve, nobody knew how to solve it, so we needed people who are at the cutting edge of these technologies," says Agha. "We needed to get that one person in the world or a few people in the world who work on that specific camera or sensor or data or specific algorithm to come and educate us."
And Agha knew exactly where to find them: colleges and universities.
The interns' contributions would end up reaching far beyond the challenge. And the entire experience – from the mentorship they received to the technology they developed to the friendships they built – would change the course of their careers.
The Visionary
Even the Perseverance Mars rover, the latest and greatest Red Planet explorer designed and built at JPL, requires a fair amount of direction from mission controllers back on Earth to navigate around hazards and know which rocks to zap with its laser or when to phone home.
Since coming to JPL in 2016, Agha had been researching ways to make planet-exploring robots more autonomous so they could make similar decisions on their own. He was especially interested in autonomous technology for underground environments like caves and volcanoes, where the terrain and visibility make remote guidance challenging.
So when DARPA announced that it was launching a competition aimed at the development of autonomous robots for subterranean rescue missions, Agha jumped at the opportunity.

Agha gives a presentation at JPL about the technology developed for the DARPA challenge with CoSTAR's robot squad lined up behind him. | › Watch Agha's talk on YouTube | + Expand image
"It was a very good alignment and a great opportunity for JPL and for NASA," says Agha. "We knew if we can get into this program, it's going to expedite the technology development at a really high pace, and that's going to help NASA and JPL to develop these capabilities [for our own projects]."
But like developing robots for space exploration, the requirements would be tough.
Teams would need to build a robotic system that could autonomously navigate four circuits – a tunnel, an urban underground, a cave, and a combination of the three – in search of scientific "artifacts," or signs of human activity, hidden throughout the course. Then, in just 60 minutes, the robots would need to make their way through winding, cavernous, and dangerous terrain to correctly report the locations of as many artifacts as possible.
There were just 12 months between when proposals were selected and the first event in August 2019. Agha needed a plan – and a team.
The Strategist
Sung Kim first came to JPL as an intern in 2017, a year before the DARPA Subterranean Challenge was announced. A Carnegie Mellon doctoral student researching ways to help robots plan under uncertainty, Kim's childhood dream to work for NASA was rekindled when he saw an internship posting with Agha's team.
"From the first meeting, there was a spark," says Kim of his interview with Agha. "At the time, there were not many people actively pursuing that area [of planning under uncertainty]."
Kim spent that summer at JPL helping the team begin to develop what would later become the backbone of CoSTAR – a system in which robots can analyze their surroundings to find a route that covers as much ground as possible, increasing the odds that they will make discoveries along the way.

Kim poses for a picture with the JPL sign at the entrance to the Laboratory in Pasadena, California. Image courtesy: Sung Kim | + Expand image
For JPL's part, such technology could be key to designing robots to explore worlds like Jupiter's moon Europa, where the terrain is still relatively unknown. For CoSTAR, it would improve the team's chances of finding artifacts hidden throughout the challenge course, earning the team points toward a victory.
When JPL's DARPA proposal was selected a year later, Agha eagerly enticed the newly graduated Kim back to the laboratory, this time as an employee and the head of CoSTAR's Global Planning Team tasked with "maximizing the chances of finding artifacts hidden in the environment," says Kim.
Kim would be the first of a wave of students who would come to the laboratory over the next several years to lend their expertise in making CoSTAR a reality. In fact, one of them had already arrived.
The Detective
Xianmei "Sammi" Lei was looking to start over. She had come to the U.S. from China and become a legal permanent resident in hopes of finding better career opportunities. But she worried that her options would be limited while she was still making professional connections and learning English. That's when she discovered community college.
"One of the turning points for me here was realizing that we have something called community college," says Lei. "That gave me a lot of opportunities."
It was at Pasadena Community College that Lei started to build a network of peers and professionals and began her foray into the world of robotics. It was also where her passion for computer science was reignited, setting her on a trajectory to JPL and Agha's team.
"I took the beginning level of C++, and I liked it so, so much," says Lei. "I was like, 'Oh my god, you can realize your dreams through programming. That is so powerful!'"

Lei poses outside the course area holding up nine fingers to represent the number of points won by the team during the Urban Circuit in February 2020. Image courtesy: Sammi Lei | + Expand image
Lei applied for an internship at JPL through the Student Independent Research Intern, or SIRI, program, which is designed to pair students from local community colleges with researchers at the laboratory. She caught Agha's eye thanks to her involvement in a swarm robotics competition. Still relatively new to the field, Lei spent her first internship in 2017 soaking it all in, learning as much as she could, reading papers assigned by Agha, and following him to meetings, she says.
At the encouragement of her growing network, Lei applied and was accepted to a master's program at Cal Poly Pomona. She went on to spend four more years at JPL throughout her graduate degree and the entire DARPA challenge. All the while, she played an integral role on CoSTAR as the person in charge of programming the system to detect the most coveted artifact of all.
"Inside the environment was a dummy that was simulating a human survivor with the same weight, same heat, wearing a safety vest, things like that," says Lei. "My job was to detect those signals with the robot and have it report back to the team so the human supervisor could verify."
But before that could happen, the system would need to overcome any number of hazards, which according to DARPA might include small passages, sharp turns, stairs, rails, large drops, mud, sand, water, mist, smoke, dead ends, slippery terrain, communications constraints, moving walls, and falling debris. The team needed a mobility expert.
The Navigator
"I was doing lots of mathy stuff," says David Fan of his doctoral research at Georgia Tech prior to coming to JPL in the fall of 2018.
Fan had been researching algorithms that could help robots learn to independently navigate complex terrain when his advisor told him about an internship opening on Agha's team with the JPL Visiting Student Researchers Program, or JVSRP. Fan saw it as a chance to take his work out of the theoretical and into the real world.
"Once I joined the team and started working on these robots in real life, it opened up a whole set of new problems that I had never thought about before," he says.

Fan poses in front of the entrance to the DARPA Subterranean Challenge Finals course in September 2021. Fan was one of a handful of team members chosen for the pit crew, which oversaw robot operations during the challenge. Image courtesy: David Fan | + Expand image
Problem one: How to get a robot through a hazard-filled course that requires a system with an almost contradictory set of features – small enough to get through narrow passages but big enough to support computing power, nimble enough to climb stairs and cross slippery terrain but strong enough to withstand falling debris.
Fan spent his early days with the team dreaming up robots with different kinds of locomotion – wheels, tracks, rotors, legs, and so on. Eventually, the team homed in on a solution involving all of the above, multiple robots with unique talents and ways of moving. Fan's doctoral research was key to unlocking how each robot could continually improve their skills, learning to navigate around obstacles as they encountered them.
Like their human counterparts, CoSTAR's robots each bring unique skills to the team, allowing them to autonomously explore caves, pits, tunnels, and other subsurface terrain. Credit: NASA/JPL-Caltech | Watch on YouTube
"Each environment would have its own set of challenges," says Fan, who interned with Agha throughout the DARPA challenge. "Trying to figure out where the robots could safely go in a subway was very different than where they could safely go in a cave or a mine. We broke a lot of robots. It was really fun."
But as often happens in engineering, one solution begets another problem. In this case it was how to coordinate multiple robots and get them working as a team.
The Field Commander
As a child in Indonesia, Muhammad Fadhil Ginting's favorite movie was a documentary about NASA rocket technology built to send astronauts to the Moon. He would watch it and rewatch it, dreaming of one day working at the space agency. But even after he had grown up to earn his bachelor's in engineering and begin to pursue his master's in robotics at one of the world's top universities, ETH Zurich, working for NASA seemed like a distant childhood dream.
That is until he saw an internship opening with Agha's team.
"Back in my undergrad in Indonesia, I was working with underwater robots to explore the ocean. When I found out JPL offered internships with the DARPA challenge team and it was about subsurface explorations, I was so excited," says Ginting who, like Fan, applied through JVSRP, which also brings in a small number of interns from foreign universities to work with JPL researchers. "I met Dr. Agha at an international conference and expressed my interest in joining his team. It was a thrill when he accepted me and welcomed me to the team."
When Ginting came on board, CoSTAR had just placed second in the Tunnel Circuit, the first of the four events.
After helping develop a strategy to coordinate the robots, Ginting was chosen for the team's exclusive "pit crew" along with just four others: Fan, also an intern at the time, and JPL employees Kyon Otsu, Ben Morrell, and Jeffrey Edlund.
On the pit crew, Ginting would have just 30 minutes to set up and release the robots into the subterranean course before he and the others were sequestered in a separate support area from Otsu, the sole robot supervisor. "It meant that I needed to be ready not just for the technical but also operational, anticipating all possible things that can happen in the field."
To prepare both the robots and the pit crew for handling the challenges ahead, the team took multiple field trips around California and to a limestone mine in Kentucky. When that wasn't possible, they sent the robots through cubicle mazes at JPL.
Ginting (shown at 0:18) and other members of team CoSTAR send the robots on a test run through Elma High School in Elma, Washington, in the days leading up to the Urban Circuit. Credit: NASA/JPL-Caltech | Watch on YouTube
Ginting fondly remembers the field trips not just for the opportunity to work out any bugs in the software, but also for the chance to pursue his other passion for outreach, giving talks to college students and kids and chatting up locals at the hotel breakfast bar.
"I liked meeting the community and sharing the excitement of building robots, the excitement of space exploration," says Ginting, who also saw the field trips as a chance to bond with his teammates.
When the Urban Circuit came around in February 2020, the team with Ginting's help earned a first-place spot. And then, COVID hit.

Team CoSTAR reacts to the news that they placed first in the Urban Circuit. Credit: NASA/JPL-Caltech | + Expand image
An Unexpected Challenge
Like it did with so much else, the pandemic threw the team and the competition for a loop.
Interns were sent home along with most of the rest of JPL's more than 6,000 employees, and the CoSTAR team had to learn how to do their work remotely. Lei recalls testing sensors from her home in Los Angeles or asking other team members to try them out in different environments.
In some ways, the remote work was good for the team. Rather than the intensive testing schedule, "people had more time for thinking," says Lei. Meanwhile, the team was able to bring on remote interns previously unable to travel to the Southern California laboratory.
The Cave Circuit, originally scheduled for November 2020, was canceled, but once vaccines began rolling out and restrictions on indoor gatherings were loosened, DARPA announced that the Final Event would take place in September 2021.
The Light at the End of the Tunnel

One of the team's robots named NeBula-Spot walks on four legs to explore hard-to-access locations, like this narrow cave. Credit: NASA/JPL-Caltech | + Expand image
"We were in pretty good shape – even in the preliminary rounds, we won with a good margin," says Agha. "But in the final event, our calibration system had an issue, so our robots entered the course 30 minutes late. It wasn't the kind of demonstration we were hoping to be able to have, but for that half of the time, it went really perfect."
While CoSTAR did not win the final competition, the overall experience was an unequivocal win not just for the team, but also for the interns and for JPL.
"We got all this great talent and technology – again, huge thanks to our interns and their mentors," says Agha. "They brought all this expertise to JPL, and the amount of capabilities that got developed really changed a lot about [autonomous technology] at JPL. We pushed state-of-the-art boundaries forward. We published strong papers and showed the world JPL's capabilities."
Already, the team's technology is making its way into a number of JPL and NASA projects including a snake-like robot designed to explore deep crevasses on icy worlds beyond Earth, self-driving offroad cars that could inspire future lunar exploration vehicles, and a project researching the possibility of finding microbial life within volcanic caves on Mars.
Many of the interns say the experience changed the course of their careers.
"It really set me on a different trajectory that I hadn't imagined before," says Fan, who is now working for the U.S. Navy in collaboration with JPL on the project to develop offroad self-driving vehicles. "It introduced me to so many of the real-world robotics problems that are out there waiting to be solved. It opened up a lot of doors and introduced me to a lot of people. It completely changed the trajectory of my Ph.D. and my career."
Lei was recently hired at JPL as a full-time employee, and she says she's looking forward to exploring new ways robots can assist humans in the future.
Kim continues to expand his research in new ways, taking part in JPL projects like Europa Lander, which hopes to send the first robot to explore the icy moon considered to be the next frontier in the search for life beyond Earth.
Ginting was accepted into a doctoral program at Stanford and is continuing his research collaboration with Agha and Kim. He says, "Now, I'm so eager to work on robotics research topics that can also work for space exploration."
In July, the entire team of about 150 people plans to meet up for a reunion cake party. Over the course of the challenge, cake parties had become an annual tradition for the tight knit group. They even managed to hold a virtual party in 2020. As with all things CoSTAR, the bakers go above and beyond to make cakes with life-like caves, moving parts, and LEDs.
When we talked, Agha flipped through photos of cake parties past and said that more than anything, it's this – the team camaraderie, the friendships – that is the greatest win of all.
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.
TAGS: Internships, Interns, College, Students, Community College, SIRI, JVSRP, YIP, Higher Education, Robotics, Engineering, Computer Science, Asian Pacific American Heritage Month
Meet JPL Interns | March 22, 2022
The JPL Interns Protecting Earth's Future
We went behind the scenes with three interns on NASA’s Earth System Observatory team to learn how they're devoting their future careers to putting our planet first.
Leave it to the interns at NASA's Jet Propulsion Laboratory to school the full-timers. Case in point: JPL intern Joalda Morancy knows exactly how to explain—in bite-sized, plain English—NASA’s latest multi-missioned initiative to study our home planet.
“The Earth System Observatory aims to tackle one of the biggest issues we’re facing today—climate change,” they say of NASA's ESO. “We need to have multiple missions that look at the Earth system as a whole in order to tackle the issue of climate change in the next couple of decades.”
The observatory will be made up of an array of satellites, instruments, and missions to form a well-rounded collection of observations meant to offer crucial and precise measurements of our environment. As NASA puts it: “Taken together, as a single observatory, we will have a holistic, 3-dimensional understanding of our Earth’s systems—how they work together, how one change can influence another.”
While the ESO is in its early stages, it’s a crucial time for interns to be involved, as their generation will most likely face the most pressing challenges resulting from climate change. We spoke to three JPL interns getting first-hand experience with the observatory's missions and projects to learn why, to them, Earth is the most important planet to study right now.
Joalda Morancy

Image courtesy: Joalda Morancy | + Expand image
Morancy first became fascinated by space exploration in high school thanks to a YouTube video on how to make a peanut butter and honey sandwich in space.
“I love telling that story,” Morancy says with a laugh. “It was so random, and I was so intrigued. I watched the entire video and thought, ‘This is amazing.’ I did a lot more research about what NASA does and that was my gateway to space.”
Flash forward a few years to college at the University of Chicago, where Morancy discovered there was one planet in particular that really captured their attention: Earth.
“I was initially interested in space exploration, and while [majoring in] astrophysics, I took a class on what makes a planet habitable,” they recall. “It taught me everything about basic Earth sciences and how that ties into Earth and the big picture of how a habitable environment operates.”
Morancy found it so interesting and—combined with their growing alarm about climate change—wanted a hand in studying how to preserve our planet. So Morancy took more classes in geophysics and geophysical sciences, including courses on atmosphere, glaciology, and physical geology.
“I wanted to give myself the foundational knowledge,” Morancy says. “And right after that, I started at JPL.”
They had originally searched JPL’s careers site for internships with the Perseverance Mars rover mission but noticed an opening with the Earth Science team.
“I didn’t know JPL did Earth science; I thought it was mostly Mars and robotic exploration,” they say. “When I saw that opening, I knew it was the perfect opportunity for me to learn more about Earth.”
For the past year-and-a-half, Morancy has worked on ECOSTRESS, an ESO-related experiment aboard the International Space Station designed to measure water stress among plants. Now, they are interning with the ESO successor to ECOSTRESS, the Surface Biology and Geology, or SBG, mission.

A graphic developed by Morancy during their internship with the ECOSTRESS mission shows the land surface temperatures at different locations throughout California. Image credit: NASA/JPL-Caltech | › Full image and caption
“I help with a lot of project management since SBG is in its early stages,” they say. “A lot of things are starting to cook up, and a lot of engineers and scientists are being onboarded to the team. I’m working with the team to help onboard, and I’m also helping with the science instruments for SBG.”
The magnitude of being part of SBG and the observatory team in their early stages is not lost on Morancy.
“I really believe it will have a long-lasting impact on how we look at climate change and how we target those specific issues to fix,” they say. “It'll be a major driver for future researchers and scientists.”
While Morancy hopes to combine Earth sciences and space exploration for their future career, they’re invested in studying our blue planet for the long run.
“I think Earth science is incredibly important because this is our only home,” they say. “Even though people are looking to settle on Mars and other celestial bodies ... I think it’s important to take care of this rock we’ve been given to live on. It’s crucial to make sure we take care of it for future generations.”
Rebecca Gustine

Image courtesy: Rebecca Gustine | + Expand image
When Rebecca Gustine studied abroad in Thailand during her junior year of college, she didn’t realize it would alter the course of her studies and her future career path.
“I had a lightbulb moment realizing how human development and access to water go hand in hand,” she says.
Gustine went on to Washington State University, where she is now a Ph.D. student studying civil engineering with a focus on water resources engineering.
“A lot of my undergraduate research had to do with water,” she explains. “It was from a global health perspective and had to do with access to clean water, hygiene, and gender dynamics in developing countries. I also really like math and physics, so combining global health with water resources engineering was very interesting.”
Gustine was so fascinated by water research, she knew she wanted to find an internship that would let her focus on just that. When she saw an open call for internships at JPL, she submitted her resume and was contacted by Gregory Halverson and Christine Lee, JPL scientists focused on using remote sensing measurements to study water quality, water resources, and ecosystems management.
Gustine started at JPL as an intern in August 2020, supporting the Earth science team by looking at how ECOSTRESS data could be used to preserve habitats in the California Bay Delta system, where the Sacramento and the San Joaquin Rivers meet. For the past year, she has focused on processing remote-sensing data and engaging with stakeholders. She was even first-author on a peer-reviewed paper.
“My work is basically using pictures [taken] from the sky that tell us information about the Earth and then making decisions about how to manage water resources and protect critical habitats,” she says.
Gustine is also well aware that her research comes at a pivotal time in the global conversation around Earth’s future.
“Given that climate change is having a profound impact on human and natural systems, we have to understand those changes and protect critical habitats and resources for the well-being of humans everywhere,” she says. “Changes in one component of a system can have cascading consequences for other parts of the system.”
While she works alongside others exploring the mysteries of worlds beyond Earth, Gustine is particularly proud to be part of pioneering research that could alter the future of our planet.
“Observing Earth is still space exploration, just from a different vantage point,” she says. “Given that NASA is the major proprietor of space, to look back at Earth using the same technology we use to go farther into space is important.”
Jonathan Vellanoweth

Image courtesy: Jonathan Vellanoweth | + Expand image
What will be the future, long-term impacts of power plants on our environment? Jonathan Vellanoweth is spending his time as a JPL intern working with a team to try to help answer that very question.
Vellanoweth is a student at Cal State University, Los Angeles, where he’s earning his master’s degree in environmental science with an emphasis in geospatial science. In his internship with the Surface Biology and Geology team at JPL, he's using data and satellite imagery from ECOSTRESS and the Landsat mission to detect thermal plumes emitted by power plants.
Vellanoweth’s work currently focuses on the Diablo Canyon Power Plant in San Luis Obispo, California.
“We’re looking at power plants that intake coastal waters to cool their reactors, then discharge it at a higher temperature back into the same water body,” he explains. “I’m using satellite imagery to detect that thermal change and outline the area of what is classified as a plume, or anywhere thermal discharge is heating up the ocean or the coast. We can see where this plume is moving over the year or several seasons, and other studies can use this data to see what the actual effects are on coastal communities.”
Vellanoweth has been fascinated by Earth science since as early as 7th grade, when he took his first environmental science class where he learned all about the scientific method and later went out into nature to collect soil samples and study them.
As a JPL intern, Vellanoweth has been particularly grateful for the variety of knowledge his colleagues provide him.
“The amount of support that you have from all these great scientists that work here is really what attracted me,” he says. “You can intern for a lot of places, but at JPL, you have all these colleagues you can meet with who have a lot of feedback they can give you. There are people on your team studying similar and dissimilar things as you, so they can provide you with something you might not have thought about and help expand your research.”
Most importantly, Vellanoweth is looking forward to the information everyone will have access to in the future thanks to the efforts of all the missions and projects within the Earth Science Observatory.
“I’m excited about getting things out there and making them accessible to the public. I’m really big on that because there are a lot of people who want to do this kind of research, but a lot of times, it can be hard to find the data or algorithm you need, and it’s a lot of trial and error,” he says. “SBG and ESO bring all of these things together and make it available for everyone.”
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.
TAGS: Interns, Colleges, Universities, Students, Higher Education, Internships, Student Programs, Year-Round Internship Program, Summer Internship Program, Earth Science, Earth, Climate Change, Earth System Observatory
Teachable Moments | March 10, 2022
Pi Goes to Infinity and Beyond in NASA Challenge
Learn about pi and some of the ways the number is used at NASA. Then, dig into the science behind the Pi Day Challenge.
Update: March 15, 2022 – The answers are here! Visit the NASA Pi Day Challenge slideshow to view the illustrated answer keys for each of the problems in the 2022 challenge.
In the News
No matter what Punxsutawney Phil saw on Groundhog Day, a sure sign that spring approaches is Pi Day. Celebrated on March 14, it’s the annual holiday that pays tribute to the mathematical constant pi – the number that results from dividing any circle's circumference by its diameter.
Every year, Pi Day gives us a reason to not only celebrate the mathematical wonder that helps NASA explore the universe, but also to enjoy our favorite sweet and savory pies. Students can join in the fun by using pi to explore Earth and space themselves in our ninth annual NASA Pi Day Challenge.
Read on to learn more about the science behind this year's challenge and find out how students can put their math mettle to the test to solve real problems faced by NASA scientists and engineers as we explore Earth, the Moon, Mars, and beyond!
Visit the Pi in the Sky 9 lesson page to explore classroom resources and downloads for the 2022 NASA Pi Day Challenge. Image credit: NASA/JPL-Caltech | + Expand image

This artist's concept shows the Lunar Flashlight spacecraft, a six-unit CubeSat designed to search for ice on the Moon's surface using special lasers. Image credit: NASA/JPL-Caltech | › Full image details

Clouds drift over the dome-covered seismometer, known as SEIS, belonging to NASA's InSight lander, on Mars. Credit: NASA/JPL-Caltech. | › Full image and caption

This animation shows the collection of data over the state of Florida, which is rich with rivers, lakes and wetlands. Credits: NASA/JPL-Caltech | + Expand image

Illustration of NASA’s Transiting Exoplanet Survey Satellite (TESS). Credits: NASA | + Expand image
How It Works
Dividing any circle’s circumference by its diameter gives you an answer of pi, which is usually rounded to 3.14. Because pi is an irrational number, its decimal representation goes on forever and never repeats. In 2021, a supercomputer calculated pi to more than 62 trillion digits. But you might be surprised to learn that for space exploration, NASA uses far fewer digits of pi.
Here at NASA, we use pi to understand how much signal we can receive from a distant spacecraft, to calculate the rotation speed of a Mars helicopter blade, and to collect asteroid samples. But pi isn’t just used for exploring the cosmos. Since pi can be used to find the area or circumference of round objects and the volume or surface area of shapes like cylinders, cones, and spheres, it is useful in all sorts of ways. Architects use pi when designing bridges or buildings with arches; electricians use pi when calculating the conductance of wire; and you might even want to use pi to figure out how much frozen goodness you are getting in your ice cream cone.
In the United States, March 14 can be written as 3.14, which is why that date was chosen for celebrating all things pi. In 2009, the U.S. House of Representatives passed a resolution officially designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi. And that's precisely what the NASA Pi Day Challenge is all about!
The Science Behind the 2022 NASA Pi Day Challenge
This ninth installment of the NASA Pi Day Challenge includes four brain-busters that get students using pi to measure frost deep within craters on the Moon, estimate the density of Mars’ core, calculate the water output from a dam to assess its potential environmental impact, and find how far a planet-hunting satellite needs to travel to send data back to Earth.
Read on to learn more about the science and engineering behind the problems or click the link below to jump right into the challenge.
› Take the NASA Pi Day Challenge
› Educators, get the lesson here!
Lunar Logic
NASA’s Lunar Flashlight mission is a small satellite that will seek out signs of frost in deep, permanently shadowed craters around the Moon’s south pole. By sending infrared laser pulses to the surface and measuring how much light is reflected back, scientists can determine which areas of the lunar surface contain frost and which are dry. Knowing the locations of water-ice on the Moon could be key for future crewed missions to the Moon, when water will be a precious resource. In Lunar Logic, students use pi to find out how much surface area Lunar Flashlight will measure with a single pulse from its laser.
Core Conundrum
Since 2018, the InSight lander has studied the interior of Mars by measuring vibrations from marsquakes and the “wobble” of the planet as it rotates on its axis. Through careful analysis of the data returned from InSight, scientists were able to measure the size of Mars’ liquid core for the first time and estimate its density. In Core Conundrum, students use pi to do some of the same calculations, determining the volume and density of the Red Planet’s core and comparing it to that of Earth’s core.
Dam Deduction
The Surface Water and Ocean Topography, or SWOT mission will conduct NASA's first global survey of Earth's surface water. SWOT’s state-of-the-art radar will measure the elevation of water in major lakes, rivers, wetlands, and reservoirs while revealing unprecedented detail on the ocean surface. This data will help scientists track how these bodies of water are changing over time and improve weather and climate models. In Dam Deduction, students learn how data from SWOT can be used to assess the environmental impact of dams. Students then use pi to do their own analysis, finding the powered output of a dam based on the water height of its reservoir and inferring potential impacts of this quick-flowing water.
Telescope Tango
The Transiting Exoplanet Survey Satellite, or TESS, is designed to survey the sky in search of planets orbiting bright, nearby stars. TESS does this while circling Earth in a unique, never-before-used orbit that brings the spacecraft close to Earth about once every two weeks to transmit its data. This special orbit keeps TESS stable while giving it an unobstructed view of space. In its first two years, TESS identified more than 2,600 possible exoplanets in our galaxy with thousands more discovered during its extended mission. In Telescope Tango, students will use pi to calculate the distance traveled by TESS each time it sends data back to Earth.
Teach It
Celebrate Pi Day by getting students thinking like NASA scientists and engineers to solve real-world problems in NASA Pi Day Challenge. Completing the problem set and reading about other ways NASA uses pi is a great way for students to see the importance of the M in STEM.
Pi Day Resources
-
Pi in the Sky Lessons
Here's everything you need to bring the NASA Pi Day Challenge into the classroom.
Grades 4-12
Time Varies
-
NASA Pi Day Challenge
The entire NASA Pi Day Challenge collection can be found in one, handy slideshow for students.
Grades 4-12
Time Varies
-
How Many Decimals of Pi Do We Really Need?
While you may have memorized more than 70,000 digits of pi, world record holders, a JPL engineer explains why you really only need a tiny fraction of that for most calculations.
-
18 Ways NASA Uses Pi
Whether it's sending spacecraft to other planets, driving rovers on Mars, finding out what planets are made of or how deep alien oceans are, pi takes us far at NASA. Find out how pi helps us explore space.
-
10 Ways to Celebrate Pi Day With NASA on March 14
Find out what makes pi so special, how it’s used to explore space, and how you can join the celebration with resources from NASA.
-
Infographic: Planet Pi
This poster shows some of the ways NASA scientists and engineers use the mathematical constant pi (3.14) and includes common pi formulas.
-
Downloads
Can't get enough pi? Download this year's NASA Pi Day Challenge graphics, including mobile phone and desktop backgrounds:
- Pi in the Sky 9 Poster (PDF, 11.2 MB)
- Lunar Flashlight Background: Phone | Desktop
- Mars InSight Lander Background: Phone | Desktop
- SWOT Mission Background: Phone | Desktop
- TESS Mission - Downlink Background: Phone | Desktop
- TESS Mission - Science Background (not pictured): Phone | Desktop
- Medley Background (not pictured): Phone | Desktop
-
Pi Day: What's Going 'Round
Tell us what you're up to this Pi Day and share your stories and photos on our showcase page.
Plus, join the conversation using the hashtag #NASAPiDayChallenge on Facebook, Twitter, and Instagram.
Recursos en español
Related Lessons for Educators
-
Planetary Egg Wobble and Newton's First Law
Students try to determine the interior makeup of an egg (hard-boiled or raw) based on their understanding of center of mass and Newton’s first law of motion.
Grades 3-8
Time 30 min to 1 hour
-
Whip Up a Moon-Like Crater
Whip up a moon-like crater with baking ingredients as a demonstration for students.
Grades 1-6
Time 30 min to 1 hour
-
Exploring Exoplanets with Kepler
Students use math concepts related to transits to discover real-world data about Mercury, Venus and planets outside our solar system.
Grades 6-12
Time 30 min to 1 hour
-
Tracking Water Using NASA Satellite Data
Using real data from NASA’s GRACE satellites, students will track water mass changes in the U.S.
Grades 4-8
Time 30 min to 1 hour
-
Modeling the Water Budget
Students use a spreadsheet model to understand droughts and the movement of water in the water cycle.
Grades 5-8
Time 30 min to 1 hour
Related Activities for Students
-
NASA's Earth Minute: Mission to Earth?
NASA doesn't just explore outer space! It studies Earth, too, with a fleet of spacecraft and scientists far and wide.
Type Video
Subject Science
-
Look at the Moon! Journaling Project
Draw what you see in a Moon Journal and see if you can predict the moon phase that comes next.
Type Project
Subject Science
-
Mars in a Minute: Are There Quakes on Mars?
Are there earthquakes on Mars – or rather, "marsquakes"? What could they teach us about the Red Planet?
Type Video
Subject Science
Explore More
Infographic
Facts and Figures
Missions and Instruments
Websites
TAGS: Pi Day, Pi, Math, NASA Pi Day Challenge, Moon, Lunar Flashlight, Mars, InSight, Earth, Climate, SWOT, Exoplanets, Universe, TESS, Teachers, Educators, Parents, Students, Lessons, Activities, Resources, K-12
Edu News | January 26, 2022
24 STEM Lessons You Can Quickly Deploy in the Classroom
Calling all teachers pressed for time, substitutes looking for classroom activities that don't require a lot of prep, and others hoping to keep students learning in especially chaotic times: We've got a new collection of lessons and activities that you can quickly deploy.
Read on to explore our collection of Quick and Easy STEM lessons and student activities, organized by grade band. Get everything you need to guide students through standards-aligned lessons featuring connections to real NASA missions and science as well as links to student projects, which can be led by teachers or assigned as independent activities.
Grades K-2
-
Make a Paper Mars Helicopter
In this lesson, students build a paper helicopter, then improve the design and compare and measure performance.
Subject Engineering
Grades 2-8
Time 30-60 mins
-
Student Project: Make a Paper Mars Helicopter
Build a paper helicopter, then see if you can improve the design like NASA engineers did when making the first helicopter for Mars.
Subject Engineering
Grades 2-8
Time 30-60 mins
-
What Tools Would You Take to Mars?
Students decide what they want to learn from a robotic mission to Mars and what tools they will put on their robot to accomplish their goals.
Subject Science
Grades K-2
Time 30-60 mins
-
Rockets by Size
Students cut out, color and sequence paper rockets in a simple mathematics lesson on measurement.
Subject Math
Grades K-2
Time 30-60 mins
-
Rocket Math
Students use rocket manipulatives to help them develop number sense, counting, addition and subtraction skills.
Subject Math
Grades K-1
Time 30-60 mins
-
Tangram Rocket
Students use tangrams to create rockets while practicing shape recognition.
Subject Math
Grades K-1
Time 1-2 hrs
-
Student Project: Build a Rover and More With Shapes
Use geometric shapes called tangrams to build a rover and other space-themed designs!
Subject Math
Grades K-2
Time Less than 30 mins
-
Student Project: Build a Rocket and More With Shapes
Use geometric shapes called tangrams to build a rocket and other space-themed designs!
Subject Math
Grades K-2
Time Less than 30 mins
-
Mineral Mystery Experiment
Students explore the science behind an intriguing planetary feature by creating saline solutions and then observing what happens when the solutions evaporate.
Subject Science
Grades 2-12
Time 2 sessions of 30-60 mins
-
Student Project: Do a Mineral Mystery Experiment
Dissolve salts in water, then observe what happens when the water evaporates.
Subject Science
Grades 2-12
Time 2 sessions of 30-60 mins
-
What Do You Know About Mars?
Students decide what they want to learn from a robotic mission to Mars.
Subject Science
Grades K-2
Time Less than 30 mins
-
Melting Ice Experiment
Students make predictions and observations about how ice will melt in different conditions then compare their predictions to results as they make connections to melting glaciers.
Subject Science
Grades 2-12
Time 30-60 mins
-
Parachute Design
Students design and test parachute landing systems to successfully land a probe on target.
Subject Engineering
Grades K-2
Time 1-2 hrs
-
Planetary Poetry
In this cross-curricular STEM and language arts lesson, students learn about planets, stars and space missions and write STEM-inspired poetry to share their knowledge of or inspiration about these topics.
Subject Science
Grades 2-12
Time 1-2 hrs
-
Student Project: Write a Poem About Space
Are you a space poet, and you didn't even know it? Find out how to create your own poems inspired by space!
Subject Science
Grades 2-12
Time 30-60 mins
-
Ocean World: Earth Globe Toss Game
Students use NASA images and a hands-on activity to compare the amounts of land and surface water on our planet.
Subject Science
Grades K-6
Time Less than 30 mins
-
Simple Rocket Science Continued
Students gather data on a balloon rocket launch, then create a simple graph to show the results of the tests.
Subject Math
Grades K-2
Time 30-60 mins
-
Spaghetti Anyone? Building with Pasta
Students use the engineering design process to build a structure to handle the greatest load and gain first-hand experience with compression and tension forces.
Subject Engineering
Grades K-8
Time Less than 30 mins
-
Student Project: Building With Spaghetti
Use spaghetti to build a tower modeled after the giant structures NASA uses to talk to spacecraft.
Subject Engineering
Grades K-8
Time 30-60 mins
-
Simple Rocket Science
Students perform a simple science experiment to learn how a rocket works and demonstrate Newton’s third law of motion.
Subject Science
Grades K-2
Time 30-60 mins
Grades 3-5
-
Make a Paper Mars Helicopter
In this lesson, students build a paper helicopter, then improve the design and compare and measure performance.
Subject Engineering
Grades 2-8
Time 30-60 mins
-
Student Project: Make a Paper Mars Helicopter
Build a paper helicopter, then see if you can improve the design like NASA engineers did when making the first helicopter for Mars.
Subject Engineering
Grades 2-8
Time 30-60 mins
-
Soda-Straw Rockets
Students study rocket stability as they design, construct and launch paper rockets using soda straws.
Subject Engineering
Grades 4-8
Time Less than 30 mins
-
Student Project: Make a Straw Rocket
Create a paper rocket that can be launched from a soda straw – then, modify the design to make the rocket fly farther!
Subject Engineering
Grades 4-8
Time Less than 30 mins
-
Rocket Activity: Heavy Lifting
Students construct balloon-powered rockets to launch the greatest payload possible to the classroom ceiling.
Subject Engineering
Grades 3-8
Time 30-60 mins
-
Design a Robotic Insect
Students design a robotic insect for an extraterrestrial environment, then compare the process to how NASA engineers design robots for extreme environments like Mars.
Subject Science
Grades 3-5
Time 30-60 mins
-
Student Project: Design a Robotic Insect
Design a robotic insect to go to an extreme environment. Then, compare the design process to what NASA engineers do when building robots for Mars!
Subject Science
Grades 3-5
Time 30-60 mins
-
Mineral Mystery Experiment
Students explore the science behind an intriguing planetary feature by creating saline solutions and then observing what happens when the solutions evaporate.
Subject Science
Grades 2-12
Time 2 sessions of 30-60 mins
-
Student Project: Do a Mineral Mystery Experiment
Dissolve salts in water, then observe what happens when the water evaporates.
Subject Science
Grades 2-12
Time 2 sessions of 30-60 mins
-
How Far Away Is Space?
Students use measurement skills to determine the scale distance to space on a map.
Subject Math
Grades 3-7
Time 30-60 mins
-
Student Project: How Far Away Is Space?
Stack coins and use your measurement skills to figure out the scale distance from Earth's surface to space.
Subject Math
Grades 3-7
Time 30-60 mins
-
Melting Ice Experiment
Students make predictions and observations about how ice will melt in different conditions then compare their predictions to results as they make connections to melting glaciers.
Subject Science
Grades 2-12
Time 30-60 mins
-
Planetary Poetry
In this cross-curricular STEM and language arts lesson, students learn about planets, stars and space missions and write STEM-inspired poetry to share their knowledge of or inspiration about these topics.
Subject Science
Grades 2-12
Time 1-2 hrs
-
Student Project: Write a Poem About Space
Are you a space poet, and you didn't even know it? Find out how to create your own poems inspired by space!
Subject Science
Grades 2-12
Time 30-60 mins
-
Planetary Travel Time
Students will compute the approximate travel time to planets in the solar system using different modes of transportation.
Subject Math
Grades 4-6
Time 30-60 mins
-
The Ring Wing Glider
In this simple engineering design lesson, students turn a piece of paper into an aircraft wing and then try to improve upon their design.
Subject Engineering
Grades 3-8
Time 30-60 mins
-
Student Project: Make a Paper Glider
Turn a piece of paper into a glider inspired by a NASA design.
Subject Engineering
Grades 3-8
Time 30-60 mins
-
Ocean World: Earth Globe Toss Game
Students use NASA images and a hands-on activity to compare the amounts of land and surface water on our planet.
Subject Science
Grades K-6
Time Less than 30 mins
-
Spaghetti Anyone? Building with Pasta
Students use the engineering design process to build a structure to handle the greatest load and gain first-hand experience with compression and tension forces.
Subject Engineering
Grades K-8
Time Less than 30 mins
-
Student Project: Building With Spaghetti
Use spaghetti to build a tower modeled after the giant structures NASA uses to talk to spacecraft.
Subject Engineering
Grades K-8
Time 30-60 mins
Grades 6-8
-
Make a Paper Mars Helicopter
In this lesson, students build a paper helicopter, then improve the design and compare and measure performance.
Subject Engineering
Grades 2-8
Time 30-60 mins
-
Student Project: Make a Paper Mars Helicopter
Build a paper helicopter, then see if you can improve the design like NASA engineers did when making the first helicopter for Mars.
Subject Engineering
Grades 2-8
Time 30-60 mins
-
Soda-Straw Rockets
Students study rocket stability as they design, construct and launch paper rockets using soda straws.
Subject Engineering
Grades 4-8
Time Less than 30 mins
-
Student Project: Make a Straw Rocket
Create a paper rocket that can be launched from a soda straw – then, modify the design to make the rocket fly farther!
Subject Engineering
Grades 4-8
Time Less than 30 mins
-
Rocket Activity: Heavy Lifting
Students construct balloon-powered rockets to launch the greatest payload possible to the classroom ceiling.
Subject Engineering
Grades 3-8
Time 30-60 mins
-
Mineral Mystery Experiment
Students explore the science behind an intriguing planetary feature by creating saline solutions and then observing what happens when the solutions evaporate.
Subject Science
Grades 2-12
Time 2 sessions of 30-60 mins
-
Student Project: Do a Mineral Mystery Experiment
Dissolve salts in water, then observe what happens when the water evaporates.
Subject Science
Grades 2-12
Time 2 sessions of 30-60 mins
-
How Far Away Is Space?
Students use measurement skills to determine the scale distance to space on a map.
Subject Math
Grades 3-7
Time 30-60 mins
-
Student Project: How Far Away Is Space?
Stack coins and use your measurement skills to figure out the scale distance from Earth's surface to space.
Subject Math
Grades 3-7
Time 30-60 mins
-
Melting Ice Experiment
Students make predictions and observations about how ice will melt in different conditions then compare their predictions to results as they make connections to melting glaciers.
Subject Science
Grades 2-12
Time 30-60 mins
-
Planetary Poetry
In this cross-curricular STEM and language arts lesson, students learn about planets, stars and space missions and write STEM-inspired poetry to share their knowledge of or inspiration about these topics.
Subject Science
Grades 2-12
Time 1-2 hrs
-
Student Project: Write a Poem About Space
Are you a space poet, and you didn't even know it? Find out how to create your own poems inspired by space!
Subject Science
Grades 2-12
Time 30-60 mins
-
Planetary Travel Time
Students will compute the approximate travel time to planets in the solar system using different modes of transportation.
Subject Math
Grades 4-6
Time 30-60 mins
-
The Ring Wing Glider
In this simple engineering design lesson, students turn a piece of paper into an aircraft wing and then try to improve upon their design.
Subject Engineering
Grades 3-8
Time 30-60 mins
-
Student Project: Make a Paper Glider
Turn a piece of paper into a glider inspired by a NASA design.
Subject Engineering
Grades 3-8
Time 30-60 mins
-
Ocean World: Earth Globe Toss Game
Students use NASA images and a hands-on activity to compare the amounts of land and surface water on our planet.
Subject Science
Grades K-6
Time Less than 30 mins
-
Spaghetti Anyone? Building with Pasta
Students use the engineering design process to build a structure to handle the greatest load and gain first-hand experience with compression and tension forces.
Subject Engineering
Grades K-8
Time Less than 30 mins
-
Student Project: Building With Spaghetti
Use spaghetti to build a tower modeled after the giant structures NASA uses to talk to spacecraft.
Subject Engineering
Grades K-8
Time 30-60 mins
-
How Do We See Dark Matter?
Students will make observations of two containers and identify differences in content, justify their claims and make comparisons to dark matter observations.
Subject Science
Grades 6-12
Time Less than 30 mins
Grades 9-12
-
Mineral Mystery Experiment
Students explore the science behind an intriguing planetary feature by creating saline solutions and then observing what happens when the solutions evaporate.
Subject Science
Grades 2-12
Time 2 sessions of 30-60 mins
-
Student Project: Do a Mineral Mystery Experiment
Dissolve salts in water, then observe what happens when the water evaporates.
Subject Science
Grades 2-12
Time 2 sessions of 30-60 mins
-
Melting Ice Experiment
Students make predictions and observations about how ice will melt in different conditions then compare their predictions to results as they make connections to melting glaciers.
Subject Science
Grades 2-12
Time 30-60 mins
-
Planetary Poetry
In this cross-curricular STEM and language arts lesson, students learn about planets, stars and space missions and write STEM-inspired poetry to share their knowledge of or inspiration about these topics.
Subject Science
Grades 2-12
Time 1-2 hrs
-
Student Project: Write a Poem About Space
Are you a space poet, and you didn't even know it? Find out how to create your own poems inspired by space!
Subject Science
Grades 2-12
Time 30-60 mins
-
Let's Go to Mars! Calculating Launch Windows
Students use advanced algebra concepts to determine the next opportunity to launch a spacecraft to Mars.
Subject Math
Grades 9-12
Time 30-60 mins
-
How Do We See Dark Matter?
Students will make observations of two containers and identify differences in content, justify their claims and make comparisons to dark matter observations.
Subject Science
Grades 6-12
Time Less than 30 mins
Explore More
Find our full collection of more than 250 STEM educator guides and student activities in Teach and Learn.
For games, articles, and more activities from NASA for kids in upper-elementary grades, visit NASA Space Place and NASA Climate Kids.
Explore more educational resources and opportunities for students and educators from NASA STEM Engagement.
TAGS: Lessons, Teachers, Educators, Parents, Substitutes, Activities, Students, Science, Engineering, Quick and Easy
Edu News | December 6, 2021
The Best New STEM Education Resources from NASA-JPL in 2021
In 2021, we added nearly 80 STEM education resources to our online catalog of lessons, activities, articles, and videos for educators, students, and families. The resources feature NASA's latest missions exploring Earth, the Moon, Mars, asteroids, the Solar System and the universe beyond. Here are the 10 resources our audiences visited most this year.
NASA's Mission to Mars Student Challenge
To kick off the year, we invited students, educators, and families from around the world to create their own mission to Mars as we counted down to the Perseverance rover's epic landing on the Red Planet in February. More than one million students participated in the Mission to Mars Student Challenge, which features seven weeks of guided education plans, student projects, and expert talks and interviews highlighting each phase of a real Mars mission.
It's no surprise that this was our most popular product of the year. And good news: It's still available and timely! With Perseverance actively exploring Mars and making new discoveries all the time, the challenge offers ongoing opportunities to get students engaged in real-world STEM.
Need a primer on the Perseverance Mars rover mission, first? This article from our Teachable Moments series has you covered.
Solar System Size and Distance
This video offers a short and simple answer to two of students' most enduring questions: How do the sizes of planets compare and how far is it between them? Plus, it gets at why we don't often (or ever) see images that show all the planets' sizes and distances to scale. Spoiler alert: It's pretty much impossible to do.
Get students exploring solar system size and distance in more detail and even making their own scale models with this student project.
Code a Mars Helicopter Video Game
As you'll soon see from the rest of this list, coding projects were a big draw this year. This one took off along with Ingenuity, the first helicopter designed to fly on Mars, which made its historic first flight in April. Designed as a test of technology that could be used on future missions, Ingenuity was only slated for a few flights, but it has far exceeded even that lofty goal.
In this project, students use the free visual programming language Scratch to create a game inspired by the helicopter-that-could.
Make a Moon Phases Calendar and Calculator
Just updated for 2022, this project is part educational activity and part art for your walls. Students learn about moon phases to complete this interactive calendar, which shows when and where to see moon phases throughout the year, plus lists moon events such as lunar eclipses and supermoons. The art-deco inspired design might just have you wanting to make one for yourself, too.
The NASA Pi Day Challenge
This year marked the eighth installment of our annual Pi Day Challenge, a set of illustrated math problems featuring pi (of course) and NASA missions and science. Don't let the name fool you – these problems are fun to solve year round.
Students can choose from 32 different problems that will develop their math skills while they take on some of the same challenges faced by NASA scientists and engineers. New this year are puzzlers featuring the OSIRIS-REx asteroid mission, Mars helicopter, Deep Space Network, and aurora science.
Educator guides for each problem and problem set are also available here. And don't miss the downloadable posters and virtual meeting backgrounds.
Code a Mars Sample Collection Video Game
Another coding challenge using the visual programming language Scratch, this project is inspired by the Perseverance Mars rover mission, which is collecting samples that could be brought back to Earth by a potential future mission.
While developing a gamified version of the process, students are introduced to some of the considerations scientists and engineers have to make when collecting samples on Mars.
Code a Mars Landing
As if launching a rover to Mars wasn't hard enough, you still have to land when you get there. And that means using a complex series of devices – from parachutes to jet packs to bungee cords – and maneuvers that have to be performed remotely using instructions programmed into the spacecraft's computer.
Students who are ready to take their programming skills to the next level can get an idea of what it takes in this project, which has them use Python and microcontrollers to simulate the process of landing a rover on Mars.
How Far Away is Space?
Without giving the answer away: It's not as far as you might think.
In this activity, students stack coins (or other objects) on a map of their local area as a scale model of the distance to space. The stacking continues to the International Space Station, the Moon, and finally to the future orbit of the James Webb Space Telescope, which is slated to launch on Dec. 22.
Build a Rover and More With Shapes
You don't have to be a big kid to start learning about space exploration. This activity, which is designed for kids in kindergarten through second grade, has learners use geometric shapes called tangrams to fill in a Mars rover design. It provides an introduction to geometry and thinking spatially.
Once kids become experts at building rovers, have them try building rockets.
Space Voyagers: The Game
Technically a classroom activity (it is standards-aligned, after all), this game will appeal to students and strategy card game enthusiasts alike. Download and print out a set for your classroom (or your next game night).
Players work collaboratively to explore destinations including the Moon, Mars, Jupiter and Jupiter's Moon Europa with actual NASA spacecraft and science instruments while working to overcome realistic challenges at their destination including dust storms and instrument failures.
TAGS: K-12, Lessons, Activities, Education Resources, Teachers, Students, Families, Kids, Learning, STEM, Science, Engineering, Technology, Math, Coding, Programming, Mars, Solar System, Moon
Career Guidance | August 19, 2021
How to Get an Internship at JPL
Whether you're looking for a career in STEM or space exploration, this three-part series will cover everything you need to know about the world of internships at NASA's Jet Propulsion Laboratory, the skills and experience hiring managers are looking for, and how you can set yourself on the right trajectory even before you get to college.
In a typical year, NASA's Jet Propulsion Laboratory brings in about 1,000 interns from schools across the country to take part in projects that range from building spacecraft to studying climate change to developing software for space exploration. One of 10 NASA centers in the United States, the Southern California laboratory receives thousands of applications. So what can students do to stand out and set themselves on the right trajectory?
We asked interns and the people who bring them to JPL about their tips for students and anyone interested in a STEM career or working at the Laboratory. We're sharing their advice in this three-part series.
First up: Learn about the kinds of opportunities available as well as where and how to apply.
The World of JPL Internships
If you found this article, you're probably already somewhat familiar with the work that goes on at JPL. But at a place that employs more than 6,000 people across hundreds of teams, it can be hard to keep track of it all.
In a broad sense, JPL explores Earth, other planets, and the universe beyond with robotic spacecraft – meaning no humans on board. But along with the engineers and scientists who design and build spacecraft and study the data they return, there are thousands of others working on all the in-between pieces that make Earth and space exploration possible and accessible to all. This includes software developers, machinists, microbiologists, writers, video producers, designers, finance and information technology professionals, and more.
Some of the best ways to learn about the Laboratory's work – and get a sense for the kinds of internships on offer – are to follow JPL news and social media channels, take part in virtual and in-person events such as monthly talks, and keep up on the latest research. There are also a host of articles and videos online about interns and employees and the kinds of work they do.
While STEM internships make up the majority of the Laboratory's offerings, there are a handful of opportunities for students studying other subjects as well. Depending on which camp you fit into, there are different places to apply.
Education Office Internships
The largest number of internships can be found on the JPL Education website. These opportunities, for students studying STEM, are offered through about a dozen programs catered to college students of various academic and demographic backgrounds. This includes programs for students attending community college, those at minority-serving institutions, and others at Los Angeles-area schools.
Students apply to a program, or programs, rather than a specific opening. (See the program details for more information about where to apply and what you will need.) It's then up to the folks with open opportunities, the mentors, to select applicants who are the best match for their project.
It may seem odd to send an application into the void with no idea of what offer might return. But there is a good reason behind the process, says Jenny Tieu, a project manager in JPL's Education Office, which manages the Laboratory's STEM internship programs.
"Applying to a specific program allows for the applicant to be seen by a much broader group of hiring managers and mentors and be considered for more opportunities as a result," says Tieu. "We look at the resumes that come in to see what skills are compatible with open projects and then match students to opportunities they may not have even realized were available to them."
Shirin Nataneli says she wouldn't have known there was an internship for her at the Laboratory were it not for a suggestion to apply from her professor. In 2020, Nataneli graduated from UCLA with a Bachelor's degree in biology. She was on the pre-med track, studying for the MCAT, when she decided to take a couple of courses in computer science.
"I got sucked in," says the Santa Monica College student and JPL intern, who is using computer science to help her team classify extreme bacteria that can survive on spacecraft. "I didn't even know there was an intersection between computer science and biology, but somehow I found a group at JPL that does just that."

Shirin Nataneli poses for a photo with the JPL campus in the background. Image courtesy: Shirin Nataneli | + Expand image
University Recruiting Opportunities
For college students who are interested in space exploration but studying other fields, such as business, communications, and finance, as well as those studying STEM, there are additional opportunities on the JPL Jobs website. Listed by opportunity, more like a traditional job opening, these internships are managed by the Laboratory's University Recruiting team, which is active on LinkedIn and Instagram and can often be found at conferences and career fairs.
The When, What, and Where
Both Education Office and University Recruiting opportunities are paid and require a minimum 3.00 GPA, U.S. citizenship or legal permanent resident status, as well as an initial commitment of 10 weeks. Applicants must be enrolled in a college undergraduate or graduate program to be eligible. (See "The Pre-College Trajectory" section of this article below to learn about what high-school and younger students can do to prepare for a future JPL internship or STEM career.)
After pivoting to fully remote internships during the COVID-19 pandemic, JPL is looking at whether to continue offering some remote or hybrid internships once the Los Angeles-area campus opens back up.
"We know that remote internships are effective," says Tieu. "Interns have said that they're able to foster connections with JPL employees and gain valuable experience even from home." She notes that while in-person internships give students maximum exposure to JPL – including visits to Laboratory attractions like mission control, the "clean room" where spacecraft are built, and a rover testing ground called the Mars Yard – remote internships have had a positive impact on students who previously weren't able to participate in person due to life constraints.
Most programs offer housing and travel allowances to students attending universities outside the 50-mile radius of JPL, so be sure to check the program details if traveling to or living in the Los Angeles area could be tricky financially.
Full-time and part-time opportunities can be found throughout the year with most openings in the summertime for full-time interns, meaning 40 hours per week. For summer opportunities, Tieu recommends applying no later than November or December. Applicants can usually expect to hear back by April if they are going to receive an offer for summer, but it's always a good idea to keep yourself in the running, as applicants may be considered for school-year opportunities.
Tieu adds, "If you haven't heard back, and you're closing in on the six-month mark of when you submitted your application, I recommend students go back in and renew their application [for the programs listed on the JPL Education website] so that it remains active in the candidate pool for consideration."
And unlike job applications, where it's sometimes frowned upon to apply to multiple positions at once, it's perfectly alright – and even encouraged – to apply to multiple internships.
You may also want to consider these opportunities, especially if you're looking for internships at other NASA centers, you're a foreign citizen, or you're interested in a postdoc position:
- NASA Internships
- JPL Visiting Student Researcher Program (international students eligible)
- JPL Postdoctoral Study
The most important thing is to not count yourself out, says Tieu. "If you're interested, work on that resume, get people to review your resume and provide input and feedback and apply. We don't expect students to come in knowing how to do everything. We're looking for students with demonstrated problem-solving, teamwork, and leadership skills. Software and other technical skills are an added bonus and icing on the cake."
More on that next, plus advice from JPL mentors on the skills and experience they look for from potential interns.
Skills for Space Explorers
JPL is known for doing the impossible, whether it's sending spacecraft to the farthest reaches of our solar system or landing a 2,000-pound rover on Mars. But potential applicants may be surprised to learn that reputation wasn't earned by always having the right answer on the first try – or even the second, third, or fourth.

JPL's founders, several Caltech graduate students led by Frank Malina along with rocket enthusiasts from the Pasadena area, take a break from setting up their experimental rocket motor in the Arroyo Seco, north of Pasadena, California. Image credit: NASA/JPL-Caltech | + Expand image
In fact, the Laboratory has always had a penchant for experimentation, starting with its founders, Caltech students who in the 1930s would test rockets in the stairwells at their university. They had so many colossal (and dangerous) failures that they were banished to a dry riverbed north of Pasadena, which is now the site of JPL. Eventually, their rockets were successful and the laboratory they founded went on to build and launch the first American space satellite and send dozens of spacecraft to worlds throughout the solar system. But that trial-and-error attitude still permeates the Laboratory today.
As a result, potential interns who show enthusiasm and a willingness to learn, overcome obstacles, and work as part of a team often stand out more than those with academic achievements alone.
Standing Out
In an informal survey of JPL mentors, respondents most often cited problem-solving, communication, and teamwork skills as well as passion for learning and grit as the soft skills they look for when considering potential interns. Respondents added that students who can provide specific examples of these skills on their resume – and speak to them in an interview – stand out the most.
That doesn't necessarily have to mean leading your school’s robotics club or serving as your geology professor's teaching assistant, although those things don't hurt. But also consider less traditional examples, such as how critical thinking helps you overcome challenges while rock climbing or how you used leadership and teamwork to organize your friends to create a group costume for Comic Con.
"Students who share a link to their GitHub repository or online portfolio stand out to me because it shows they took the initiative and took time to build, develop, and create something on their own," says K'mar Grant-Smith, a JPL mentor who leads a team of developers in supporting and maintaining applications for the Laboratory's missions. "That vouches for you better than saying, 'I know these [coding] languages, and I took these courses.'"
Laurie Barge is a JPL scientist who co-leads an astrobiology lab exploring the possibility of life beyond Earth. The lab annually hosts about a dozen students and postdocs. Barge says that the top qualities she looks for in an intern are an expressed interest in her research and JPL as a whole as well as teamwork skills. "I look for students who are excited about the fact that they'll be working with 10 other students and postdocs and collaborating with other people on papers and abstracts."

Astrobiologist Laurie Barge, left, and former intern Erika Flores, right, pose for a photo in the Origins and Habitability Lab that Barge co-leads at JPL. Image credit: NASA/JPL-Caltech | + Expand image
Teamwork is also key for students working in engineering, software, or any other capacity across the Laboratory. When it comes to designing missions to go where nothing has gone before, collaboration between multi-disciplinary teams is a must.
In terms of technical skills, knowledge of coding languages is the most sought after, with Python, MATLAB, and C languages leading the pack. And in certain groups, like the one that helps identify where it's safe to land spacecraft on Mars, experience with specialized tools like Geographic Information Systems, or GIS, can help applicants stand out.
Still, for many mentors, enthusiasm and a willingness to learn and be proactive are far more important than any technical skill.
You don't have to be the most technically savvy person. If you have the initiative, the drive, and some experience, I find that to be more important than knowing 16 different [coding] languages," says Grant-Smith. "JPL is a unique place full of very smart people, but we're not good at what we do just because we have the know-how. We also have the drive and a passion for it."
Getting Involved
So you're a rock-climbing Red Planet enthusiast who likes to create "Dune"-inspired stillsuits when you're not busy at your part-time job making frappuccinos with your fellow baristas. How do you improve the chances this information will land on a JPL mentor's desk?
In a sentence: Build a strong network. So says Rebecca Gio of what made all the difference when she was struggling to find her academic groove right after high school. After a year spent repeating classes, changing schools, and feeling discouraged about what was next, Gio discovered what she needed to change her trajectory. She joined clubs and organizations that aligned with her career goals, formed study groups with her peers, found a mentor who could help her navigate everything from college classes to internship opportunities, and wasn't afraid to ask when she had a question.
Now, Gio is thriving – academically and on her career path. She's a junior studying computer science at Cal Poly Pomona and a first-time intern at JPL, where she's testing the software that will serve as the brains of a spacecraft designed to explore Jupiter's moon Europa.
"Being part of a community and being with people who have gone through similar experiences and can push you to do better, I think that that is just super motivating," says Gio.
JPL Education Program Manager Jenny Tieu agrees. “Along with academic achievements, we’re looking for students with diverse backgrounds, perspectives, and life experiences who can work collaboratively to learn, adapt to new situations, and solve problems.”

Jenny Tieu catches up with Brandon Murphy, who came to the Laboratory as an intern in 2016 through a program Tieu manages, and soon after, was hired full-time. Image credit: NASA/JPL-Caltech | + Expand image
To that end, she suggests students get involved in campus STEM clubs and communities, NASA challenges and activities, and volunteer opportunities, which offer career experiences, introduce students to a network of peers and professionals, and look great on a resume.
Tieu leads a JPL internship program that partners with historically Black colleges and universities and other minority-serving institutions. She says that one way students get connected with the program is by word-of-mouth from current and former participants, who include students and faculty researchers.
"We see a lot of great allyship with interns and research fellows telling their classmates about their experience at JPL, how to apply, and what to expect," says Tieu. "We foster deep relationships with our partner campuses and their faculty as well." In other words, students may not have to look farther than their own professors, campus info sessions, or career fairs to learn about opportunities at the Laboratory.
A career fair is where Gio first connected with JPL's University Recruiting team after what she jokingly calls "stalking" them from LinkedIn to Handshake to the Grace Hopper conference – where she eventually handed over her resume. "Just get familiar with where JPL is going to be and try to make sure that you're there," says Gio.

Rebecca Gio (right) poses for a photo with her mom and sister (left) in the lobby of the Laboratory's mission control building during the Explore JPL event in 2019. Gio says her mom and sister are her two biggest supporters and the reason behind all of her success. Image courtesy Rebecca Gio | + Expand image
In the sciences especially, those connections can also be made through a shared interest in a particular area of research. Barge says that most of the students she brings to JPL find out about her research from a peer or professor, exploring the lab's website, or from reading papers her team has published. Then, they reach out to her directly. This way she can create a position suited to a student's skills while also finding out if their interests mesh with the team.
"I want to know why they're interested in JPL and not a different institution," says Barge. "Why do they want to work with me and not another person at JPL? Why do they want to do this research and what specifically would they like to gain from this internship experience? I'm trying to figure out who really, really wants this particular opportunity."
As Gio points out, it's often the same advice that applies whether you're looking for an internship at JPL or in STEM or a future career.
"If you really want it, if you really want to be a STEM professional, make the most of your education, and find ways to apply those skills," says Gio. "I made sure that I was a part of campus groups where I was doing extra projects outside of schoolwork. I made sure that I was talking to other students to learn what they were doing. There's a lot of opportunities now to learn online for free. If there's something that you think would interest you, just go and do it."
Next, we'll share more ways students can prepare for a future internship or career in STEM before they get to college, plus resources parents and teachers can use to get younger students practicing STEM skills.
The Pre-College Trajectory
First, let's address one of the most common questions we get when it comes to internships at JPL. As of this writing, the Laboratory does not offer an open call for high-school interns. For most of the past several years, JPL has been able to bring in just a handful of high-school students from underserved communities thanks to partnerships with local school districts.
That's not to say that there won't be an open call for high-school internships at JPL in the future. If and when opportunities become available, they'll be posted here on the JPL Education website.
That said, there's still plenty students can and should do before college or when they're just entering college to explore STEM fields, get hands-on experience, and practice the skills they'll need for a future internship or career.
Exploring STEM Fields
Ota Lutz, a former classroom teacher, leads JPL's K-12 education team, which takes the Laboratory's science, engineering, and technical work and translates it into STEM education resources for teachers, students, and families.
Other than exploring high-school internships at other organizations, Lutz says that students in grades K-12 can get hands-on experience through clubs, competitions, and camps offered in person and online.
Schools often have engineering, robotics, math, and science clubs, but if not, look for one in your community or encourage students to start their own, perhaps with the help of a teacher.

JPL's Invention Challenge is an annual engineering competition for middle and high school students. In 2017, a team (pictured) traveled all the way from Ethiopia to participate. | › Read the news story
JPL hosts annual science and engineering competitions while NASA hosts a slew of other competitions, including essay contests with opportunities to interact with scientists and even name spacecraft.
If cost is an issue for camps or competitions, Lutz recommends that parents or guardians reach out to the host organization to see if scholarships are available and that they explore free events offered by groups such as NASA's Solar System Ambassadors and Night Sky Network as well as programs at museums, science centers, and libraries in their community.
NASA also offers a number of citizen science projects that give students (and adults) opportunities to contribute to real research, from identifying near-Earth asteroids to observing and cataloging clouds to searching for planets beyond our solar system.
Building Foundational Skills
All of the above can help students explore whether they might be interested in STEM, but it's also important that kids start practicing the skills they will need to succeed academically and in a future internship or career.
"Developing those foundational STEM and language arts skills are incredibly important to future success," says Lutz, adding that, generally, students should practice what are called scientific habits of mind, "learning how to think critically, problem solve and do so in a methodical way as well as learning to examine data to determine trends without personal bias."
One way students can gain skills and knowledge directly related to a future STEM internship or career is by trying these educational projects and activities offered free online from the JPL Education Office. (Teachers can explore this page to find out how to turn these activities into standards-aligned classroom lessons.) Activities include engineering projects and science experiments as well as math and coding challenges, all of which feature the latest NASA missions and science.

Students test their designs as part of the "Make an Astronaut Lander" activity on the JPL Education website. | + Expand image
Coding skills, in particular, will serve students well no matter what career path they take, says Lutz. "Coding is something that is applicable across a broad range of subject areas and majors, so we strongly encourage students to learn some coding."
She points to the plethora of online courses and tutorials in coding and other STEM subjects that give students a chance to explore on their own and work on projects that interest them.
Parents and guardians can also help their kids develop foundational skills by allowing them to explore and tinker at home. "In every house, there's something that needs fixing," says Lutz. "Have the kid figure out how to fix a wobbly chair, but be patient with mistakes and encourage them to keep trying." That persistence and determination in overcoming obstacles will come in handy throughout their education and career path, whether it's learning how to code, getting into a robotics club in high school, applying and reapplying for internships, or figuring out how to land a spacecraft on Mars.
Similarly, it's never too early to start learning those ever-important soft skills such as teamwork, communication, and leadership. There's no single or right place to gain these skills, rather they come from a range of experiences that can include a school project, a part-time job, or a volunteer opportunity.

Ota Lutz, who leads the Laboratory's K-12 education team, speaks with a group of JPL employees during a Pi Day event. | + Expand image
Lutz grew up in a small town in Central California and says, "I was a smart kid, but these things called soft skills were beyond me, and I was the shyest kid in my class." That is until she joined her high school's service club. "Through volunteering, I ended up interacting with people from all walks of life and learned how to work with teams. My club advisor coached me, and I started taking on more leadership roles in the club and in class projects."
Later, it was that same club advisor and her youth pastor who encouraged Lutz to attend a college that would challenge her academically despite pressures to stay closer to home.
"You never know what experiences or conversations might open up opportunities for you," says Lutz, which is why she recommends that students get comfortable talking with peers and teachers – and especially asking questions. "It's really important to learn to ask questions so you build your confidence in learning and also develop relationships with people."
Launching into College
As Lutz experienced, those foundational skills can make all the difference when it comes to transitioning into college, too.
"When I got to college, I discovered I was woefully unprepared even though I had been at the top of my class in high school," says Lutz. "I never learned how to study, and I mistakenly believed that asking questions would make me look dumb. After struggling on my own for a couple of years, I learned that study groups existed and they helped me get to know my peers, build my confidence, and improve my GPA."
While building a support network is key, don't overload yourself the first year, Lutz says. But do start taking classes in the field you're interested in to see if it's the right fit. "The important thing is getting some experience in the field that you think you want to go into."
After that, internships, whether they're at JPL, NASA or elsewhere, will give you an even deeper look at what a future career might be like. When the time comes, you'll know exactly where to look to set yourself on the right trajectory – that is just above under "The World of JPL Internships" and "Skills for Space Explorers."
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.
TAGS: Internships, Students, Careers, Science, Computer Science, Engineering, Math, Programs, University Recruiting, Undergraduate, Graduate, College, High School, Mentors
Teachable Moments | January 8, 2021
NASA's Perseverance Rover Lands on Mars
Learn how, why, and what Perseverance will explore on Mars, plus find out about an exciting opportunity for you and your students to join in the adventure!
In the News
On Feb. 18, NASA's Perseverance Mars rover touched down on the Red Planet after a seven-month flight from Earth. Only the fifth rover to land on the planet, Perseverance represents a giant leap forward in our scientific and technological capabilities for exploring Mars and the possibility that life may have once existed on the Red Planet.
Here, you will:
- Meet the Perseverance Mars rover and find out what it's designed to do.
- Learn about an exciting opportunity to get your classroom, educational organization, or household involved with the Mission to Mars Student Challenge.
Why It's Important
You might be wondering, "Isn't there already a rover on Mars?” The answer is yes! The Curiosity rover landed on Mars in 2012 and has spent its time on the Red Planet making fascinating discoveries about the planet's geology and environment – setting the stage for Perseverance. So, why send another rover to Mars? The lessons we’ve learned from Curiosity coupled with advancements in technology over the last decade are allowing us to take the next big steps in our exploration of Mars, including looking for signs of ancient microbial life, collecting rock samples to bring to Earth one day, and setting the stage for a potential future human mission to the Red Planet.
More specifically, the Perseverance Mars rover has four science objectives:
- Identify past environments on Mars that could have supported microbial life
- Seek signs of ancient microbial life within the rocks and soil using a new suite of scientific instruments
- Collect rock samples of interest to be stored on the surface for possible return by future missions
- Pave the way for human exploration beyond the Moon
With these science objectives in mind, let's take a look at how the mission is designed to achieve these goals – from its science-rich landing site, Jezero Crater, to its suite of onboard tools and technology.
How It Works
Follow the Water

Lighter colors represent higher elevation in this image of Jezero Crater on Mars, the landing site for the Perseverance rover. The black oval indicates the area in which the rover will touch down, also called a landing ellipse. Image Credit: NASA JPL/Caltech/MSSS/JHU-APL/ESA | › Full image and caption
While present-day Mars is a cold, barren planet, science suggests that it was once very similar to Earth. The presence of clay, dried rivers and lakes, and minerals that formed in the presence of water provide extensive evidence that Mars once had flowing water at its surface. As a result, a mission looking for signs of ancient life, also known as biosignatures, should naturally follow that water. That’s because water represents the essential ingredient for life as we know it on Earth, and it can host a wide variety of organisms.
This is what makes Perseverance's landing site in Jezero Crater such a compelling location for scientific exploration. The crater was originally formed by an ancient meteorite impact about 3.8 billion years ago, and it sits within an even larger, older impact basin. The crater also appears to have once been home to an ancient lake fed by a river that formed the delta where Perseverance will begin its exploration, by exploring the foot of the river delta.
Take a tour of Perseverance's landing site in this animated flyover of the Martian surface. Credit: NASA/JPL-Caltech | Watch on YouTube
Tools of the Trade
Perseverance will begin its scientific exploration with the assistance of an array of tools, also known as science instruments.

This artist's concept shows the various science tools, or instruments, onboard the rover. Image credit: NASA/JPL-Caltech | › Learn more about the rover's science instruments
Like its predecessor, Perseverance will have a number of cameras – 23, in fact! – serving as the eyes of the rover for scientists and engineers back on Earth. Nine of these cameras are dedicated to mobility, or tracking the rover's movements; six will capture images and videos as the rover travels through the Martian atmosphere down to the surface, a process known as entry, descent, and landing; and seven are part of the science instrumentation.

SuperCam's mast unit before being installed atop the Perseverance rover's remote sensing mast. The electronics are inside the gold-plated box on the left. The end of the laser peeks out from behind the left side of the electronics. Image credit: CNES | › Learn more about SuperCam

PIXL can make slow, precise movements to point at specific parts of a rock's surface so the instrument's X-ray can discover where – and in what quantity – chemicals are distributed in a given sample. This GIF has been considerably sped up to show how the hexapod moves. Image credit: NASA/JPL-Caltech | › Learn more about PIXL

A close-up view of an engineering model of SHERLOC, one the instruments aboard NASA's Perseverance Mars rover. Credit: NASA/JPL-Caltech | › Learn more about SHERLOC
Navcam, located on the mast (or "head") of the rover, will capture images to help engineers control the rover. Meanwhile, Mastcam-Z, also on the rover’s mast, can zoom in, focus, and take 3D color pictures and video at high speed to allow detailed examination of distant objects. A third camera, Supercam, fires a small laser burst to excite compounds on the surface and determine their composition using spectroscopy. Supercam is also equipped with a microphone. This microphone (one of two on the rover) will allow scientists to hear the pop the laser makes upon hitting its target, which may give scientists additional information about the hardness of the rock.
Leaning more toward chemistry, the Planetary Instrument for X-Ray Lithochemistry (PIXL) will allow us to look at the composition of rocks and soil down to the size of a grain of salt. Elements respond to different types of light, such as X-rays, in predictable ways. So by shining an X-ray on Martian rocks and soil, we can identify elements that may be part of a biosignature.
Meanwhile, a device called SHERLOC will look for evidence of ancient life using a technique called Deep UV Raman spectroscopy. Raman spectroscopy can help scientists see the crystallinity and molecular structure of rocks and soil. For example, some molecules and crystals luminesce, or emit light, when exposed to ultraviolet – similar to how a blacklight might be used to illuminate evidence in a crime scene. Scientists have a good understanding of how chemicals considered key to life on Earth react to things like ultraviolet light. So, SHERLOC could help us identify those same chemicals on Mars. In other words, it can contribute to identifying those biosignatures we keep talking about.
Rounding out its role as a roving geologist on wheels, Perseverance also has instruments for studying beneath the surface of Mars. An instrument called the Radar Imager of Mars Subsurface Experiment (RIMFAX) will use ground-penetrating radar to analyze depths down to about 100 feet (30 meters) below the surface. Mounted on the rear of the rover, RIMFAX will help us understand geological features that can't be seen by the other cameras and instruments.
The rover's suite of instruments demonstrates how multiple scientific disciplines – chemistry, physics, biology, geology, and engineering – work in concert to further our understanding of Mars and help scientists uncover whether life ever existed on the Red Planet.
Next Generation Tech
At NASA, scientists and engineers are always looking to push the envelope and, while missions such as Perseverance are ambitious in themselves, they also provide an opportunity for NASA to test new technology that could be used for future missions. Two excellent examples of such technology joining Perseverance on Mars are MOXIE and the first ever Mars helicopter, Ingenuity.

Members of Perseverance mission team install MOXIE into the belly of the rover in the cleanroom at NASA's Jet Propulsion Laboratory in Southern California. Image credit: NASA/JPL-Caltech | › Full image and caption
MOXIE stands for the Mars Oxygen In-Situ Resource Utilization Experiment. Operating at 800 degrees Celsius, MOXIE takes in carbon dioxide (CO2) from the thin Martian atmosphere and splits those molecules into pure oxygen using what is called a catalyst. A catalyst is a chemical that allows for reactions to take place under conditions they normally wouldn’t. MOXIE provides an incredible opportunity for NASA to create something usable out of the limited resources available on Mars. Over the duration of the rover's mission, MOXIE will run for a total of one hour every time it operates, distributed over the course of the prime mission timeframe, to determine whether it can reliably produce breathable oxygen. The goal of operating this way is to allow scientists to determine the performance across a variety of environmental conditions that a dedicated, human-mission-sized oxygen plant would see during operations - day versus night, winter versus summer, etc. Oxygen is of great interest for future missions not just because of its necessity for future human life support on Mars, but also because it can be used as a rocket propellant, perhaps allowing for future small-scale sample return missions to Earth.

This artist's concept shows Ingenuity, the first Mars helicopter, on the Red Planet's surface with Perseverance (partially visible on the left) in the distance. Image credit: NASA/JPL-Caltech | › Full image and caption
The Mars Ingenuity helicopter is likewise an engineering first. It is a technology demonstration to test powered flight on Mars. Because the Martian atmosphere is so thin, flight is incredibly difficult. So, the four-pound (1.8-kilogram), solar powered helicopter is specially designed with two, four-foot (1.2-meter) long counter-rotating blades that spin at 2,400 rotations per minute. In the months after Perseverance lands, Ingenuity will drop from the belly of the rover. If all goes well, it will attempt test flights of increasing difficulty, covering incrementally greater heights and distances for about 30 days. In the future, engineers hope flying robots can allow for a greater view of the surrounding terrain for robotic and human missions alike.
Teach It
Take part in a worldwide “teachable moment” and bring students along for the ride as NASA lands the Perseverance rover on Mars February 18. Science communicator and host of “Emily’s Wonder Lab” on Netflix, Emily Calandrelli, shares how you can join the adventure with your students! | Register on Eventbrite
The process of landing on Mars with such an advanced mission is no doubt an exciting opportunity to engage students across all aspects of STEM – and NASA wants to help teachers, educators and families bring students along for the adventure with the Mission to Mars Student Challenge. This challenge will lead students through designing and building a mission to Mars with a guided education plan and resources from NASA, listening to expert talks, and sharing student work with a worldwide audience.
Learn more about the challenge and explore additional education resources related to the Perseverance Mars rover mission at https://go.nasa.gov/mars-challenge
Watch the Landing
The next chapter of Perseverance’s journey takes place on Feb. 18 at 12 p.m. PST (3 p.m. EST), when the mission reaches Mars after seven months of travelling through space. Join NASA as we countdown to landing with online events for teachers, students, and space enthusiasts! The landing day broadcast can be seen on NASA TV and the agency's website starting at 11:15 a.m. PST (2:15 p.m. EST). For a full listing of online events leading up to and on landing day, visit the mission's Watch Online page.
Follow landing updates on NASA's Twitter, Facebook and Instagram accounts.
Explore More
-
NASA's Mission to Mars Student Challenge
Take part in a worldwide "teachable moment" and bring students along for the ride as NASA lands a rover on Mars February 18!
- Teachable Moment
Meet Perseverance, NASA's Next Mars Rover
Find out how the rover has been "souped up" with science instruments, cameras and technologies to explore Mars in new ways – plus, what to expect on launch day.
-
Mission to Mars Unit
In this standards-aligned unit, students learn about Mars, design a mission to explore the planet, build and test model spacecraft and components, and engage in scientific exploration.
-
NASA #CountdownToMars STEM Toolkit
Explore links to activities, lessons, interactives, social media, and more resources from NASA to participate in the Perseverance Mars rover mission.
-
Exploring Mars Lessons
Get students engaged in the excitement of NASA's next mission to Mars with standards-aligned STEM lessons.
-
Meet JPL Interns of Mars 2020
Read stories about interns helping prepare NASA's next Mars rover for its launch this summer.
- Education Webinars
Teaching Space With NASA
Watch education webinars featuring NASA experts and education specialists and register to ask questions during live Q&As. Plus, explore related education resources.
-
Exploring Mars Activities
Make a cardboard rover, design a Mars exploration video game, learn about Mars in a minute and explore more STEM activities for students.
- Resources for Families
Learning Space With NASA at Home
Explore space and science activities students can do with NASA at home. Watch video tutorials for making rockets, Mars rovers, Moon landers and more. Plus, find tips for learning at home!
More Resources From NASA
TAGS: Mars, Perseverance, Mars 2020, Science, Engineering, Robotics, Educators, Teachers, Students, Teachable Moments, Teach, Learn, Mars Landing
Teachable Moments | June 17, 2020
Meet NASA's Next Mars Rover, Perseverance, Launching This Summer
Perseverance, NASA's most advanced Mars rover yet, is scheduled to leave Earth for its seven-month journey to the Red Planet this summer.
Only the fifth NASA rover destined for Mars, Perseverance is designed to build on the work and scientific discoveries of its predecessors. Find out more about the rover's science goals and new technologies below. Plus, learn how you can bring the exciting engineering and science of this mission to students with lessons and DIY projects covering topics like biology, geology, physics, mathematics, engineering, coding and language arts.
Why It's Important
Perseverance may look similar to Curiosity – the NASA rover that's been exploring Mars since 2012 – but the latest rover's new science instruments, upgraded cameras, improved onboard computers and new landing technologies make it uniquely capable of accomplishing the science goals planned for the mission.

Diagram of the Perseverance Mars rover's science instruments. Credit: NASA/JPL-Caltech | + Expand image
Looking for signs of habitability
The first of the rover's four science goals deals with studying the habitability of Mars. The mission is designed to look for environments that could have supported life in the past.
Perseverance will land in Jezero Crater, a 28-mile-wide (45-kilometer-wide) crater that scientists believe was once filled with water. Data from orbiters at the Red Planet suggest that water once flowed into the crater, carrying clay minerals from the surrounding area, depositing them in the crater and forming a delta. We find similar conditions on Earth, where the right combination of water and minerals can support life. By comparing these to the conditions we find on Mars, we can better understand the Red Planet's ability to support life. The Perseverance rover is specially designed to study the habitability of Mars' Jezero Crater using a suite of scientific instruments, or tools, that can evaluate the environment and the processes that influence it.
This animated flyover shows the area where Perseverance will land in February 2021 and is narrated by the mission's project scientist, Ken Farley. Credit: NASA/JPL-Caltech | › Learn more about the mission's landing site | Watch on YouTube
Seeking signs of ancient life
The rover's second science goal is closely linked with its first: Perseverance will seek out evidence that microbial life once existed on Mars in the past. In doing so, the mission could make progress in understanding the origin, evolution and distribution of life in the universe – the scientific field known as astrobiology.
It's important to note that the rover won't be looking for present-day life. Instead, its instruments are designed to look for clues left behind by ancient life. We call those clues biosignatures. A biosignature might be a pattern, object or substance that was created by life in the past and can be identified by certain properties, such as chemical composition, mineralogy or structure.
To better understand if a possible biosignature is really a clue left behind by ancient life, we need to look for biosignatures and study the habitability of the environment. Discovering that an environment is habitable does not automatically mean life existed there and some geologic processes can leave behind biosignature-like signs in non-habitable environments.
Collecting samples
Perseverance's third science goal is to gather samples of Martian rocks and soil. The rover will leave the samples on Mars, where future missions could collect them and bring them back to Earth for further study.
Scientists can learn a lot about Mars with a rover like Perseverance that can take in situ (Latin for "on-site") measurements. But examining samples from Mars in full-size laboratories on Earth can provide far more information about whether life ever existed on Mars than studying them on the Martian surface.
Perseverance will take the first step toward making a future sample return possible. The rover is equipped with special coring drill bits that will collect scientifically interesting samples similar in size to a piece of chalk. Each sample will be capped and sealed in individual collection tubes. The tubes will be stored aboard the rover until the mission team determines the best strategic locations on the planet's surface to leave them. The collection tubes will stay on the Martian surface until a potential future campaign collects them for return to Earth. NASA and the European Space Agency are solidifying concepts for the missions that will complete this campaign.
Preparing for future astronauts

This artist's concept depicts astronauts and human habitats on Mars. The Perseverance Mars rover will carry a number of technologies that could pave the way for astronauts to explore Mars. Credit: NASA | + Expand image
Like the robotic spacecraft that landed on the Moon to prepare for the Apollo astronauts, the Perseverance rover's fourth science goal will help pave the way for humans to eventually visit Mars.
Before humans can set foot on the Red Planet, we need to know more about conditions there and demonstrate that technologies needed for returning to Earth, and survival, will work. That’s where MOXIE comes in. Short for Mars Oxygen In-Situ Resource Utilization Experiment, MOXIE is designed to separate oxygen from carbon dioxide (CO2) in Mars' atmosphere. The atmosphere that surrounds the Red Planet is 96% CO2. But there's very little oxygen – only 0.13%, compared with the 21% in Earth’s atmosphere.
Oxygen is a crucial ingredient in rocket fuel and is essential for human survival. MOXIE could show how similar systems sent to Mars ahead of astronauts could generate rocket fuel to bring astronauts back to Earth and even create oxygen for breathing.
Join JPL mechanical engineer Mike Meacham to find out how the MOXIE instrument on NASA's Perseverance Mars rover is designed to convert carbon dioxide from Mars' atmosphere into oxygen. Credit: NASA/JPL-Caltech | Watch on YouTube
Flying the first Mars helicopter
Joining the Perseverance rover on Mars is the first helicopter designed to fly on another planet. Dubbed Ingenuity, the Mars Helicopter is a technology demonstration that will be the first test of powered flight on another planet.
The lightweight helicopter rides to Mars attached to the belly of the rover. After Perseverance is on Mars, the helicopter will be released from the rover and will attempt up to five test flights in the thin atmosphere of Mars. After a successful first attempt at lifting off, hovering a few feet above the ground for 20 to 30 seconds and landing, the operations team can attempt incrementally higher and longer-distance flights. Ingenuity is designed to fly for up to 90 seconds, reach an altitude of 15 feet and travel a distance of nearly 980 feet. Sending commands to the helicopter and receiving information about the flights relayed through the rover, the helicopter team hopes to collect valuable test data about how the vehicle performs in Mars’ thin atmosphere. The results of the Mars Helicopter's test flights will help inform the development of future vehicles that could one day explore Mars from the air. Once Ingenuity has completed its technology demonstration, Perseverance will continue its mission on the surface of the Red Planet.
Join JPL mechanical engineer Mike Meacham to learn about the first helicopter designed for Mars. Credit: NASA/JPL-Caltech | Watch on YouTube
How It Works
Before any of that can happen, the Perseverance Mars rover needs to successfully lift off from Earth and begin its journey to the Red Planet. Here's how the launch is designed to ensure that the spacecraft and Mars are at the same place on landing day.
About every 26 months, Mars and Earth are at points in their orbits around the Sun that allow us to launch spacecraft to Mars most efficiently. This span of time, called a launch period, lasts several weeks. For Perseverance, the launch period is targeted to begin at 4:50 a.m. PDT (7:50 a.m. EDT) on July 30 and end on Aug. 15. Each day, there is a launch window lasting about two hours. If all conditions are good, we have liftoff! If there's a little too much wind or other inclement weather, or perhaps engineers want to take a look at something on the rocket during the window, the countdown can be paused, and teams will try again the next day.
Regardless of when Perseverance launches during this period, the rover will land on Mars on Feb. 18, 2021, at around 12:30 PST. Engineers can maintain this fixed landing date because when the rover launches, it will go into what's called a parking orbit around Earth. Depending on when the launch happens, the rover will coast in the temporary parking orbit for 24 to 36 minutes. Then, the upper stage of the rocket will ignite for about seven minutes, giving the spacecraft the velocity it needs to reach Mars.
Like the Curiosity rover, Perseverance will launch from Launch Complex 41 at Cape Canaveral Air Force Station in Florida on an Atlas V 541 rocket – one of the most powerful rockets available for interplanetary spacecraft.
Watch a live broadcast of the launch from the Kennedy Space Center on NASA TV and the agency’s website. Visit the Perseverance rover mission website to explore a full listing of related virtual events and programming, including education workshops, news briefings and conversations with mission experts. Follow launch updates on NASA's Twitter, Facebook and Instagram accounts.
Teach It
The launch of NASA's next Mars rover and the first Mars Helicopter is a fantastic opportunity to engage students in real-world problem solving across the STEM fields. Check out some of the resources below to see how you can bring NASA missions and science to students in the classroom and at home.
Virtual Education Workshops
-
Teaching Space With NASA - Engineering the Perseverance Mars Rover
In this one-hour live workshop, NASA experts will provide an in-depth look at the engineering behind the Perseverance Mars rover. Register to join the Q&A with our experts.
-
Teaching Space With NASA - Exploring Mars Science With the Perseverance Mars Rover
In this one-hour live workshop, we’ll get an in-depth look at how Perseverance will explore the science of Mars, building on our understanding of the Red Planet and preparing for future human missions. Register to join the Q&A with our experts.
-
Teaching Space With NASA
Join NASA experts and education specialists for virtual education workshops. Ask questions, get teaching resources and share the excitement of space exploration with students.
Lessons for Educators
-
Mission to Mars Unit
In this standards-aligned unit, students learn about Mars, design a mission to explore the planet, build and test model spacecraft and components, and engage in scientific exploration.
Grades 3-8
Time Varies
-
Collection: Exploring Mars
Explore a collection of standards-aligned lessons for educators all about engineering and preparing NASA spacecraft for Mars.
Grades K-12
Time Varies
-
Collection: Preparing for Mars
Explore a collection of standards-aligned lessons for educators all about engineering and preparing NASA spacecraft for Mars.
Grades K-12
Time Varies
-
Collection: Launching to Mars
Explore a collection of standards-aligned lessons for educators all about launching NASA spacecraft to Mars.
Grades K-12
Time Varies
-
Collection: Landing on Mars
Explore a collection of standards-aligned lessons for educators all about landing NASA spacecraft on Mars.
Grades K-12
Time Varies
Activities for Students
-
Collection: Exploring Mars
Make a cardboard rover, design a Mars exploration video game and explore more STEM projects, slideshows and videos for students.
Subject Varies
Grades K-12
-
Learning Space With NASA at Home
Explore space and science activities you can do with NASA at home. Watch video tutorials for making rockets, Mars rovers, Moon landers and more. Plus, find tips for learning at home!
Subject Varies
Grades K-12
Explore More
-
Meet JPL Interns of Mars 2020
Read stories about interns helping prepare NASA's next Mars rover for its launch this summer.
Grades
Time
-
NASA #CountdownToMars STEM Toolkit
Explore links to activities, lessons, interactives, social media and more resources from NASA to participate in the Perseverance Mars rover mission.
- Website: Perseverance Mars Rover
- Website: NASA Mars Exploration
- Website: Space Place - All About Mars
- Watch Online – Virtual Events
TAGS: Mars, Mars 2020, Perseverance, Mars Rover, launch, Teach, teachers, educators, parents, lessons, activities, resources, K-12, STEM, events, students, science, engineering
Teachable Moments | March 6, 2020
We've Got the Formula for a Stellar Pi Day
Update: March 16, 2020 – The answers to the 2020 NASA Pi Day Challenge are here! View the illustrated answer key (also available as a text-only doc).
In the News
Our annual opportunity to indulge in a shared love of space exploration, mathematics and sweet treats has come around again! Pi Day is the March 14 holiday that celebrates the mathematical constant pi – the number that results from dividing any circle's circumference by its diameter.

Visit the Pi in the Sky 7 lesson page to explore classroom resources and downloads for the 2019 NASA Pi Day Challenge. Image credit: NASA/JPL-Caltech | + Expand image

A new Mars landing technique called Range Trigger is reducing the size of the ellipse where spacecraft touch down. Image credit: NASA/JPL-Caltech | › Full image and caption

Composite image of the Kuiper Belt object Arrokoth from NASA's New Horizons spacecraft. Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Roman Tkachenko | › Full image and caption

The CORAL mission records the spectra of light reflected from the ocean to study the composition and health of Earth's coral reefs. Image credit: NASA | + Expand image

The star Beta Pictoris and its surrounding debris disk in near-infrared light. Image credit: ESO/A.-M. Lagrange et al. | › Full image and caption
Besides providing an excuse to eat all varieties of pie, Pi Day gives us a chance to appreciate some of the ways NASA uses pi to explore the solar system and beyond. You can do the math for yourself – or get students doing it – by taking part in the NASA Pi Day Challenge. Find out below how to test your pi skills with real-world problems faced by NASA space explorers, plus get lessons and resources for educators.
How It Works
The ratio of any circle's circumference to its diameter is equal to pi, which is often rounded to 3.14. But pi is what is known as an irrational number, so its decimal representation never ends, and it never repeats. Though it has been calculated to trillions of digits, we use far fewer at NASA.
Pi is useful for all sorts of things, like calculating the circumference and area of circular objects and the volume of cylinders. That's helpful information for everyone from farmers irrigating crops to tire manufacturers to soup-makers filling their cans. At NASA, we use pi to calculate the densities of planets, point space telescopes at distant stars and galaxies, steer rovers on the Red Planet, put spacecraft into orbit and so much more! With so many practical applications, it's no wonder so many people love pi!
In the U.S., 3.14 is also how we refer to March 14, which is why we celebrate the mathematical marvel that is pi on that date each year. In 2009, the U.S. House of Representatives passed a resolution officially designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi.
The NASA Pi Day Challenge
This year's NASA Pi Day Challenge poses four puzzlers that require pi to compare the sizes of Mars landing areas, calculate the length of a year for one of the most distant objects in the solar system, measure the depth of the ocean from an airplane, and determine the diameter of a distant debris disk. Learn more about the science and engineering behind the problems below or click the link to jump right into the challenge.
› Take the NASA Pi Day Challenge
› Educators, get the lesson here!
Mars Maneuver
Long before a Mars rover touches down on the Red Planet, scientists and engineers must determine where to land. Rather than choosing a specific landing spot, NASA selects an area known as a landing ellipse. A Mars rover could land anywhere within this ellipse. Choosing where the landing ellipse is located requires compromising between getting as close as possible to interesting science targets and avoiding hazards like steep slopes and large boulders, which could quickly bring a mission to its end. In the Mars Maneuver problem, students use pi to see how new technologies have reduced the size of landing ellipses from one Mars rover mission to the next.
Cold Case
In January 2019, NASA's New Horizons spacecraft sped past Arrokoth, a frigid, primitive object that orbits within the Kuiper Belt, a doughnut-shaped ring of icy bodies beyond the orbit of Neptune. Arrokoth is the most distant Kuiper Belt object to be visited by a spacecraft and only the second object in the region to have been explored up close. To get New Horizons to Arrokoth, mission navigators needed to know the orbital properties of the object, such as its speed, distance from the Sun, and the tilt and shape of its orbit. This information is also important for scientists studying the object. In the Cold Case problem, students can use pi to determine how long it takes the distant object to make one trip around the Sun.
Coral Calculus
Coral reefs provide food and shelter to many ocean species and protect coastal communities against extreme weather events. Ocean warming, invasive species, pollutants, and acidification caused by climate change can harm the tiny living coral organisms responsible for building coral reefs. To better understand the health of Earth's coral reefs, NASA's COral Reef Airborne Laboratory, or CORAL, mission maps them from the air using spectroscopy, studying how light interacts with the reefs. To make accurate maps, CORAL must be able to differentiate among coral, algae and sand on the ocean floor from an airplane. And to do that, it needs to calculate the depth of the ocean at every point it maps by measuring how much sunlight passes through the ocean and is reflected upward from the ocean floor. In Coral Calculus, students use pi to measure the water depth of an area mapped by the CORAL mission and help scientists better understand the status of Earth's coral reefs.
Planet Pinpointer
Our galaxy contains billions of stars, many of which are likely home to exoplanets – planets outside our solar system. So how do scientists decide where to look for these worlds? Using data gathered by NASA's Spitzer Space Telescope, researchers found that they're more likely to find giant exoplanets around young stars surrounded by debris disks, which are made up of material similar to what's found in the asteroid belt and Kuiper Belt in our solar system. Sure enough, after discovering a debris disk around the star Beta Pictoris, researchers later confirmed that it is home to at least two giant exoplanets. Learning more about Beta Pictoris' debris disk could give scientists insight into the formation of these giant worlds. In Planet Pinpointer, put yourself in the role of a NASA scientist to learn more about Beta Pictoris' debris disk, using pi to calculate the distance across it.
Participate
-
Pi Day Challenge Lessons
Here's everything you need to bring the NASA Pi Day Challenge into the classroom.
Grades 4-12
Time Varies
-
Slideshow: NASA Pi Day Challenge
The entire NASA Pi Day Challenge collection can be found in one, handy slideshow for students.
Grades 4-12
Time Varies
-
Pi Day: What’s Going ’Round
Tell us what you’re up to this Pi Day and share your stories and photos with NASA.
Join the conversation and share your Pi Day Challenge answers with @NASAJPL_Edu on social media using the hashtag #NASAPiDayChallenge
Blogs and Features
-
How Many Decimals of Pi Do We Really Need?
While you may have memorized more than 70,000 digits of pi, world record holders, a JPL engineer explains why you really only need a tiny fraction of that for most calculations.
-
Slideshow: 18 Ways NASA Uses Pi
Whether it's sending spacecraft to other planets, driving rovers on Mars, finding out what planets are made of or how deep alien oceans are, pi takes us far at NASA. Find out how pi helps us explore space.
Related Lessons for Educators
-
Rover Lessons
Explore a collection of standards-aligned STEM lessons all about rovers.
Grades K-12
Time Varies
-
Touchdown
Students design and build a shock-absorbing system that will protect two "astronauts" when they land.
Grades 3-8
Time 30 mins - 1 hr
-
On Target
Students modify a paper cup so it can zip down a line and drop a marble onto a target.
Grades 6-12
Time 30 mins - 1 hr
-
Solar System Scale Models
Explore a collection of standards-aligned STEM lessons all about the size and scale of our solar system.
Grades 1-12
Time Varies
-
Modeling an Asteroid
Lead a discussion about asteroids and their physical properties, then have students mold their own asteroids out of clay.
Grades 3-5
Time 30 mins - 1 hr
-
Math Rocks: A Lesson in Asteroid Dynamics
Students use math to investigate a real-life asteroid impact.
Grades 8-12
Time 30 mins - 1 hr
-
Asteroid Ace: A 'Pi in the Sky' Math Challenge
Students use pi to calculate the rotation rate of an asteroid from another solar system in this illustrated math problem.
Grades 11-12
Time < 30 mins
-
Climate Change Lessons
Explore a collection of standards-aligned STEM lessons all about Earth's changing climate.
Grades K-12
Time Varies
-
Using Light to Study Planets
Students build a spectrometer using basic materials as a model for how NASA uses spectroscopy to determine the nature of elements found on Earth and other planets.
Grades 6-11
Time < 2 hrs
-
Solar Sleuth: A 'Pi in the Sky' Math Challenge
In this illustrated math problem, students use pi and data from the Kepler space telescope to find the size of a planet outside our solar system.
Grades 6-9
Time < 30 mins
-
Exploring Exoplanets with Kepler
Students use math concepts related to transits to discover real-world data about Mercury, Venus and planets outside our solar system.
Grades 6-12
Time 30 mins - 1 hr
-
Habitable Hunt: A 'Pi in the Sky' Math Challenge
In this illustrated math problem, students use the mathematical constant pi to find the "habitable zone" around a distant star and determine which of its planets are in that zone.
Grades 11-12
Time < 30 mins
Related Activities for Students
-
Make a Moon or Mars Rover Game
Create a Moon or Mars exploration game using Scratch, a visual programming language. Think like NASA space-mission planners to design your game!
Type Project
Subject Technology
-
Make a Cardboard Rover
Build a rubber-band-powered rover that can scramble across a room.
Type Project
Subject Engineering
-
Mars in a Minute: How Do You Choose a Landing Site?
So, you want to study Mars with a lander or rover – but where exactly do you send it? Learn how scientists and engineers tackle the question of where to land on Mars in this 60-second video.
Type Video
Subject Engineering
-
Mars in a Minute: How Do You Land on Mars?
Getting a spacecraft to Mars is one thing. Getting it safely to the ground is a whole other challenge! This 60-second video from NASA's Jet Propulsion Laboratory explains three ways to land on the surface of the Red Planet.
Type Video
Subject Engineering
-
What's That Space Rock?
Find out how to tell the difference between asteroids, comets, meteors, meteorites and other bodies in our solar system.
Type Slideshow
Subject Science
-
Mars in a Minute: How Long is a Year on Mars?
How long is does it take Mars to make one trip around the Sun and why is one Earth year shorter? Find out in one minute!
Type Video
Subject Science
-
Space Place in a Snap: The Solar System's Formation
Find out how our solar system formed and how it came to be the busy place it is today.
Type Video
Subject Science
-
What Is the Kuiper Belt?
Learn about the Kuiper Belt and some of its famous members, Kuiper Belt Objects.
Type Article
Subject Science
-
Coral Bleaching Simulator
Adjust water temperature and pollution levels in this simulator to see what happens to a coral reef depending on the conditions you choose!
Type Interactive
Subject Science
-
Ocean Worlds
Where might oceans – and living things – exist beyond Earth? Scientists have their eyes on these places in our own solar system.
Type Slideshow
Subject Science
-
NASA's Earth Minute: Mission to Earth?
NASA doesn't just explore outer space! It studies Earth, too, with a fleet of spacecraft and scientists far and wide.
Type Video
Subject Science
-
NASA's Earth Minute: Earth Has a Fever
Why is Earth getting hotter and what does that mean for us?
Type Video
Subject Science
NOAA Video Series: Coral Comeback
- Article: Giant Exoplanet Hunters: Look for Debris Disks
- Video: The Evolution of a Planet-Forming Disk
- Video: Birth of "Phoenix" Planets?
Multimedia
-
Infographic: Planet Pi
This poster shows some of the ways NASA scientists and engineers use the mathematical constant pi (3.14) and includes common pi formulas.
- Posters: Exoplanet Travel Bureau
Facts and Figures
Missions and Instruments
Websites
TAGS: K-12 Education, Math, Pi Day, Pi, NASA Pi Day Challenge, Events, Space, Educators, Teachers, Parents, Students, STEM, Lessons, Problem Set, Mars 2020, Perseverance, Curiosity, Mars rovers, Mars landing, MU69, Arrokoth, New Horizons, Earth science, Climate change, CORAL, NASA Expeditions, coral reefs, oceans, Spitzer, exoplanets, Beta Pictoris, stars, universe, space telescope, Climate TM