Collage of photos featured in this story.

We went behind the scenes with three interns on NASA’s Earth System Observatory team to learn how they're devoting their future careers to putting our planet first.


Leave it to the interns at NASA's Jet Propulsion Laboratory to school the full-timers. Case in point: JPL intern Joalda Morancy knows exactly how to explain—in bite-sized, plain English—NASA’s latest multi-missioned initiative to study our home planet.

“The Earth System Observatory aims to tackle one of the biggest issues we’re facing today—climate change,” they say of NASA's ESO. “We need to have multiple missions that look at the Earth system as a whole in order to tackle the issue of climate change in the next couple of decades.”

The observatory will be made up of an array of satellites, instruments, and missions to form a well-rounded collection of observations meant to offer crucial and precise measurements of our environment. As NASA puts it: “Taken together, as a single observatory, we will have a holistic, 3-dimensional understanding of our Earth’s systems—how they work together, how one change can influence another.”

While the ESO is in its early stages, it’s a crucial time for interns to be involved, as their generation will most likely face the most pressing challenges resulting from climate change. We spoke to three JPL interns getting first-hand experience with the observatory's missions and projects to learn why, to them, Earth is the most important planet to study right now.

Joalda Morancy

Joalda Morancy smiles in a close-up photo.

Image courtesy: Joalda Morancy | + Expand image

Morancy first became fascinated by space exploration in high school thanks to a YouTube video on how to make a peanut butter and honey sandwich in space.

“I love telling that story,” Morancy says with a laugh. “It was so random, and I was so intrigued. I watched the entire video and thought, ‘This is amazing.’ I did a lot more research about what NASA does and that was my gateway to space.”

Flash forward a few years to college at the University of Chicago, where Morancy discovered there was one planet in particular that really captured their attention: Earth.

“I was initially interested in space exploration, and while [majoring in] astrophysics, I took a class on what makes a planet habitable,” they recall. “It taught me everything about basic Earth sciences and how that ties into Earth and the big picture of how a habitable environment operates.”

Morancy found it so interesting and—combined with their growing alarm about climate change—wanted a hand in studying how to preserve our planet. So Morancy took more classes in geophysics and geophysical sciences, including courses on atmosphere, glaciology, and physical geology.

“I wanted to give myself the foundational knowledge,” Morancy says. “And right after that, I started at JPL.”

They had originally searched JPL’s careers site for internships with the Perseverance Mars rover mission but noticed an opening with the Earth Science team.

“I didn’t know JPL did Earth science; I thought it was mostly Mars and robotic exploration,” they say. “When I saw that opening, I knew it was the perfect opportunity for me to learn more about Earth.”

For the past year-and-a-half, Morancy has worked on ECOSTRESS, an ESO-related experiment aboard the International Space Station designed to measure water stress among plants. Now, they are interning with the ESO successor to ECOSTRESS, the Surface Biology and Geology, or SBG, mission.

A heatmap showing land surface temperatures in California as measured by the ECOSTRESS mission.

A graphic developed by Morancy during their internship with the ECOSTRESS mission shows the land surface temperatures at different locations throughout California. Image credit: NASA/JPL-Caltech | › Full image and caption

“I help with a lot of project management since SBG is in its early stages,” they say. “A lot of things are starting to cook up, and a lot of engineers and scientists are being onboarded to the team. I’m working with the team to help onboard, and I’m also helping with the science instruments for SBG.”

The magnitude of being part of SBG and the observatory team in their early stages is not lost on Morancy.

“I really believe it will have a long-lasting impact on how we look at climate change and how we target those specific issues to fix,” they say. “It'll be a major driver for future researchers and scientists.”

While Morancy hopes to combine Earth sciences and space exploration for their future career, they’re invested in studying our blue planet for the long run.

“I think Earth science is incredibly important because this is our only home,” they say. “Even though people are looking to settle on Mars and other celestial bodies ... I think it’s important to take care of this rock we’ve been given to live on. It’s crucial to make sure we take care of it for future generations.”

Rebecca Gustine

Rebecca Gustine smiles for a photo atop an elephant.

Image courtesy: Rebecca Gustine | + Expand image

When Rebecca Gustine studied abroad in Thailand during her junior year of college, she didn’t realize it would alter the course of her studies and her future career path.

“I had a lightbulb moment realizing how human development and access to water go hand in hand,” she says.

Gustine went on to Washington State University, where she is now a Ph.D. student studying civil engineering with a focus on water resources engineering.

“A lot of my undergraduate research had to do with water,” she explains. “It was from a global health perspective and had to do with access to clean water, hygiene, and gender dynamics in developing countries. I also really like math and physics, so combining global health with water resources engineering was very interesting.”

Gustine was so fascinated by water research, she knew she wanted to find an internship that would let her focus on just that. When she saw an open call for internships at JPL, she submitted her resume and was contacted by Gregory Halverson and Christine Lee, JPL scientists focused on using remote sensing measurements to study water quality, water resources, and ecosystems management.

Gustine started at JPL as an intern in August 2020, supporting the Earth science team by looking at how ECOSTRESS data could be used to preserve habitats in the California Bay Delta system, where the Sacramento and the San Joaquin Rivers meet. For the past year, she has focused on processing remote-sensing data and engaging with stakeholders. She was even first-author on a peer-reviewed paper.

“My work is basically using pictures [taken] from the sky that tell us information about the Earth and then making decisions about how to manage water resources and protect critical habitats,” she says.

Gustine is also well aware that her research comes at a pivotal time in the global conversation around Earth’s future.

“Given that climate change is having a profound impact on human and natural systems, we have to understand those changes and protect critical habitats and resources for the well-being of humans everywhere,” she says. “Changes in one component of a system can have cascading consequences for other parts of the system.”

While she works alongside others exploring the mysteries of worlds beyond Earth, Gustine is particularly proud to be part of pioneering research that could alter the future of our planet.

“Observing Earth is still space exploration, just from a different vantage point,” she says. “Given that NASA is the major proprietor of space, to look back at Earth using the same technology we use to go farther into space is important.”

Jonathan Vellanoweth

Jonathan Vellanoweth stands in a grassy field holding a phone in one hand and with a grasshopper balancing on his other hand.

Image courtesy: Jonathan Vellanoweth | + Expand image

What will be the future, long-term impacts of power plants on our environment? Jonathan Vellanoweth is spending his time as a JPL intern working with a team to try to help answer that very question.

Vellanoweth is a student at Cal State University, Los Angeles, where he’s earning his master’s degree in environmental science with an emphasis in geospatial science. In his internship with the Surface Biology and Geology team at JPL, he's using data and satellite imagery from ECOSTRESS and the Landsat mission to detect thermal plumes emitted by power plants.

Vellanoweth’s work currently focuses on the Diablo Canyon Power Plant in San Luis Obispo, California.

“We’re looking at power plants that intake coastal waters to cool their reactors, then discharge it at a higher temperature back into the same water body,” he explains. “I’m using satellite imagery to detect that thermal change and outline the area of what is classified as a plume, or anywhere thermal discharge is heating up the ocean or the coast. We can see where this plume is moving over the year or several seasons, and other studies can use this data to see what the actual effects are on coastal communities.”

Vellanoweth has been fascinated by Earth science since as early as 7th grade, when he took his first environmental science class where he learned all about the scientific method and later went out into nature to collect soil samples and study them.

As a JPL intern, Vellanoweth has been particularly grateful for the variety of knowledge his colleagues provide him.

“The amount of support that you have from all these great scientists that work here is really what attracted me,” he says. “You can intern for a lot of places, but at JPL, you have all these colleagues you can meet with who have a lot of feedback they can give you. There are people on your team studying similar and dissimilar things as you, so they can provide you with something you might not have thought about and help expand your research.”

Most importantly, Vellanoweth is looking forward to the information everyone will have access to in the future thanks to the efforts of all the missions and projects within the Earth Science Observatory.

“I’m excited about getting things out there and making them accessible to the public. I’m really big on that because there are a lot of people who want to do this kind of research, but a lot of times, it can be hard to find the data or algorithm you need, and it’s a lot of trial and error,” he says. “SBG and ESO bring all of these things together and make it available for everyone.”


The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Interns, Colleges, Universities, Students, Higher Education, Internships, Student Programs, Year-Round Internship Program, Summer Internship Program, Earth Science, Earth, Climate Change, Earth System Observatory

  • Celeste Hoang
READ MORE

Interns and their mentors celebrated a successful summer at a mentor-appreciation event held at JPL.

When the new crop of summer interns started showing up at NASA’s Jet Propulsion Laboratory in Pasadena, California, this past June, they joined the more than 2,000-plus students placed across NASA’s 10 field centers, instantly becoming part of the NASA family.

“They may not be together geographically, but these interns are getting this unique experience all over the country,” said Katherine Brown, public affairs officer for education at NASA Headquarters.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

But between the challenging workloads, exciting education opportunities and inspiring culture at JPL, interns who come to the laboratory often see only one piece of the NASA puzzle. Intern and University of Colorado Boulder astrophysics student Maya Yanez has spent the past two summers at JPL – one working on describing potential radical chemistry on Kuiper Belt objects, and one helping to identify potential landing sites on Jupiter’s moon Europa.

“You get the chance to be a little sprocket in this massive machine of making things happen at JPL, but then you can kind of lose sight of the fact that JPL is one component of NASA, and there are hundreds of interns at other centers doing comparable things,” Yanez said.

This year, NASA Headquarters’ internship and communications coordinator Christine Linsinbigler saw opportunities to bring the centers together. She organized an agency-wide live feed of NASA Administrator Jim Bridenstine’s intern town hall at Goddard Space Flight Center on July 26, and an ISS downlink Q&A – where interns got to pre-record questions for astronauts to answer live from the space station – on July 30.

“With National Intern Day on July 26, we were able to roll the events into one big intern week,” Linsinbigler said.

Answers from the Administrator

This was the first year a NASA administrator conducted a NASA-wide town hall, where interns from all of the centers could submit questions in short videos. Yanez was selected to live-tweet Bridenstine’s responses from the JPL Education Office’s @NASAJPL_Edu handle so students, JPLers and members of the public could see some of the responses.

“The administrators’ town hall was really important because, for the first time, I had an opportunity as an undergrad to ask about our future and the future of space funding,” said Yanez, who also hopes to one day run for office. “This is a person who has power over our future. I think it’s important to keep that communication between science and politics.”

JPL intern Maya Yanez live tweets from the JPL Watch Party for NASA's Internships Town Hall with Administrator Jim Bridenstine

Yanez hosted a takeover of the @NASAJPL_Edu Twitter account during the NASA Internships Town Hall with Administrator Jim Bridenstine. Credit: NASA/JPL-Caltech/Kim Orr | + Expand image

Yanez was also appreciative of the administrator’s openness to discuss inclusion and diversity in the field, and how NASA plans to maintain its current programs.

“I’m half Mexican, a female in STEM, a first-generation college student, and low income, so I check off a lot of those representative boxes,” Yanez said. “It was nice that he spent as much time on that question as he did. He talked about how it mattered to him and how it should matter to all of us.”

At NASA Headquarters, inclusion and diversity within NASA starts with the intern program, which saw its largest and most diverse applicant pool of interns this summer. Brown said it followed a concerted effort of making the public aware that an internship at JPL, Langley or Johnson is more than just for STEM students – there are opportunities in communications, human resources, education and other fields that are all relevant to how the agency runs.

“We’ve showcased interns on our social media, we held a Reddit ‘Ask Me Anything’ Q&A with Johnson Space Center Flight Director Allison Bollinger, and we’re hoping that including more events like the administrator town hall and ISS downlink will continue to attract a diverse group to NASA,” Brown said.

Questions to Space

When JPL intern Zachary Luppen heard about the ISS downlink – and that he would have a chance to ask an astronaut a question – he already had pages of questions lined up.

An intern takes a photo at the ISS Downlink watch party at JPL

A watch party was held at JPL for an ISS downlink with NASA astronaut Ricky Arnold. Image credit: NASA/JPL-Caltech/Lyle Tavernier | + Expand image

Zachary Luppen stands in an anechoic chamber at JPL

Zachary Luppen stands in an anechoic chamber at JPL. Image credit: NASA/JPL-Caltech/Kim Orr | + Expand image

Christopher Jia-Kuan Yen poses with his mentor, Abigail Fraeman, during a mentor appreciation event held at JPL

Christopher Jia-Kuan Yen poses with his mentor, Abigail Fraeman, during a mentor appreciation event held at JPL. Image credit: NASA/JPL-Caltech/Lyle Tavernier | + Expand image

“I had always wanted to ask an astronaut something, but I didn’t know how to go about doing it,” said Luppen, who is entering his senior year as an astronomy physics major at the University of Iowa. “I really want to go into space, and here I suddenly have this opportunity to throw a question at an astronaut and get it answered.”

The pre-recorded video questions from interns across NASA centers were played during the ISS downlink on July 30, and JPL interns gathered to hear astronaut Ricky Arnold’s responses. Luppen asked Arnold if there were any specific pointers he could give NASA interns who want to be astronauts themselves, and go to the ISS, the Moon or even Mars.

“The temptation is to specialize early, and it’s great to find your passion and pursue it, but don’t lose sight of the bigger picture,” Arnold said. “NASA is looking for people with very diverse backgrounds, who have done a lot of different things in different environments with different people.”

Luppen said the ISS downlink was special, as it was one of many “bucket list” items he was able to check off during his summer at JPL, but the work he conducted at the laboratory was more important to his future. Over his 10 weeks at JPL, Luppen worked on test procedures for the dual-frequency radar instrument (REASON) slated to ride aboard NASA’s Europa Clipper spacecraft. That allowed him to connect with a group of employees who are really doing what he wants to do.

“At Iowa, we’re building parts of the Europa [Clipper mission] there too, but we’re not working on spacecraft to the degree that JPL is,” Luppen said. “I’m here with like-minded people, fantastic scientists and engineers who are working on these projects, and it’s just great to finally be at a center where it’s so productive. It’s almost like chaos, but it’s so cool. I mean, how many missions did we have launch this summer? So, it’s just like, we’re so busy, and I’m getting to be a part of it this summer.”

Intern Christopher Jia-Kuan Yen, a senior geology-chemistry student at Brown University, spent his summer working with Deputy Project Scientist Abigail Fraeman on remote sensing and imaging instruments aboard the Mars Reconnaissance Orbiter. As for the question he asked of astronaut Ricky Arnold, it was – of course – imagery based.

“I wanted to know, based on what he’s seen from the windows of the ISS, where he would most like to visit on Earth,” Yen said.

Arnold responded that the list seems to get longer every day he’s on the station, but the mountains of Peru, Chile and Argentina have caught his eye. “I guess I’ll have to head down there and check it out someday,” Yen said with a smile. In retrospect, Yen viewed the ISS Downlink as one more example of how special interning at JPL can be.

“There are just so many things going on here,” he said. “Between the work you’re doing, the lectures – I mean, we had the Mars helicopter team present to us – and the events like the ISS Downlink, I don’t think you’re getting opportunities like those at your university internship.”

This summer, 400 JPL employees participated as mentors, providing guidance to the 700 interns working in various fields across the laboratory.

To learn more about this year’s interns, visit:


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Interns, Internships, Student Programs, STEM, STEM Education, College Students

  • Taylor Hill
READ MORE

JPL intern Joshua Gaston holds a 3-D printed model of a CubeSat

Seeing what it takes to build a mission from the ground up, JPL intern Joshua Gaston is turning a far-out idea into reality as part of the lab’s project formulation team. The aerospace engineering student from Tuskegee University explains how he hopes to play a role in sending tiny satellites, called CubeSats, beyond Earth’s gravity and what it’s like to spitball ideas with rocket scientists.

What are you working on at JPL?

I'm working on a proposal to send a bunch of CubeSats, [small satellites], to places beyond Earth’s gravity in our solar system. I'm the configurations and power guy. The team will tell me how they want the CubeSat configured. I research it, figure out if it's going to work and, if it does, I’ll set it up in CAD, [computer-aided design], software. So I'm pretty much the CAD guy, if you want to be basic.

You’re part of the project formulation team that’s coming up with these new mission ideas. What is that like?

This is sort of like step one. We have this idea and we need to figure out how to make it happen, so I'm just seeing how everything works from the very bottom.

I guess I never really thought about how they come up with these mission ideas and figure out if they’re going to work or not. They have teams of people who come together in one room and say, hey this won't work, this is why. Let's do it this way. And another person’s like, that won't work, but if it was adjusted a little bit ... It's just so cool to sit in through that and see all these smart people come together.

What is the most JPL or NASA unique experience you've had so far?

At my last internship, I kind of felt like I was the low leaf, like the roots on a tree. I wasn't running and getting coffee or anything, but everybody had doctorates and I felt like I couldn't ask them anything. But here, you can just run up to someone, ask them something and they're just so open about it, just open to talk.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

What's your ultimate career goal?

The ultimate, cross fingers, knock on wood is I want to become an astronaut. I feel like that's every kid's dream. But if I could make it, that would be great. After that is working at NASA. So either-or [laughs].

How do you think you're contributing to NASA/JPL missions and science?

Well, at first I felt like I wasn’t contributing to anything until someone was like, Oh Josh, you’re doing such a great job.” It was then that I realized the configuration is an essential part to the proposal stage. It seems like a small role, but at the same time, it’s a tremendous task. Without it, it would be hard to have a compelling case for the people who review the mission.

And in the bigger picture, since it's the beginning of the CubeSat wave, if this proposal goes all the way through, then I will feel amazing that I participated in the start of this journey, that my work contributed toward a new wave of satellites.

If you could travel anywhere in space, where would you go and what would you do there?

If I could go anywhere that I would likely survive, I would probably go to the Andromeda Galaxy. But if I could go anywhere and only possibly survive, I would go inside a black hole, just to see it. I know that going in the gravitational forces would be too intense and possibly kill me on the spot. So, I’ll just say that if there was a possibility that I could survive and make it out, then I’d want to go inside a black hole.

This Q&A is part of an ongoing series highlighting the stories and experiences of students and faculty who came to JPL as part of the laboratory's collaboration with historically black colleges and universities, or HBCUs. › Read more from the series

Explore More

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Interns, Internships, College, Higher Education, Student Programs, STEM, Engineering, Opportunities, Black History Month, HBCU

  • Kim Orr
READ MORE

Sawyer Elliott holds a model of a rover like the one he's developing at JPL

Roll aside, wheeled rovers! Sawyer Elliott is developing a cube-shaped rolling robot to go where no rover has gone before. Find out how the NASA Space Technology Research Fellow from Cornell University is fashioning a rover for extreme environments, what inspired him to go into aerospace engineering, and where he most wants to travel in space.

What are you working on at JPL?

I work on extreme terrain mobility, so being able to maneuver through terrains that traditional rovers have a tough time traversing.

What does that entail?

I work on a rover that, instead of driving around with wheels like traditional rovers, hops or rolls by itself and is actually a cube or tetrahedron. So we look at how well it can do this rolling motion, how power-efficient it is, and its capabilities in different environments.

What kinds of environments are we talking about?

Microgravity environments [where gravity is very weak, such as on asteroids and comets] are a big one because it's difficult for wheeled rovers to maneuver through those types of environments. Also places that are extremely rocky, where it's difficult for wheeled rovers to get into.

What’s an average day like for you?

I do a lot of analyses on the rover, looking at the dynamics and the controls. I look at how it interacts with the environment and make sure my controllers work as expected and that the math I've done is reasonable. It’s a lot of sitting in front of simulations. But in the end, it's nice because I get to see the robustness of the controllers and if they actually work in a realistic environment.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

How do you feel you're contributing overall to NASA/JPL missions and science?

The hope is that my work is advancing the capabilities of not only this type of rover architecture – so how we do our cube-type rolling – but also controls and planning for rovers in general, making them more autonomous, making the planning better and our modeling of the systems better.

What got you interested in engineering in the first place?

I think it was mostly my father. We traveled a lot to NASA’s Kennedy Space Center and I got to see the Saturn V there. Anyone who has seen the Saturn V loves rockets because it's amazing. After that, I was basically sold. I got my undergraduate degree in aerospace engineering and now I am getting my graduate degree in aerospace engineering. I'm only getting more and more interested as I go, so I guess that's a good sign.

What's your ultimate career goal?

My ultimate goal would be to be a senior researcher or a senior fellow at some place like JPL or another NASA center or research center.

OK, now for the fun question: If you could travel to any place in space, where would you go and what would you do there?

I think going to a microgravity environment would be most fun. It's cool to explore places that have crazy environments, but just going to any microgravity environment, where you could go ballistic just by jumping or leaping, that sounds so fun to me, to complete half an orbit around an asteroid.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Interns, Internships, College, Higher Education, Student Programs, Opportunities, Engineering, Robotics, Rovers

  • Kim Orr
READ MORE

JPL Christopher Esquer-Rosas holds an origami version of the Starshade engineering model behind him.

Origami is going to space and Chris Esquer-Rosas is helping it get there. A computer engineering student at San Bernardino Valley College in Southern California, Esquer-Rosas used to do origami only as a hobby, but now he’s using it to build a giant sunflower-shaped structure that his team hopes will provide a new window into worlds beyond our solar system. Esquer-Rosas explains how he’s putting his origami skills to use and what got him folding in the first place.

What are you working on at JPL?

I’m working on Starshade, specifically the Petal Launch and Unfurler System.

What is starshade and what is it supposed to do?

Starshade is a proposal to fly a giant, sunflower-shaped shade in front of a space telescope, so we can directly image exoplanets, which are planets outside of our solar system. One of the big issues that we have is that we know exoplanets are there, but we can’t get the data we want about them because the stars that the planets are surrounding are too bright and they're basically blocking our view. So what Starshade is going to do is suppress or diffract sunlight while a telescope with all the science instruments directly images those exoplanets. It will probably be a little image, like one-by-one pixel, but with that one image, we can actually get a ton of data about these exoplanets – so carbon dioxide emissions, possibly water vapor, methane, gases and things like that.

Watch on YouTube

There's a lot of origami involved in building Starshade. How does it come into play?

When it unfurls in space, Starshade is supposed to be 36 meters (about 118 feet) in diameter, which is about the size of a baseball diamond, and it's supposed to be only 2.5 meters (about 8 feet) in diameter when it’s stowed for launch. We’re using origami concepts to make that possible. Origami involves a lot of math. A lot of people don't realize that. But what actually goes into it is lots of geometric shapes and angles that you have to account for. One of the first things that I started doing on Starshade was helping with the stow pattern. So starting out with one sheet, how do you fold it so you can stow it at a much smaller size? Do you want it to be taller or shorter? How many folds do you want? And then, how small do you want it to be? We developed a bunch of algorithms, so now all you have to do is input the specs, push enter, and a new pattern is created instead of having to refold things over and over and over again.

What are some of the challenges in getting that whole operation to work?

There are lots of challenges. The first challenge is making sure none of the petals gets nicked. [Starshade is shaped like a sunflower.] The petal edges are razor sharp and they are what allow the light to be diffracted so we can image the exoplanet. The curvature of the petals has to be within half-a-human-hair-width accuracy, so we have to make sure nothing happens to them. If any of them gets nicked, then now we have this giant bright spot in our images. We also have to make sure all the petals end up in the correct position once Starshade unfurls. And we have to make sure no light comes through any part of the Starshade itself.

Which of those challenges are you working on solving?

What I’m working on is making sure none of the petals touches each other. That's one of the big challenges. We have to find a way to slowly unwrap the petals so nothing interferes or touches any of the petal edges or the petal itself.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

Tell me about your background in origami and how it brought you to JPL.

I've been doing origami since the fourth grade, when my teacher read us “Sadako and the Thousand Paper Cranes.” At the end of the book, it teaches you how to fold your own paper crane. After I folded it, I just had this instinct to want to unfold it to see what it looked like. It has this unique pattern. So I started measuring it, and I figured out that different angles give you different lengths for the wings and the legs. So I was like, ok, what if you rotate the entire crease pattern 45 degrees? Now you get these more beautiful wings and you get a different shape. Then, I started folding other people's designs and learning how to design my own origami. I loved origami so much that I started learning the math behind it. A friend of mine, Robert Salazar, had started at JPL, and he was also an origami guy. We've been friends since seventh grade. He started on Starshade and then, eventually, he was leaving and he told them about me. They interviewed me a few times and then they were like, OK, come in and help us out.

Before that, did you have any idea there was an application for origami in space exploration?

I knew there were applications for other things like airbags and deployable mirrors, but I didn't know that there were space applications. That's what blew my mind. I was like, origami is going to space now? This is amazing.

Are you studying something origami-related in school?

I'm actually studying computer engineering, so it's completely different.

Has interning with Starshade made you want to change your career path?

It's like this close, because I've wanted to be a computer engineer since fourth grade as well. But since working here, a lot of the mechanical stuff has been a big learning experience. I didn't know mechanical engineering existed, but now that I do, it's amazing.

How do you feel you're contributing to NASA/JPL missions and science?

I feel like I'm contributing because, right now, interns are on the front lines of testing out the hardware and making sure everything works. We're dealing with issues, trying to fix them, and coming up with ideas. I feel like we're actually contributing a lot to how this thing could eventually deploy in space.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Interns, Internships, College, Higher Education, Student Programs, Starshade, Origami, Exoplanets, Technology, Hispanic Heritage Month, Universe

  • Kim Orr
READ MORE