A large group of students and teachers stand in front of a full-size model of the Curiosity rover.

This past school year, the Education Office at NASA's Jet Propulsion Laboratory supported a comprehensive, multischool physics project that served as a capstone project for high-school students. Seven schools in three school districts across the Los Angeles area participated, tasked by their teachers with building a habitat including working circuitry and renewable power sources that was capable of withstanding seismic events.

Hundreds of physics students from underserved communities participated in the project, constructing their habitats as part of a Next Generation Science Standards, or NGSS, curriculum. One of the key components of NGSS, which was adopted by California in 2013, is its inclusion of science content areas, such as Earth science and physics. The project, drawing upon the lessons found on the JPL Education website, was a chance for students to apply their knowledge of numerous high-school science courses into one summative project. It was also a rare opportunity for the students, who were coming from underserved communities, to see connections between classroom content and real-world science.

"It is difficult for [students] to connect what they do in school with their future," wrote Joshua Gagnier, a physics teacher at Santa Ana High School, who participated in the project. "The only advice they receive is to study, work hard and get help, which without clear goals, are abstract concepts. It is opportunities such as the JPL challenge, which had a tangible academic award, that my students need."

To help students apply their knowledge in a real-world context, teachers presented a challenge to build functional habitats, complete with power, wiring and the ability to withstand the elements. Each school focused on and contributed different components to the habitats, such as solar power or thermodynamics. Students were given broad freedom to construct rooms and devices that were of interest to them while still demonstrating their knowledge throughout the school year. Gagnier had his classes focus on the electromagnetic spectrum and use their understanding of waves – for example, the threat of seismic waves to physical stability and the availability of light waves for solar power – to select a habitat location. He also had students examine the use of solar energy to power their habitats.

"The students used JPL and NASA resources to understand the elevation of [electromagnetic] penetration in combination with Google Earth to find the altitude of the geography they were evaluating," he wrote. "When students were trying to find a way to heat water for their habitat using the limited available supplies, JPL's Think Green lesson was one of the main sources for their solution." This lesson, in particular, allowed students to measure flux and available solar energy at different regions in the country using NASA data available online.

Students crowd around a large desk and use tape and cardboard to begin constructing their habitats. Two of the students look at a laptop.

Students at Santa Ana High School begin constructing their habitats. Image courtesy Joshua Gagnier | + Expand image

Students sit around a red table, one holding a solar panel in the air with wires attached to a small device. Other students examine the data on the device and write the results.

Students measure the current generated by their habitat's solar panels. Image courtesy Joshua Gagnier | + Expand image

Ultimately, it was up to the students to design and craft their habitats based on the lessons they learned. So the final prototype structures varied dramatically from class to class and even more from school to school. One school focused on habitats powered solely by renewable energy, while another school focused more on the structure's ability to withstand earthquakes via a shake table. Vaughn International Studies Academy worked across class periods to build "modular" homes – with each group building a single room instead of a whole habitat. These rooms, which included a living room, bedroom and even a sauna, were connected to a central power supply. In all cases, students had to quantify the amount of energy produced, determine how to disperse it throughout their home and present a sales pitch for their habitat, describing how it satisfied their criteria.

Small cardboard boxes with dioramas of living rooms, an outdoor scene and a bedroom sit side-by-side on a large black desk.

Participating schools elected to focus on certain features for their habitats, such as solar efficiency, circuity and wiring, or modular rooms that could be combined into larger homes. Image courtesy Brandon Rodriguez | + Expand image

At the end of the challenge, a winning group from each school was invited to JPL with their teachers to meet students from participating schools and tour the laboratory. It was also a chance for students and teachers to compare their projects. Due to the success of the pilot program, the participating teachers are already making plans for next school year, discussing ways to improve the challenge and expand the program to several more schools in the Los Angeles area.


Have a great idea for implementing NASA research in your class or looking to bring NASA science into your classroom? Contact JPL education specialist Brandon Rodriguez at brandon.rodriguez@jpl.nasa.gov

Special thanks to Kris Schmidt, Joshua Gagnier, Sandra Hightower and Jill Mayorga for their participation and dedication to bringing NASA science to their students.

TAGS: K-12 education, STEM, educators, teachers, science, engineering, physics, resources, lessons, students

  • Brandon Rodriguez
READ MORE

Jose Martinez-Camacho stands in front of a Moon display, featuring a lunar rock sample, in the Visitor Center at JPL.

In high school, science was the last thing on Jose Martinez-Camacho's mind. But one day, he was flipping through his chemistry textbook, and a diagram caught his eye. It described an experiment that was the first to identify the structure of an atom. Martinez-Camacho was amazed that a science experiment could reveal the inner workings of something so mysterious. He was hooked. Now a physics major at Cal Poly Pomona and in his fourth year interning at NASA's Jet Propulsion Laboratory, Martinez-Camacho is immersed in unveiling the details of other mysterious objects: lunar craters. Using a simulation he developed, Martinez-Camacho is working to understand how the temperatures inside and around craters in the permanently shadowed regions of the Moon might point the way to water ice. We caught up with him to find out more about his internship and his career journey so far.

You've done several internships at JPL, starting in 2015. What are the projects you've worked on?

My first internship in the summer of 2015 was with the Lunar Flashlight mission. The idea of the mission is to reflect sunlight into the permanent shadowed regions of the Moon to detect water ice. My project was testing and characterizing the photodetectors that would be used to identify the water ice. So most of that project involved setting up an experiment to test those detectors.

My next internship was still with the Lunar Flashlight mission, but my project was to model the amount of stray light that the detector was expected to receive from the lunar surface.

After that, I started to work with the Lunar Reconnaissance Orbiter Diviner team. [Diviner is an instrument on the Lunar Reconnaissance Orbiter that creates detailed daytime and nighttime temperature maps of the Moon.] In that project, I was working with Catherine Elder to validate one of her algorithms that can identify the abundance and size distribution of lunar rocks in a single pixel of an image taken by Diviner. So I used the algorithm to analyze the rock populations around the Surveyor landers, which took images on the lunar surface that we could use to validate our results.

What I'm working on now is 2D thermal modeling of craters in the polar regions of the Moon. The end goal is to better understand the thermal environments of the Moon's permanently shadowed regions, which can harbor water ice. Because the stability of water ice is very sensitive to temperatures, knowing the thermal environment can tell us a lot about where these water-ice deposits might exist.

Bright greens, purples and red indicate temperatures of craters on a section of the Moon in this data image

This temperature map from the Diviner instrument on the Lunar Reconnaissance Orbiter shows the locations of several intensely cold impact craters that are potential cold traps for water ice as well as a range of other icy compounds commonly observed in comets. Image credit: NASA/GSFC/UCLA | + Expand image

What is your average day like on your current project?

I'm using MATLAB to write code [that I use to model the craters]. I wrote the code from scratch. Right now I'm at the point where I've written the program, I've gone through most of the debugging and the derivations of the equations and picking the algorithm, so I'm just running the model and waiting for results. So an average day would be to come in and run the model for different cases. There's a range of crater diameters and a range of latitudes where permanent shadows exist, so I run the model for these different cases, wait for the results and interpret the results at the end of the simulations. I also do some debugging now and then to deal with problems in the code.

What got you interested in a science career?

I think it happened in my junior year of high school. I was always disinterested in school and never paid attention. In chemistry class, we were learning about the atom, and for some reason, I opened up my chemistry book at home and started looking at the diagrams. I found a section on the Rutherford gold foil experiment, which showed that atoms consist of a tightly packed positive nucleus surrounded by electrons. I was amazed that someone could deduce that from a simple experiment. So that sparked my interest in science. After that, I started to read about chemistry and astronomy and all types of science. That was the pivotal moment.

How did you pursue that career path, and were there any challenges along the way?

I knew I'd have to go to community college because, at the time, my GPA wasn't going to get me anywhere. So I knew I had to start at the very, very beginning. But I had a very clear plan: Just keep studying, keep getting good grades until you get to where you want to be.

Sometimes students – especially community college students – feel intimidated applying for JPL internships, even though they should absolutely apply! Did you feel that way at all, and if so, how did you overcome that fear?

I was almost not going to submit my application just because I thought I wasn't good enough to intern at JPL. But ultimately, I had nothing to lose if I got rejected. It would be the same outcome as if I didn't apply, so I submitted my application. And I was really surprised when I got the acceptance letter.

What was your first experience at JPL like?

Everything was super-unfamiliar. I was in a lab, working on a science instrument, and I wasn't an instruments guy. But I got a lot of help from other people who were on the project. Even though it was difficult, it made it very enjoyable to always have someone there with the right answer or a suggestion.

How has your time at JPL molded your career path?

I think it established it. Next year, I'm going to Southern Methodist University to start a geophysics Ph.D. and my graduate advisor is someone who I met at one of the Diviner team meetings. Being at JPL has made that connection for me. And through JPL, I found what I want to do as a career.

What is your ultimate career goal?

After grad school, it would be really, really nice to come back here as a research scientist.

Are you interested in lunar research or anything planetary?

I think I'm really biased toward the Moon just because it's been my focus throughout my JPL internships. But I could see myself studying other planets or bodies. Mercury is very similar to the Moon. Anything without an atmosphere will do. That's what I'm comfortable with. If you add an atmosphere, the science is different. Ultimately, I think I'm interested in planetary science; it's just a matter of learning new science and learning about new planetary bodies.

Well, that leads nicely into my fun question: If you could travel to any place in space, where would you go and what would you do there?

I think I'd go somewhere around Saturn, or a moon of Saturn. Looking up from one of Saturn's moons would be a pretty amazing sight, with Saturn and its rings on the horizon.

Going back to your career path so far, did you have any mentors along the way?

In high school, I don't think so. I just needed to graduate. But in community college, I was part of this program called EOPS, or Extended Opportunity Programs and Services. It's for minorities and disadvantaged groups. There's counseling involved with people who knew what someone like me might be struggling with. There was that support group throughout my time at Citrus College. And there was also the Summer Research Experience Program [at Citrus.] That's the one I applied to in order to get the summer internship here. It was through Citrus College's partnership with JPL. One of the people who was in charge of that, Dr. Marianne Smith, she was always encouraging me, saying, "Just because you come from a community college doesn't mean you're any less than someone who is at UCLA or any other university." So that was another source of support.

Did you see advantages to going the community college route?

Yeah, definitely. It's a smaller community, so you get to form connections a lot easier than you would at a larger college. The quality of education there is probably on par with other universities. So, there was certainly no disadvantage. And then there was that advantage of the smaller community. It's more personalized and easier to get help.

What would you recommend to other students in community college who are interested in coming to JPL?

Apply to the program. Take advantage of the summers and apply to internships. At Citrus College they have the Summer Research Experience Program, and they probably have something similar at other community colleges. Take advantage of that. If I hadn't applied to that program that summer, my life would be totally different. Those decisions can shape your future.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, College, Internships, Interns, Science, Moon, Community College, Students

  • Kim Orr
READ MORE

An Apollo 11 astronaut stands on the Moon and one of the legs of the lunar module can be seen in the corner of the image

Fifty years ago this week, the Apollo 11 astronauts launched on their history-making mission. Saturday, July 20, is the anniversary of that first landing of humans on the Moon; a great milestone to reflect on, as well as an opportunity to look ahead. Read on for some of the ways you can celebrate and learn with NASA!

An audience wears 3-D glasses while in a darkened theater

Go Places

It’s not just science centers that are celebrating the 50th anniversary of humans landing on the Moon. There are events taking place worldwide at libraries, concert halls, baseball stadiums, National Parks, art museums, and on city streets. Find anniversary events near you with this searchable map and calendar.

Sketch of a lunar lander on graph paper with marshmallows, rubber bands and straws scattered around

Do Things

This collection of hands-on activities for all ages will have you throwing water balloons to learn about craters on the Moon, helping actual NASA scientists by mapping the Moon from your own computer, building a model of the Earth-Moon system and seeing what it takes to investigate strange new planets. You can even make your own lunar spacecraft.

The Forward to the Moon With Artemis activity book is a fun way to learn about the Apollo mission that first put people on the Moon and what’s in store for the future. Also, check out these hands-on activities, building challenges and online games!

Animated image of the Moon phases

Focus On the Moon

Love observing the Moon and the rest of the night sky? The Night Sky Network will help you find local astronomy clubs and events. Save the date for International Observe the Moon Night, October 5. If you’re clouded out, you can always make your own Moon to enjoy!

Blue starry background with type that reads Apollo 50 Next Giant Leap

Watch These

NASA TV has a full lineup of Apollo programming. On July 19 at 3 p.m. (EDT), you can watch STEM Forward to the Moon. The half-hour show will feature students enacting simulations of a return to the Moon with NASA’s Artemis program. The accompanying Educator’s Guide has all you need to try the activities from the show at home or in the classroom.

Also fun to watch are vintage recordings from the Apollo program, as well as archived lectures and the kid-friendly “STEM in 30” video series from the National Air And Space Museum.

Scissors, pencils, tape, paper and other materials scattered around. Text overlay reads: Join in July 18, #VirtualMoonshot, A virtual mission to the Moon designed by you! Instagram, Facebook & Twitter

Get Social

Join NASA and educational centers nationwide to build a virtual mission to the Moon on July 18. Follow #VirtualMoonshot on Instagram, Facebook and Twitter to take part – or follow along with a host center near you.

Finally, if you’ve wondered what it would have been like to have social media 50 years ago, be sure to follow Relive Apollo 11 for tweets that tell the story of the mission in real time, starting with its July 16 launch!

Explore More

TAGS: Apollo 50th, Events, Activities, Education, STEM, Science, Museums,

  • Amelia Chapman
READ MORE

Buzz Aldrin stands on the moon in his puffy, white spacesuit next to an American flag waving in the wind. The command module casts a long, dark shadow nearby.

In the News

This year marks the 50th anniversary of humans landing on the Moon. Now NASA is headed to the Moon once again, using it as a proving ground for a future human mission to Mars. Use this opportunity to get students excited about Earth's natural satellite, the amazing feats accomplished 50 years ago and plans for future exploration.

How They Did It

When NASA was founded in 1958, scientists were unsure whether the human body could even survive orbiting Earth. Space is a demanding environment. Depending on where in space you are, it can lack adequate air for breathing, be very cold or hot, and have dangerous levels of radiation. Additionally, the physics of space travel make everything inside a space capsule feel weightless even while it's hurtling through space. Floating around inside a protective spacecraft may sound fun, and it is, but it also can have detrimental effects on the human body. Plus, it can be dangerous with the hostile environment of space lurking on the other side of a thin metal shell.

In 1959, NASA's Jet Propulsion Laboratory began the Ranger project, a mission designed to impact the Moon – in other words, make a planned crash landing. During its descent, the spacecraft would take pictures that could be sent back to Earth and studied in detail. These days, aiming to merely impact a large solar system body sounds rudimentary. But back then, engineering capabilities and course-of-travel, or trajectory, mathematics were being developed for the first time. A successful impact would be a major scientific and mathematical accomplishment. In fact, it took until July 1964 to achieve the monumental task, with Ranger 7 becoming the first U.S. spacecraft to impact the near side of the Moon, capturing and returning images during its descent.

Side-by-side images of a model of the Ranger 7 spacecraft in color and a black and white image of the Moon taken by Ranger 7.

These side-by-side images show a model of the Ranger 7 spacecraft (left) and an image the spacecraft took of the Moon (right) before it impacted the surface. Image credit: NASA/JPL-Caltech | › + Expand image

After the successful Ranger 7 mission, two more Ranger missions were sent to the Moon. Then, it was time to land softly. For this task, JPL partnered with Hughes Aircraft Corporation to design and operate the Surveyor missions between 1966 and 1968. Each of the seven Surveyor landers were equipped with a television camera – with later landers carried scientific instruments, too – aimed at obtaining up-close lunar surface data to assess the Moon's suitability for a human landing. The Surveyors also demonstrated in-flight maneuvers and in-flight and surface-communications capabilities.

Side-by-side image of an astronaut next to the Surveyor 7 lander and a mosaic of images from Surveyor 3

These side-by-side images show Apollo 12 Commander Charles Conrad Jr. posing with the Surveyor 7 spacecraft on the Moon (left) and a mosaic of images taken by Surveyor 3 on the lunar surface (right). Image credits: NASA/JPL-Caltech | › + Expand image

In 1958, at the same time JPL was developing the technological capabilities to get to the Moon, NASA began the Mercury program to see if it was possible for humans to function in space. The success of the single-passenger Mercury missions, with six successful flights that placed two astronauts into suborbital flight and four astronauts into Earth orbit, kicked off the era of U.S. human spaceflight.

Cutaway illustration of the Mercury capsule with a single astronaut inside.

The success of the single-passenger Mercury capsule, shown in this illustrated diagram, proved that humans could live and work in space, paving the way for future human exploration. Image credit: NASA | › Full image and caption

In 1963, NASA's Gemini program proved that a larger capsule containing two humans could orbit Earth, allowing astronauts to work together to accomplish science in orbit for long-duration missions (up to two weeks in space) and laying the groundwork for a human mission to the Moon. With the Gemini program, scientists and engineers learned how spacecraft could rendezvous and dock while in orbit around Earth. They were also able to perfect re-entry and landing methods and began to better understand the effects of longer space flights on astronauts. After the successful Gemini missions, it was time to send humans to the Moon.

Cutaway illustration of the Gemini spacecraft with two astronauts inside.

The Gemini spacecraft, shown in this illustrated cutaway, paved the way for the Apollo missions. Image credit: NASA | › Full image and caption

The Apollo program officially began in 1963 after President John F. Kennedy directed NASA in September of 1962 to place humans on the Moon by the end of the decade. This was a formidable task as no hardware existed at the time that would accomplish the feat. NASA needed to build a giant rocket, a crew capsule and a lunar lander. And each component needed to function flawlessly.

Rapid progress was made, involving numerous NASA and contractor facilities and hundreds of thousands of workers. A crew capsule was designed, built and tested for spaceflight and landing in water by the NASA contractor North American Aviation, which eventually became part of Boeing. A lunar lander was developed by the Grumman Corporation. Though much of the astronaut training took place at or near the Manned Spacecraft Center, now known as NASA’s Johnson Space Center, in Texas, astronauts practiced lunar landings here on Earth using simulators at NASA's Dryden (now Armstrong) Flight Research Center in California and at NASA's Langley Research Center in Virginia. The enormous Saturn V rocket was a marvel of complexity. Its first stage was developed by NASA's Marshall Space Flight Center in Alabama. The upper-stage development was managed by the Lewis Flight Propulsion Center, now known as NASA's Glenn Research Center, in Ohio in partnership with North American Aviation and Douglas Aircraft Corporation, while Boeing integrated the whole vehicle. The engines were tested at what is now NASA's Stennis Space Center in Mississippi, and the rocket was transported in pieces by water for assembly at Cape Kennedy, now NASA's Kennedy Space Center, in Florida. As the Saturn V was being developed and tested, NASA also developed a smaller, interim vehicle known as the Saturn I and started using it to test Apollo hardware. A Saturn I first flew the Apollo command module design in 1964.

Unfortunately, one crewed test of the Apollo command module turned tragic in February 1967, when a fire erupted in the capsule and killed all three astronauts who had been designated as the prime crew for what became known as Apollo 1. The command module design was altered in response, delaying the first crewed Apollo launch by 21 months. In the meantime, NASA flew several uncrewed Apollo missions to test the Saturn V. The first crewed Apollo launch became Apollo 7, flown on a Saturn IB, and proved that the redesigned command module would support its crew while remaining in Earth orbit. Next, Earth-Moon trajectories were calculated for this large capsule, and the Saturn V powered Apollo 8 set off for the Moon, proving that the calculations were accurate, orbiting the Moon was feasible and a safe return to Earth was possible. Apollo 8 also provided the first TV broadcast from lunar orbit. The next few Apollo missions further proved the technology and allowed humans to practice procedures that would be needed for an eventual Moon landing.

On July 16, 1969, a Saturn V rocket launched three astronauts to the Moon on Apollo 11 from Cape Kennedy. The Apollo 11 spacecraft had three parts: a command module, called "Columbia," with a cabin for the three astronauts; a service module that provided propulsion, electricity, oxygen and water; and a lunar module, "Eagle," that provided descent to the lunar surface and ascent back to the command and service modules.

Collage of three images showing the lunar module during its descent to the Moon, on the lunar surface and during its ascent.

In this image collage, the Apollo 11 lunar module is shown on its descent to the Moon (left), on the lunar surface as Buzz Aldrin descends the stairs (middle), and on its ascent back to the command module (right). Image credit: NASA | › View full image collection

On July 20, while astronaut and command module pilot Michael Collins orbited the Moon, Neil Armstrong and Buzz Aldrin landed Eagle on the Moon and set foot on the surface, accomplishing a first for humankind. They collected regolith (surface "dirt") and rock samples, set up experiments, planted an American flag and left behind medallions honoring the Apollo 1 crew and a plaque that read, "We came in peace for all mankind."

Collage of images showing Buzz Aldrin doing various activities on the Moon.

This collage of images from the Apollo 11 Moon landing shows Buzz Aldrin posing for a photo on the Moon (left), and setting up the solar wind and seismic experiments (middle). The image on the right shows the plaque the team placed on Moon to commemorate the historic event. Image credit: NASA | › View full image collection

After 21.5 hours on the lunar surface, Armstrong and Aldrin rejoined Collins in the Columbia command module and, on July 21, headed back to Earth. On July 24, after jettisoning the service module, Columbia entered Earth's atmosphere. With its heat shield facing forward to protect the astronauts from the extreme friction heating outside the capsule, the craft slowed and a series of parachutes deployed. The module splashed down in the South Pacific Ocean, 380 kilometers (210 nautical miles) south of Johnston Atoll. Because scientists were uncertain about contamination from the Moon, the astronauts donned biological-isolation garments delivered by divers from the recovery ship, the aircraft carrier the USS Hornet. The astronauts boarded a life raft and then the USS Hornet, where the outside of their biological-isolation suits were washed down with disinfectant. To be sure no contamination was brought back to Earth from the Moon, the astronauts were quarantined until Aug. 10, at which point scientists determined the risk was low that biological contaminants or microbes had returned with the astronauts. Columbia was also disinfected and is now part of the National Air and Space Museum in Washington, D.C.

On the left, a capsule floats in the ocean while astronauts sit in a raft in a gray suits. On the right, the three astronauts smile while looking out of a small window and while Nixon faces them with a microphone in front of him.

These side-by-side images show the Apollo 11 astronauts leaving the capsule in their biological isolation garments after successfully splashing down in the South Pacific Ocean (left). At right, President Richard M. Nixon welcomes the Apollo 11 astronauts, (left to right) Neil A. Armstrong, Michael Collins and Buzz Aldrin, while they peer through the window of the Mobile Quarantine Facility aboard the USS Hornet. Image credit: NASA | › View full image collection

The Apollo program continued with six more missions to the Moon over the next three years. Astronauts placed seismometers to measure "moonquakes" and other science instruments on the lunar surface, performed science experiments, drove a carlike moon buggy on the surface, planted additional flags and returned more lunar samples to Earth for study.

Why It's Important

Apollo started out as a demonstration of America's technological, economic and political prowess, which it accomplished with the first Moon landing. But the Apollo missions accomplished even more in the realm of science and engineering.

Some of the earliest beneficiaries of Apollo research were Earth scientists. The Apollo 7 and 9 missions, which stayed in Earth orbit, took photographs of Earth in different wavelengths of light, highlighting things that might not be seen on the ground, like diseased trees and crops. This research led directly to the joint NASA-U.S. Geological Survey Landsat program, which has been studying Earth's resources from space for more than 45 years.

Samples returned from the Moon continue to be studied by scientists around the world. As new tools and techniques are developed, scientists can learn even more about our Moon, discovering clues to our planet's origins and the formation of the solar system. Additionally, educators can be certified to borrow lunar samples for use in their classrooms.

The Apollo 11 astronauts crowd around a lunar sample contained in a protective case.

The Apollo 11 astronauts take a closer look at a sample they brought back from the Moon. Image credit: NASA | › View full image collection

Perhaps the most important scientific finding came from comparing similarities in the composition of lunar and terrestrial rocks and then noting differences in the amount of specific substances. This suggested a new theory of the Moon's formation: that it accreted from debris ejected from Earth by a collision with a Mars-size object early in our planet's 4.5-billion-year history.

The 12 astronauts who walked on the Moon are the best-known faces of the Apollo program, but in numbers, they were also the smallest part of the program. About 400,000 men and women worked on Apollo, building the vehicles, calculating trajectories, even making and packing food for the crews. Many of them worked on solving a deceptively simple question: "How do we guide astronauts to the Moon and back safely?" Some built the spacecraft to carry humans to the Moon, enable surface operations and safely return astronauts to Earth. Others built the rockets that would launch these advanced spacecraft. In doing all this, NASA engineers and scientists helped lead the computing revolution from transistors to integrated circuits, the forebears to the microchip. An integrated circuit – a miniaturized electronic circuit that is used in nearly all electronic equipment today – is lighter weight, smaller and able to function on less power than the older transistors and capacitors. To suit the needs of the space capsule, NASA developed integrated circuits for use in the capsule's onboard computers. Additionally, computing advancements provided NASA with software that worked exactly as it was supposed to every time. That software lead to the development of the systems used today in retail credit-card swipe devices.

Some lesser-known benefits of the Apollo program include the technologies that commercial industries would then further advance to benefit humans right here on Earth. These "spinoffs" include technology that improved kidney dialysis, modernized athletic shoes, improved home insulation, advanced commercial and residential water filtration, and developed the freeze-drying technique for preserving foods.

Apollo was succeeded by missions that have continued to build a human presence in space and advance technologies on Earth. Hardware developed for Apollo was used to build America's first Earth-orbiting space station, Skylab. After Skylab, during the Apollo-Soyuz test project, American and Soviet spacecraft docked together, laying the groundwork for international cooperation in human spaceflight. American astronauts and Soviet cosmonauts worked together aboard the Soviet space station Mir, performing science experiments and learning about long-term space travel's effects on the human body. Eventually, the U.S. and Russia, along with 13 other nations, partnered to build and operate the International Space Station, a world-class science laboratory orbiting 400 kilometers (250 miles) above Earth, making a complete orbit every 90 minutes.

Graphic showing a possible configuration for the future lunar gateway

Although the configuration is not final, this infographic shows the current lineup of parts comprising the lunar Gateway. Image credit: NASA | › Full image and caption

And the innovations continue today. NASA is planning the Artemis mission to put humans on the Moon again in 2024 with innovative new technologies and the intent of establishing a permanent human presence. Working in tandem with commercial and international partners, NASA will develop the Space Launch System launch vehicle, Orion crew capsule, a new lunar lander and other operations hardware. The lunar Gateway – a small spaceship that will orbit the Moon and include living quarters for astronauts, a lab for science, and research and ports for visiting spacecraft – will provide access to more of the lunar surface than ever before. While at the Moon, astronauts will research ways to use lunar resources for survival and further technological development. The lessons and discoveries from Artemis will eventually pave a path for a future human mission to Mars.

Teach It

Use these standards-aligned lessons to help students learn more about Earth's only natural satellite:

As students head out for the summer, get them excited to learn more about the Moon and human exploration using these student projects:

Explore More

TAGS: K-12 Education, Teachers, Educators, Classroom, Engineering, Science, Students, Projects, Moon, Apollo, Summer

  • Ota Lutz
READ MORE

Brittney Cooper stands in a sandy area holding a controller attached to a rover

Brittney Cooper loves studying weather – and she's taking that passion all the way to Mars. A graduate student at York University in Toronto, Cooper has spent the past two years working with the science team for NASA's Mars rover Curiosity. In January, she authored her first science paper on a study she designed with the Curiosity team that looked at how clouds scatter light and what that tells us about the shapes of their ice crystals. Despite her involvement in the Curiosity mission, the Canada native has never actually been to a NASA center. But that's about to change this summer when she'll embark on her first internship at JPL in Pasadena, California. We caught up with Cooper to find out what she's looking forward to most about her internship and how she's planning to take her studies of Martian clouds even farther.

You're currently earning your master's at York University in Toronto. What are you studying and what got you interested in that field?

I'm doing my master's in Earth and space science. But if you really want an interesting story [laughs] … I've always been interested in astronomy, space and science, but I also really love art. Coming to the end of high school, I realized that maybe it was going to be too hard for me to pursue science. Maybe I was a little scared and I didn't really think I was going to be able to do it. So I went to university for photography for two years. After two years, I realized photography wasn't challenging me in the right ways and wasn't what I wanted to do for the rest of my life. So I left. I did night school to get credits for calculus and all the grade-12 physics and chemistry that I needed to pursue a degree in atmospheric science, which is not even remotely astronomy, but I've also always loved weather – pretty much anything in the sky. I still had a passion for astronomy, so I started volunteering at the Allan I. Carswell observatory at York. There, I met a professor who I ended up doing research with for many years. He told me, "There's the field called planetary science, where you can study the atmospheres of other planets and you can kind of marry those two fields that you're interested in [astronomy and atmospheric science]." So I ended up adding an astronomy major.

Brittney Copper stands in the snow surrounded by pine trees and holds out a device to measure the flux of solar radiation

Cooper measures the downward flux of solar radiation during a winter snow survey. Image courtesy Brittney Cooper | + Expand image

Later, I started doing research with this professor, John Moores, as an undergrad. In my last year, there was a Ph.D. student who was a participating scientist on NASA's Mars Science Laboratory mission and he was graduating. John had said something along the lines of, "There's an opening, and I know it's always been your dream to work in mission control, so do you want to be on the mission?" And I was, like, "Yes, I definitely do!" I couldn't believe it. And I was never intending to do a master's, but then I realized I really loved the work I was doing, working on constraining physical properties of Martian water-ice clouds using the Mars Curiosity rover. We got to design this observation, which ran on the rover, and then I got to work with the data from it, which was really cool. So I stayed on to do my master's, and I'm still on the mission, which is pretty awesome.

In January you authored your first science paper on that research. Tell me more about that.

A black and white animated image showing light, wispy clouds moving across the Martian sky

Wispy clouds float across the Martian sky in this accelerated sequence of images from NASA's Curiosity Mars rover. Image credit: NASA/JPL-Caltech/York University | › Full image and caption

My research focuses on the physical scattering properties of Martian water-ice clouds. A lot of people don't even realize that there are clouds on Mars, which I totally get because Mars doesn't have much of an atmosphere. But it does have enough of an atmosphere to create very thin, wispy, almost cirrus-like clouds similar to the ones we have on Earth. They're made up of small, water-ice crystals. These kinds of clouds do have a noticeable impact on Earth's climate, so we have now started thinking about what these clouds are doing in Mars' climate. The scattering properties can tell us a bit about that. They can tell us how much radiation is scattered back to space by these clouds or kept in Mars' atmosphere and whether or not we can see really fun things like halos, glories and different types of optical phenomena that we can see here on Earth.

We designed this observation that uses the Navcam imager on Curiosity. The engineering folks with the mission helped us design it. I got to present at a science discussion, which was superscary, but everyone was so kind. And then the observation was approved to run on Mars once a week from September 2017 to March 2018. During this observation window, Curiosity would take images of the sky to capture clouds at as many different scattering angles as possible. Once we got all the data back, we were able to constrain the dominant ice crystal shapes in the clouds based upon this thing called the phase function, which tells you how these clouds scatter light and radiation. I was the lead author on the research paper that came from that, and it got accepted. We started working on this right when I was really new to the mission, and it was my first paper. I couldn't believe everyone wasn't, like, "Who the heck are you? Why are we going to let you do anything?" But everyone was so kind, and it was just such a great experience.

What was the hardest part about writing that first paper?

The hardest part was probably just getting over the fear of thinking people aren't going to listen to you or you aren't going to be smart enough or you won't be able to answer questions. It was really just getting over my own fears and worries and not holding myself back because of them. I have a really great mentor who pushed me to do all these things, so I was able to suck it up and say, "If he believes in me and he thinks I can do it, maybe he's right." Every time I did a presentation or I would talk about the observation or try to advocate for it, I was just met with such positivity that I was, like, "OK, these fears are rooted in nothing."

In July, you're coming to JPL for your first internship here. What will you be working on?

Yes, I'm so excited! I'll be working with two scientists, Michael Mischna and Manuel de la Torre Juarez. We're going to be working with the Rover Environmental Monitoring Station, or REMS, which is an instrument on Curiosity that measures the temperature, relative humidity and pressure around the rover on Mars. From those measurements, we're going to try to infer the presence of clouds at night. So far, the way we've used Curiosity to study clouds is with optical instruments [or cameras]. So we take pictures of the clouds. But that's not really something we can do at night. So using REMS and its temperature sensors at night, we can try to see if clouds around the rover are emitting infrared radiation, heating up the atmosphere around the rover. We can try to detect them that way. So that's what we're going to try to do – look for some patterns and see what we can come up with. We'll also be comparing what we find with data from NASA's Mars Climate Sounder, which is in orbit around Mars and takes nighttime measurements of the atmosphere.

What are you most excited about coming to JPL?

I would be lying if I said it wasn't just getting to come to a NASA center – especially as a Canadian. It's every little space enthusiast's dream. I'm also excited to meet all the people who I've been working with for the last two years. The people are such an awesome part of this mission that I've been a part of. So I'm looking forward to meeting them in person and working with them in a closer way.

What do you see as the ultimate goal of your research?

We're just trying to better understand Mars. It's kind of a crazy place. There is a lot of evidence that shows us that there's a lot more going on than we know now and it's just about trying to put the pieces of the puzzle together. There are also a lot of similarities to Earth. So we can try to take what we learn about Mars and apply it to our planet as well.

What's your ultimate career goal?

What I would really love is to work in spacecraft operations. I absolutely love working in science and working with data, but getting a chance to be a part of this mission and do operations – be part of a team and do multidisciplinary work – it's so exciting, and it's something that I never thought that I'd get to experience. And now that I've had a bit of a taste, I'm wanting more. So that's what I'm hoping for in the future.

Do you ever think about how you moved away from studying photography but are using photography to do science on Mars?

Yes! Every once in a while, that hits me, and I think to myself, "That's so cool." It's just very, very cool. Ten years ago, I never thought I'd be where I am now. But also just to know that there's that connection, that I'm working with visual data, with optical data – I don't think it's a coincidence. I really love working with images, so I think it's pretty cool that I get to do that.

Just one last fun question: If you could travel to any place in space, where would you go and what would you do there?

Without a doubt, it would have to be [Saturn's moon] Titan. I actually would probably go there to study the atmosphere. The first research project that I ever did was trying to find methane and ethane fog on Titan and the surface data was quite limited, so I would like to go there. I want to see water-ice rocks. I want to see methane lakes and methane rain, set up a little vacation spot there [laughs].


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, College, Internships, Interns, Students, Science, Mars, Rovers, Weather

  • Kim Orr
READ MORE

A glowing, orange ring outlines a black hole.

In the News

Accomplishing what was previously thought to be impossible, a team of international astronomers has captured an image of a black hole’s silhouette. Evidence of the existence of black holes – mysterious places in space where nothing, not even light, can escape – has existed for quite some time, and astronomers have long observed the effects on the surroundings of these phenomena. In the popular imagination, it was thought that capturing an image of a black hole was impossible because an image of something from which no light can escape would appear completely black. For scientists, the challenge was how, from thousands or even millions of light-years away, to capture an image of the hot, glowing gas falling into a black hole. An ambitious team of international astronomers and computer scientists has managed to accomplish both. Working for well over a decade to achieve the feat, the team improved upon an existing radio astronomy technique for high-resolution imaging and used it to detect the silhouette of a black hole – outlined by the glowing gas that surrounds its event horizon, the precipice beyond which light cannot escape. Learning about these mysterious structures can help students understand gravity and the dynamic nature of our universe, all while sharpening their math skills.

How They Did It

Though scientists had theorized they could image black holes by capturing their silhouettes against their glowing surroundings, the ability to image an object so distant still eluded them. A team formed to take on the challenge, creating a network of telescopes known as the Event Horizon Telescope, or the EHT. They set out to capture an image of a black hole by improving upon a technique that allows for the imaging of far-away objects, known as Very Long Baseline Interferometry, or VLBI.

Telescopes of all types are used to see distant objects. The larger the diameter, or aperture, of the telescope, the greater its ability to gather more light and the higher its resolution (or ability to image fine details). To see details in objects that are far away and appear small and dim from Earth, we need to gather as much light as possible with very high resolution, so we need to use a telescope with a large aperture.

That’s why the VLBI technique was essential to capturing the black hole image. VLBI works by creating an array of smaller telescopes that can be synchronized to focus on the same object at the same time and act as a giant virtual telescope. In some cases, the smaller telescopes are also an array of multiple telescopes. This technique has been used to track spacecraft and to image distant cosmic radio sources, such as quasars.

More than a dozen antennas pointing forward sit on barren land surrounded by red and blue-purple mountains in the distance.

Making up one piece of the EHT array of telescopes, the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile has 66 high-precision antennas. Image credit: NRAO/AUI/NSF | + Expand image

The aperture of a giant virtual telescope such as the Event Horizon Telescope is as large as the distance between the two farthest-apart telescope stations – for the EHT, those two stations are at the South Pole and in Spain, creating an aperture that’s nearly the same as the diameter of Earth. Each telescope in the array focuses on the target, in this case the black hole, and collects data from its location on Earth, providing a portion of the EHT’s full view. The more telescopes in the array that are widely spaced, the better the image resolution.

This video shows the global network of radio telescopes in the EHT array that performed observations of the black hole in the galaxy M87. Credit: C. Fromm and L. Rezzolla (Goethe University Frankfurt)/Black Hole Cam/EHT Collaboration | Watch on YouTube

To test VLBI for imaging a black hole and a number of computer algorithms for sorting and synchronizing data, the Event Horizon Telescope team decided on two targets, each offering unique challenges.

The closest supermassive black hole to Earth, Sagittarius A*, interested the team because it is in our galactic backyard – at the center of our Milky Way galaxy, 26,000 light-years (156 quadrillion miles) away. (An asterisk is the astronomical standard for denoting a black hole.) Though not the only black hole in our galaxy, it is the black hole that appears largest from Earth. But its location in the same galaxy as Earth meant the team would have to look through “pollution” caused by stars and dust to image it, meaning there would be more data to filter out when processing the image. Nevertheless, because of the black hole’s local interest and relatively large size, the EHT team chose Sagittarius A* as one of its two targets.

An image showing a smattering of orange stars against the black backdrop of space with a small black circle in the middle and a rectangle identifying the location of the M87 black hole.

A close-up image of the core of the M87 galaxy, imaged by the Chandra X-ray Observatory. Image credit: NASA/CXC/Villanova University/J. Neilsen | + Expand image

A blue jet extends from a bright yellow point surrounded by smaller yellow stars.

This image from NASA's Hubble Space Telescope shows a jet of subatomic particles streaming from the center of M87*. Image credits: NASA and the Hubble Heritage Team (STScI/AURA) | + Expand image

The second target was the supermassive black hole M87*. One of the largest known supermassive black holes, M87* is located at the center of the gargantuan elliptical galaxy Messier 87, or M87, 53 million light-years (318 quintillion miles) away. Substantially more massive than Sagittarius A*, which contains 4 million solar masses, M87* contains 6.5 billion solar masses. One solar mass is equivalent to the mass of our Sun, approximately 2x10^30 kilograms. In addition to its size, M87* interested scientists because, unlike Sagittarius A*, it is an active black hole, with matter falling into it and spewing out in the form of jets of particles that are accelerated to velocities near the speed of light. But its distance made it even more of a challenge to capture than the relatively local Sagittarius A*. As described by Katie Bouman, a computer scientist with the EHT who led development of one of the algorithms used to sort telescope data during the processing of the historic image, it’s akin to capturing an image of an orange on the surface of the Moon.

By 2017, the EHT was a collaboration of eight sites around the world – and more have been added since then. Before the team could begin collecting data, they had to find a time when the weather was likely to be conducive to telescope viewing at every location. For M87*, the team tried for good weather in April 2017 and, of the 10 days chosen for observation, a whopping four days were clear at all eight sites!

Each telescope used for the EHT had to be highly synchronized with the others to within a fraction of a millimeter using an atomic clock locked onto a GPS time standard. This degree of precision makes the EHT capable of resolving objects about 4,000 times better than the Hubble Space Telescope. As each telescope acquired data from the target black hole, the digitized data and time stamp were recorded on computer disk media. Gathering data for four days around the world gave the team a substantial amount of data to process. The recorded media were then physically transported to a central location because the amount of data, around 5 petabytes, exceeds what the current internet speeds can handle. At this central location, data from all eight sites were synchronized using the time stamps and combined to create a composite set of images, revealing the never-before-seen silhouette of M87*’s event horizon. The team is also working on generating an image of Sagittarius A* from additional observations made by the EHT.

This zoom video starts with a view of the ALMA telescope array in Chile and zooms in on the heart of M87, showing successively more detailed observations and culminating in the first direct visual evidence of a supermassive black hole’s silhouette. Credit: ESO/L. Calçada, Digitized Sky Survey 2, ESA/Hubble, RadioAstron, De Gasperin et al., Kim et al., EHT Collaboration. Music: Niklas Falcke | Watch on YouTube

As more telescopes are added and the rotation of Earth is factored in, more of the image can be resolved, and we can expect future images to be higher resolution. But we might never have a complete picture, as Katie Bouman explains here (under “Imaging a Black Hole”).

To complement the EHT findings, several NASA spacecraft were part of a large effort to observe the black hole using different wavelengths of light. As part of this effort, NASA’s Chandra X-ray Observatory, Nuclear Spectroscopic Telescope Array (NuSTAR) and Neil Gehrels Swift Observatory space telescope missions – all designed to detect different varieties of X-ray light – turned their gaze to the M87 black hole around the same time as the EHT in April 2017. NASA’s Fermi Gamma-ray Space Telescope was also watching for changes in gamma-ray light from M87* during the EHT observations. If the EHT observed changes in the structure of the black hole’s environment, data from these missions and other telescopes could be used to help figure out what was going on.

Though NASA observations did not directly trace out the historic image, astronomers used data from Chandra and NuSTAR satellites to measure the X-ray brightness of M87*’s jet. Scientists used this information to compare their models of the jet and disk around the black hole with the EHT observations. Other insights may come as researchers continue to pore over these data.

Why It's Important

Learning about mysterious structures in the universe provides insight into physics and allows us to test observation methods and theories, such as Einstein’s theory of general relativity. Massive objects deform spacetime in their vicinity, and although the theory of general relativity has directly been proven accurate for smaller-mass objects, such as Earth and the Sun, the theory has not yet been directly proven for black holes and other regions containing dense matter.

One of the main results of the EHT black hole imaging project is a more direct calculation of a black hole’s mass than ever before. Using the EHT, scientists were able to directly observe and measure the radius of M87*’s event horizon, or its Schwarzschild radius, and compute the black hole’s mass. That estimate was close to the one derived from a method that uses the motion of orbiting stars – thus validating it as a method of mass estimation.

The size and shape of a black hole, which depend on its mass and spin, can be predicted from general relativity equations. General relativity predicts that this silhouette would be roughly circular, but other theories of gravity predict slightly different shapes. The image of M87* shows a circular silhouette, thus lending credibility to Einstein’s theory of general relativity near black holes.

An illustration of a black hole surrounded by a bright, colorful swirl of material. Text describes each part of the black hole and its surroundings.

This artist’s impression depicts a rapidly spinning supermassive black hole surrounded by an accretion disc. Image credit: ESO | + Expand image

The data also offer some insight into the formation and behavior of black hole structures, such as the accretion disk that feeds matter into the black hole and plasma jets that emanate from its center. Scientists have hypothesized about how an accretion disk forms, but they’ve never been able to test their theories with direct observation until now. Scientists are also curious about the mechanism by which some supermassive black holes emit enormous jets of particles traveling at near light-speed.

These questions and others will be answered as more data is acquired by the EHT and synthesized in computer algorithms. Be sure to stay tuned for that and the next expected image of a black hole – our Milky Way’s own Sagittarius A*.

Teach It

Capture your students’ enthusiasm about black holes by challenging them to solve these standards-aligned math problems.

Model black-hole interaction with this NGSS-aligned lesson:

Explore More


Check out these related resources for students from NASA’s Space Place

TAGS: Black Hole, Teachable Moments, Science, K-12 Education, Teachers, Educators

  • Ota Lutz
READ MORE

Illustration of spacecraft against a starry background

Update: March 15, 2019 – The answers to the 2018 NASA Pi Day Challenge are here! View the illustrated answer key


In the News

The excitement of Pi Day – and our annual excuse to chow down on pie – is upon us! The holiday celebrating the mathematical constant pi arrives on March 14, and with it comes the sixth installment of the NASA Pi Day Challenge from the Jet Propulsion Laboratory’s Education Office. This challenge gives students in grades 6-12 a chance to solve four real-world problems faced by NASA scientists and engineers. (Even if you’re done with school, they’re worth a try for the bragging rights.)

https://www.jpl.nasa.gov/edu/teach/activity/pi-in-the-sky-6/

Visit the "Pi in the Sky 6" lesson page to explore classroom resources and downloads for the 2019 NASA Pi Day Challenge. Image credit: NASA/JPL-Caltech/Kim Orr | + Expand image

Why March 14?

Pi, the ratio of a circle’s circumference to its diameter, is what is known as an irrational number. As an irrational number, its decimal representation never ends, and it never repeats. Though it has been calculated to trillions of digits, we use far fewer at NASA. In fact, 3.14 is a good approximation, which is why March 14 (or 3/14 in U.S. month/day format) came to be the date that we celebrate this mathematical marvel.

The first-known Pi Day celebration occurred in 1988. In 2009, the U.S. House of Representatives passed a resolution designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi.

The 2019 Challenge

This year’s NASA Pi Day Challenge features four planetary puzzlers that show students how pi is used at the agency. The challenges involve weathering a Mars dust storm, sizing up a shrinking storm on Jupiter, estimating the water content of a rain cloud on Earth and blasting ice samples with lasers!

›Take on the 2019 NASA Pi Day Challenge!

The Science Behind the Challenge

In late spring of 2018, a dust storm began stretching across Mars and eventually nearly blanketed the entire planet in thick dust. Darkness fell across Mars’ surface, blocking the vital sunlight that the solar-powered Opportunity rover needed to survive. It was the beginning of the end for the rover’s 15-year mission on Mars. At its height, the storm covered all but the peak of Olympus Mons, the largest known volcano in the solar system. In the Deadly Dust challenge, students must use pi to calculate what percentage of the Red Planet was covered by the dust storm.

The Terra satellite, orbiting Earth since 1999, uses the nine cameras on its Multi-Angle Imaging SpectroRadiometer, or MISR, instrument to provide scientists with unique views of Earth, returning data about atmospheric particles, land-surface features and clouds. Estimating the amount of water in a cloud, and the potential for rainfall, is serious business. Knowing how much rain may fall in a given area can help residents and first responders prepare for emergencies like flooding and mudslides. In Cloud Computing, students can use their knowledge of pi and geometric shapes to estimate the amount of water contained in a cloud.

Jupiter’s Great Red Spot, a giant storm that has been fascinating observers since the early 19th century, is shrinking. The storm has been continuously observed since the 1830s, but measurements from spacecraft like Voyager, the Hubble Space Telescope and Juno indicate the storm is getting smaller. How much smaller? In Storm Spotter, students can determine the answer to that very question faced by scientists.

Scientists studying ices found in space, such as comets, want to understand what they’re made of and how they interact and react with the environment around them. To see what molecules may form in space when a comet comes into contact with solar wind or sunlight, scientists place an ice sample in a vacuum and then expose it to electrons or ultraviolet photons. Scientists have analyzed samples in the lab and detected molecules that were later observed in space on comet 67P/Churyumov-Gerasimenko. To analyze the lab samples, an infrared laser is aimed at the ice, causing it to explode. But the ice will explode only if the laser is powerful enough. Scientist use pi to figure out how strong the laser needs to be to explode the sample – and students can do the same when they solve the Icy Intel challenge.

Explore More

Participate

Join the conversation and share your Pi Day Challenge answers with @NASAJPL_Edu on social media using the hashtag #NASAPiDayChallenge

Blogs and Features

Related Activities

Multimedia

Facts and Figures

Missions and Instruments

Websites

TAGS: Pi Day, K-12, STEM, Science, Engineering, Technology, Math, Pi, Educators, Teachers, Informal Education, Museums

  • Lyle Tavernier
READ MORE

2019 Los Angeles Regional Science Bowl winners

After a full day of intense competition, a team of students from University High School in Irvine, California, earned first place in a regional round of the U.S. Department of Energy National Science Bowl on Jan. 26, 2019. This is the second consecutive year that the school has placed first in the regional round, and it's the 27th year that NASA's Jet Propulsion Laboratory in Pasadena, California, has hosted the competition.

› Read the full story on JPL News


TAGS: High School, Science Bowl, Student Competitions, Science, Events

READ MORE

This illustration shows the position of NASA's Voyager 1 and Voyager 2 probes, outside of the heliosphere, a protective bubble created by the Sun that extends well past the orbit of Pluto.

In the News

The Voyager 2 spacecraft, launched in 1977, has reached interstellar space, a region beyond the heliosphere – the protective bubble of particles and magnetic fields created by the Sun – where the only other human-made object is its twin, Voyager 1.

The achievement means new opportunities for scientists to study this mysterious region. And for educators, it’s a chance to get students exploring the scale and anatomy of our solar system, plus the engineering and math required for such an epic journey.

How They Did It

Launched just 16 days apart, Voyager 1 and Voyager 2 were designed to take advantage of a rare alignment of the outer planets that only occurs once every 176 years. Their trajectory took them by the outer planets, where they captured never-before-seen images. They were also able to steal a little momentum from Jupiter and Saturn that helped send them on a path toward interstellar space. This “gravity assist” gave the spacecraft a velocity boost without expending any fuel. Though both spacecraft were destined for interstellar space, they followed slightly different trajectories.

Illustration of the trajectories of Voyager 1 and 2

An illustration of the trajectories of Voyager 1 and Voyager 2. Image credit: NASA/JPL-Caltech | + Expand image

Voyager 1 followed a path that enabled it to fly by Jupiter in 1979, discovering the gas giant’s rings. It continued on for a 1980 close encounter with Saturn’s moon Titan before a gravity assist from Saturn hurled it above the plane of the solar system and out toward interstellar space. After Voyager 2 visited Jupiter in 1979 and Saturn in 1981, it continued on to encounter Uranus in 1986, where it obtained another assist. Its last planetary visit before heading out of the solar system was Neptune in 1989, where the gas giant’s gravity sent the probe in a southward direction toward interstellar space. Since the end of its prime mission at Neptune, Voyager 2 has been using its onboard instruments to continue sensing the environment around it, communicating data back to scientists on Earth. It was this data that scientists used to determine Voyager 2 had entered interstellar space.

How We Know

Interstellar space, the region between the stars, is beyond the influence of the solar wind, charged particles emanating from the Sun, and before the influence of the stellar wind of another star. One hint that Voyager 2 was nearing interstellar space came in late August when the Cosmic Ray Subsystem, an instrument that measures cosmic rays coming from the Sun and galactic cosmic rays coming from outside our solar system, measured an increase in galactic cosmic rays hitting the spacecraft. Then on November 5, the instrument detected a sharp decrease in high energy particles from the Sun. That downward trend continued over the following weeks.

The data from the cosmic ray instrument provided strong evidence that Voyager 2 had entered interstellar space because its twin had returned similar data when it crossed the boundary of the heliosheath. But the most compelling evidence came from its Plasma Science Experiment – an instrument that had stopped working on Voyager 1 in 1980. Until recently, the space surrounding Voyager 2 was filled mostly with plasma flowing out from our Sun. This outflow, called the solar wind, creates a bubble, the heliosphere, that envelopes all the planets in our solar system. Voyager 2’s Plasma Science Experiment can detect the speed, density, temperature, pressure and flux of that solar wind. On the same day that the spacecraft’s cosmic ray instrument detected a steep decline in the number of solar energetic particles, the plasma science instrument observed a decline in the speed of the solar wind. Since that date, the plasma instrument has observed no solar wind flow in the environment around Voyager 2, which makes mission scientists confident the probe has entered interstellar space.

graph showing data from the cosmic ray and plasma science instruments on Voyager 2

This animated graph shows data returned from Voyager 2's cosmic ray and plasma science instruments, which provided the evidence that the spacecraft had entered interstellar space. Image credit: NASA/JPL-Caltech/GSFC | + Expand image

Though the spacecraft have left the heliosphere, Voyager 1 and Voyager 2 have not yet left the solar system, and won't be leaving anytime soon. The boundary of the solar system is considered to be beyond the outer edge of the Oort Cloud, a collection of small objects that are still under the influence of the Sun's gravity. The width of the Oort Cloud is not known precisely, but it is estimated to begin at about 1,000 astronomical units from the Sun and extend to about 100,000 AU. (One astronomical unit, or AU, is the distance from the Sun to Earth.) It will take about 300 years for Voyager 2 to reach the inner edge of the Oort Cloud and possibly 30,000 years to fly beyond it. By that time, both Voyager spacecraft will be completely out of the hydrazine fuel used to point them toward Earth (to send and receive data) and their power sources will have decayed beyond their usable lifetime.

Why It’s Important

Since the Voyager spacecraft launched more than 40 years ago, no other NASA missions have encountered as many planets (some of which had never been visited) and continued making science observations from such great distances. Other spacecraft, such as New Horizons and Pioneer 10 and 11, will eventually make it to interstellar space, but we will have no data from them to confirm their arrival or explore the region because their instruments already have or will have shut off by then.

Watch on YouTube

Interstellar space is a region that’s still mysterious because until 2012, when Voyager 1 arrived there, no spacecraft had visited it. Now, data from Voyager 2 will help add to scientists’ growing understanding of the region. Scientists are hoping to continue using Voyager 2’s plasma science instrument to study the properties of the ionized gases, or plasma, that exist in the interstellar medium by making direct measurements of the plasma density and temperature. This new data may shed more light on the evolution of our solar neighborhood and will most certainly provide a window into the exciting unexplored region of interstellar space, improving our understanding of space and our place in it.

As power wanes on Voyager 2, scientists will have to make tough choices about which instruments to keep turned on. Further complicating the situation is the freezing cold temperature at which the spacecraft is currently operating – perilously close to the freezing point of its hydrazine fuel. But for as long as both Voyager spacecraft are able to maintain power and communication, we will continue to learn about the uncharted territory of interstellar space.

Teach It

Use these standards-aligned lessons and related activities to get students doing math and science with a real-world (and space!) connection.

Explore More

TAGS: Teachers, Educators, Science, Engineering, Technology, Solar System, Voyager, Spacecraft, Educator Resources, Lessons, Activities

  • Ota Lutz
READ MORE