8th grader Josh Dove with his science fair project inspired by JPL Education's "Dropping in With Gravitational Waves" activity.

A “teachable moment” turned into a science fair win for an eighth-grader in Ontario, Canada, who based his project on a classroom activity from NASA’s Jet Propulsion Laboratory.

Joshua Dove, 13, says he originally planned to explore the effects of storage temperature on golf balls until his grandfather, a space enthusiast and environmental consultant, saw a Caltech news story he had to share.

The story was about how an instrument called LIGO had detected gravitational waves for the first time, confirming a key piece of Einstein’s 1915 general theory of relativity. A web search led Dove to the JPL Education website and its “Dropping In With Gravitational Waves” activity, where he learned how to model the gravitational wave discovery using gelatin, a laser and marbles.

“Scientific models allow scientists, and students, to understand and explain phenomena that might be difficult or impossible to see,” said JPL Education Specialist Lyle Tavernier, who created the lesson for the website’s Teachable Moments blog. The blog, from the JPL Education Office, helps educators turn NASA- and JPL-related mission and science news into activities for the classroom. “While the LIGO detectors are located thousands of miles apart, this activity helps students understand gravitational waves using a model that fits on their desk!”

Josh Dove's science fair project on gravitational waves

Dove made modifications to the JPL Education activity for his science fair project, including using Legos to create a device that could drop a marble from different heights. He says figuring out how he needed to alter the design was his favorite part of the project.

With the help of his mom and grandfather plus a few tips from Tavernier, Dove was able to modify the lesson for his science fair project, which looked at whether the model would show consistent and predictable variations in the movement of the laser (gravitational waveform) depending on the energy released during a marble (black hole) collision.

“There was a trend that suggested the greater the weight of the impacting object, the larger the amplitude of the waveform,” said Dove, noting in his abstract that there were some inconsistencies in the results that would require more testing. He plans to do that this summer.

After presenting at his school’s science fair, Dove was asked by his teacher to enter the regional competition, where he won an award from the Royal Astronomical Society of Canada.

Dove’s mom says the win was a big confidence booster for her son, who hopes to eventually work at NASA or become an inventor. “I would like to invent things that would help people affected by a natural disaster,” he said.

As far as advice for other science fair participants, Dove says, “Don't be upset if you don't get the results you are expecting, and don't be afraid to make modifications to your experiment.” In fact, he says it was working through the modifications that turned out to be his favorite part of the project.

How to Do a Science Fair Project – NASA-JPL Education

Need help with your science fair project?

Watch our how-to video series to get started!

Check it out

His other advice: “Have a good mentor.” Or in Dove’s case, three. In addition to support from his grandfather and mom, it was Dove’s older sister, a science fair winner herself, who encouraged him to enter the regional competition. And thanks to the encouragement, Dove has no plans to stop now. “I would like to learn more about detecting other intergalactic phenomenon,” he said.

For tips on creating a winning science fair project, watch JPL Education’s “How to Do a Science Fair Project” video series.

Explore the gravitational waves activity and more standards-aligned STEM lessons for grades K-12 at: http://www.jpl.nasa.gov/edu/teach

› Get tips for turning NASA mission and science news into lessons for the classroom.

The laboratory’s K-12 education initiatives are managed by the JPL Education Office. Extending the reach of NASA’s Office of Education, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Science Fair, Gravitational Waves, STEM, Science, K-12, Models

  • Kim Orr

Science Fair Showcase at JPL

More than 50 students from schools across Los Angeles County took their science experiments and engineering designs on the road on Tuesday for the opportunity to display their work during a science fair showcase at NASA's Jet Propulsion Laboratory in Pasadena, California.

Students as young as 11 filed into JPL's von Karman auditorium, eager to speak with professional scientists and engineers about their projects, which examined questions like: Could a solar oven be an effective cooking tool? How well does the human eye adjust to light? Is hagfish slime an efficient material for cleaning up oil spills? And how do different building bracing systems stand up in an earthquake?

JPL's chief scientist, Dan McCleese, who oversees the laboratory's research programs, met with students about their projects to offer feedback and encouragement.

"What you're working on today may end up being what you do for the rest of your life, and it's the greatest thing in the world," McCleese said during an opening address to the students. "When I was a freshman in high school, I started studying Mars, and I will admit I do that today."

David Seidel, manager of K-12 programs for JPL's Education Office, which organized the showcase, said it's statements like McCleese's that illustrate the value of science fairs for students.

"When students do a science project and they're properly mentored and they're doing real science, they're experiencing it. They're actually doing the science and engineering themselves and not just talking about it or following some sort of recipe," Seidel said. "So if you're looking for the next generation of scientists, let's get them in the habit of actually trying to do some science while they're still young."

While eighth-grader Sarah Garelick, 13, hasn't yet decided on her future career, her science fair project did give her the chance to investigate a personal interest.

"I was inspired by my dad," said Garelick, whose project looked at how the rate of glucose released into a pancreas would affect insulin levels. "He had his pancreas removed when I was little."

It was a similar motivation that drove sixth-grader Jeanie Benedict, 11, to create an elaborate evaporative cooling system for chinchillas -- a system she named "Chinchiller."

"Last summer during a Los Angeles heatwave, my pet chinchilla died of a heatstroke, so I wanted to create something that could have prevented it," said Benedict, whose project proved such a curiosity for passers-by that she barely had time to grab a slice of the free cake on offer to attendees.

"What stood out to me was the diversity of student projects that represented the diversity of student interests," said education specialist Ota Lutz, who created and starred in an online video series that walks students through the ins and outs of creating their own science fair projects. "Students do a lot of work to develop these science fair projects, so this event was a great opportunity for them to showcase their hard work and interact with professional scientists and engineers."

Enthusiasm for the event was so high that when participants, who had already presented their projects at the Los Angeles County Science Fair, were invited to register for the showcase, the available slots filled up within 24 hours.

"It was a big success," said Seidel. "I think it was eye-opening for a lot of the students and the chaperones to learn about the range of activities we have here at JPL and interact with people who are doing these things professionally."

For more events, activities and resources for students, provided by the JPL Education Office, visit http://www.jpl.nasa.gov/education/students/

The JPL Education Office provides formal and informal educators, parents and students with NASA science, technology, engineering and mathematics (STEM) content, including resources, classroom activities and internship opportunities.

TAGS: Science Fair, Science, Engineering, High School, Middle School

  • Kim Orr

JPL intern Alice Zhai stands with her mentor, Jonathan Jiang.

If you're reading this, there's a good chance that you or someone you know has been in a science fair. Chances are that your project did not lead directly to a collaboration with a scientist at NASA's Jet Propulsion Laboratory, Pasadena, California, and a paper in the professional journal Environmental Research Letters. Alice Zhai's project did.

The 16-year-old Zhai, who will be a senior this fall at La Cañada High School near JPL in southern California, and JPL research scientist Jonathan Jiang built on Zhai's science fair project, a statistical model of economic losses from hurricanes. They found that the common practice of using only wind speed to represent hurricanes in economic hurricane damage models is inadequate for large storms, such as 2012's Hurricane Sandy. Zhai and Jiang are the first to quantify the economic impacts of increasing hurricane size.

Hurricanes by the numbers

Analyzing 73 hurricanes from 1988 to the present, Zhai and Jiang found that a doubling in size, without a change in wind speed, more than quadruples the economic loss a hurricane causes. Tripling its size multiplies the loss by almost 20 times.

These numbers may be startling, but the idea that storm size matters is not. Experience has proven that not only size but the height of the storm surge, total rainfall and other characteristics affect a storm's impacts. So why do models include only wind speed? In the United States, we still classify hurricanes solely by their speed, using the Saffir-Simpson scale. The scale was devised before satellite observations made it possible to view a storm's size.

By comparison, there is no standardized scale of hurricane size. Different databases use different benchmarks -- for example, the distance from the storm's center to the location where the wind speed is either 34 or 64 nautical miles per hour, or knots. As part of their study, Zhai and Jiang recalibrated all storms to the 34-knot reference point.

From the science fair to the real world

Hurricane Sandy was the trigger for Zhai's 2013 project in the Los Angeles County Science Fair. "After seeing the devastation on TV and in the news, I was really curious," Zhai said. "I heard that it was an extremely destructive hurricane, and I noticed that it had a relatively low wind speed but an abnormally large size." Her project won third place in the Earth science division and an "outstanding achievement" award from the American Meteorological Society Los Angeles chapter.

Jiang met Zhai because he was judging other projects at the fair and stopped to see her poster. Her exceptional engagement and inquiring mind impressed him. As a long-time science fair judge, "I've met many high school students," he said. "Some people only have a high GPA because their parents put pressure on them, but Alice is genuinely interested. I put a lot of weight on people having curiosity."

Under Jiang's direction, Zhai kept working on her model to create publishable results, more than doubling the number of storms in the study and doing a more rigorous statistical analysis. The first time the authors submitted the paper, it was turned down. Some teenagers would have been crushed, but not Zhai. "Being rejected wasn't too terrible, because the reviewers' comments were encouraging," she said. "It motivated me to keep going with the project." They modified the paper and resubmitted it to the journal successfully.

Jiang encouraged Zhai to apply for an internship at the California Institute of Technology (Caltech) in Pasadena and then convinced her adviser there, Yuk Yung, to allow Zhai to expand her hurricane work at JPL this summer. She is improving their hurricane loss model by adding factors such as storm duration and regional economic wealth and using more accurate data on hurricane size based on measurements from NASA's QuikScat satellite.

Zhai is the youngest person by far in Jiang's group, but she's treated no differently than the postdoctoral fellows. "Sometimes I'm very picky, but Alice has never complained," Jiang said. In fact, she appears to be thriving. "I didn't know that my work could actually be applied to a big, real-world problem," she said. "That's kind of unbelievable. Working in a professional setting opened my mind about science. Before this experience, I wasn't sure what I was going to do, but now I want to pursue a math and science career."

The paper is available online at: http://iopscience.iop.org/1748-9326/9/6/064019/

Caltech manages JPL for NASA.

Learn more about JPL internships and fellowships

TAGS: Earth, Hurricanes, Science Fair, Internships & Fellowships, High School