Collage of NASA-JPL education resources

Whether your school will be welcoming students back to campus in the upcoming school year or you're preparing for remote instruction, the Education Office at NASA’s Jet Propulsion Laboratory has several resources you and your students can use to launch back into STEM.

Resources for Teachers

On July 30, NASA launched the Perseverance Mars rover and its companion Ingenuity – the first helicopter designed to fly on the Red Planet. With the two officially on their journey to Mars for a scheduled landing in February 2021, now is a great time to catch up with our new education webinar series, Teaching Space With NASA. In our first three webinars, NASA experts and education specialists introduced Perseverance, offered a look at the engineering behind the rover, and shared some of the exciting science goals for the mission. Visit the Teaching Space With NASA page to watch recordings of the webinars, download a certificate of participation, and explore a cache of resources you can use in your instruction.

During the 2020-21 school year, we’ll be continuing the series, offering monthly live-stream presentations from NASA scientists and engineers, hosted by JPL education specialists. Teaching Space With NASA live streams are open to all audiences, including informal educators and students. Join us for our next live stream on August 19 all about what's next for NASA Mars exploration. Register to join the Q&A at the link below. (Note: You do not need to register to watch – only to ask questions.)

Educators will also have a chance to take a deeper dive into the topic and associated educational resources with our interactive, virtual workshops. Attendance at virtual workshops is limited, so be sure to keep an eye out for new events announced to our email subscribers. Subscribe for "JPL Education Updates" here and check the Events page for the latest workshops.

Also, be sure to keep an eye out for new additions to our searchable catalog of nearly 200 standards-aligned STEM activities in the Teach section of this website. In addition to new lessons, some of your favorite existing lessons will now include tips for virtual instruction, as well as links to projects that students can do independently or with the help of family members.

Resources for Students

Learning Space with NASA at Home features standards-based activities students can do at home with inexpensive materials they may already have on hand. The page also features video tutorials (available with subtitles en Español) and an FAQ for families working with students at home. Check back as new activities featuring the latest NASA missions and science are added throughout the school year.

Explore More

TAGS: Educators, Teachers, K-12 Education, STEM, Educator Resources, Lessons, Student Activities, Parents, Webinars, Workshops

  • Lyle Tavernier
READ MORE

Students write on a glass panel inside the Team X room at JPL

When Jennifer Scully was a planetary geology grad student at UCLA in 2013, she happened upon an email that called for students to apply to something called the Planetary Science Summer School, or PSSS.

“I asked around and everybody only had positive things to say,” she says, “so I applied and I got in.”

She found herself in an immersive, 11-week program that teaches students all over the country how to formulate, design, and pitch a mission concept to a review board of NASA experts – essentially, how to bring a space mission to life from beginning to end.

“It was fabulous,” Scully says of her time in the program. “I come from a science background, and I had worked on an active planetary mission, but I didn’t have much experience with engineering. The summer school gave me my first exposure to mission-concept development and proposals. It was really illuminating.”

Seven years later, Scully is now a geologist at NASA's Jet Propulsion Laboratory in Southern California, researching the asteroid Vesta and dwarf planet Ceres. She also plays a role in planning and designing missions to explore Jupiter's moon Europa. She’s still part of the PSSS program – but, now, as one of the mentors to this year’s cohort of 36 students looking at missions to Venus and Saturn's moon Enceladus.

The first 10 weeks of the program focus on formulation and always happen remotely via webinar. The final week usually culminates with an intensive in-person experience at JPL, during which participants write their mission proposal. Participants receive mentorship from scientists and engineers with the laboratory's Team X, a group that has been helping design and evaluate mission concepts since 1985. Even though the pandemic means their “culminating week” won’t take place physically at the laboratory this year, the students are still descending virtually on the JPL community between July 20 and Aug. 7 to learn the complex dance of what does and doesn’t work when it comes to dreaming up a NASA mission.

Web meeting with the 2020 PSSS cohort

The first of two summer 2020 cohorts to arrive virtually at JPL for their culminating week in the PSSS program. While these one-week sessions are traditionally held in person, this year's group is meeting remotely. | + Expand image

“We do this for the broader planetary science mission community,” says PSSS manager Leslie Lowes, who’s been leading the program since 2010. “It’s about NASA training the next generation of scientists and engineers to do this type of work. Over 650 alumni use this model of mission design, and they’re in all kinds of leadership positions across NASA, including at JPL.”

Developed in 1989, the summer school started as a lecture series on how space missions could address the latest science discoveries and gradually shifted to a more hands-on format in 1999. Instead of hearing about the process, why not let students experience it?

“The first thing we do [when participants arrive at JPL] is help them evaluate potential architectures for their mission. Is it an orbiter or a lander? Is it a flyby?” says Alfred Nash, a mentor for the summer school and a lead engineer for Team X. “Does the science work? Do the engineering and cost work? The problem is not ‘can you make the thing,’ but ‘can you make the thing within the boundaries you have?’”

For Team X, it’s all about an integrated approach, which is one of the principal differences between how missions were developed in earlier days of exploration versus more recently. “Team X itself, its superpower is its ability to work in parallel and concurrently,” Nash says, stressing the importance of how the science should work in parallel with the engineering, the storytelling, the cost, and the project management.

A team of distinguished postdocs and graduate students learns what it's like to design a space mission in just five days as part of the 2014 session of NASA's Planetary Science Summer School at JPL. Credit: NASA/JPL-Caltech | Watch on YouTube

“What is the big thing I’m trying to do? How do all the pieces work together? What is the foundational heart of this in terms of how we’re going to change humanity’s understanding? What are the pieces we need so that happens, and what does it take to do that?” are common questions Nash says Team X asks of all its mission proposals – including the concepts developed in PSSS.

One key lesson Nash tries to impart during the culminating week: “Win [the proposal] and don't regret it when you do,” he says. “The last thing you want to do is design a mission that no one can manage.”

If the students’ answers can pass the rigorous initial hurdles and meet the requirements for a NASA proposal, then they transition to design work. At that point, each student is paired with a mentor who has expertise in a range of engineering capabilities, from mission design to the science tools that will go on a spacecraft.

While this would normally mean working together at JPL, the program has gone virtual this year.

Team X had some practice setting up a virtual experience for the summer’s incoming students, as most JPL employees have been on mandatory telework since mid-March. Currently, the students are in a “waterfall of [web meeting] rooms,” as Nash describes it, where there’s one central meeting room and then individual “stations” in separate rooms, where students and mentors can interface while moving from room to room as needed. A typical day kicks off at 8 a.m. with a daily briefing. Then, students spend half the day with Team X and half the day on their own, preparing for the next day’s tasks. Their day ends at 5 p.m. with a briefing to review what was completed, what worked well, what didn’t, and what needs to change for the next day.

“Everyone knows science, if they’re a scientist, and engineering, if they’re an engineer,” says PSSS alumna Scully. “But now, they’re really trying to understand what mission development is about. This foundation will enable them to work with NASA much more effectively.”

The cohorts that arrive every year are formidable, and this summer’s group is no different: Among the students are 26 Ph.D. candidates and eight postdoctoral researchers.

For Elizabeth Spiers – a Ph.D. candidate studying the habitability of other planets at the Georgia Institute of Technology, and one of this summer’s students examining Enceladus’ ocean – PSSS has provided her with invaluable experience in real-time mission concept problem-solving.

“The project moves quickly and some of our decisions must be made equally as fast,” Spiers says. “Oftentimes, no person on our team knows the answers, and we need to figure out what we don’t know or understand about the problem so that we can ask the correct questions swiftly.”

In addition to critical thinking, the summer school also gives its students the chance to work with a diverse group of students and mentors.

Watkins and Smythe look at a computer screen together

NASA astronaut Jessica Watkins, an alumna of the program, attending her PSSS session in 2016 with mentor Bill Smythe. Image credit: NASA/JPL-Caltech | + Expand image

“It’s really exhilarating to see all of those disparate backgrounds and expertise come together into one cohesive project,” Spiers says. “I have learned so much about not only our project and the science and engineering related to it, but also about my teammates and their individual passions.”

Over the years, the program has taught students lessons they can carry with them throughout their careers. PSSS alumna Jessica Watkins went on to become a NASA astronaut and, at JPL, two summer school alumni led development of science instruments on the Perseverance Mars roverPIXL and SHERLOC. And this year, there’s a new star in the program, literally: The summer school is piloting a second experience called the Heliophysics Mission Design School to help strengthen hypotheses-driven science investigations when designing missions to the Sun.

Perhaps one lesson students will take away from PSSS is not only knowing what they want, but also recognizing the limits of space exploration.

“The most rewarding thing is seeing them make good decisions,” says Nash. “When they avoid trying to do something too expensive just because it’s cool. When they find a more fruitful way forward. What you want has nothing to do with it; it’s about what the world will let you do and how clever you are at navigating those boundaries.”

› Learn more about the program and apply

› See a full collection of articles about PSSS on JPL Edu News


Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, College Students, Virtual Internships, PSSS, Planetary Science Summer School, Ph.D. Programs, Science, Mission Design, PSSS Alumn

  • Celeste Hoang
READ MORE

Collage of intern photos that appear in this article

Most years, summertime at NASA's Jet Propulsion Laboratory arrives with an influx of more than 800 interns, raring to play a hands-on role in exploring Earth and space with robotic spacecraft.

Perhaps as exciting as adding NASA to their resumes and working alongside the scientists and engineers they have long admired is the chance to explore the laboratory's smorgasbord of science labs, spacecraft assembly facilities, space simulators, the historic mission control center and a place called the Mars Yard, where engineers test drive Mars rovers.

But this year, as the summer internship season approached with most of JPL's more than 6,000 employees still on mandatory telework, the laboratory – and the students who were offered internships at the Southern California center – had a decision to make.

"We asked the students and the mentors [the employees bringing them in] whether their projects could still be achieved remotely and provide the educational component we consider to be so crucial to these experiences," said Adrian Ponce, deputy section manager of JPL's Education Office, which runs the laboratory's STEM internship programs.

The answer was a resounding yes, which meant the laboratory had just a matter of weeks to create virtual alternatives for every aspect of the internship experience, from accessing specialized software for studying Earth and planetary science to testing and fine-tuning the movements of spacecraft in development and preparing others for launch to attending enrichment activities like science talks and team building events.

“We were able to transition almost all of the interns to aspects of their projects that are telework-compatible. Others agreed to a future start date,” said Ponce, adding that just 2% of the students offered internships declined to proceed or had their projects canceled.

Now, JPL's 600-plus summer interns – some who were part-way through internships when the stay-at-home orders went into effect, others who are returning and many who are first-timers – are getting an extended lesson in the against-the-odds attitude on which the laboratory prides itself.

We wanted to hear about their experiences as JPL's first class of remote interns. What are their routines and home offices like in cities across the country? How have their teams adapted to building spacecraft and doing science remotely? Read a collection of their responses below to learn how JPL interns are finding ways to persevere, whether it's using their engineering skills to fashion homemade desks, getting accustomed to testing spacecraft from 2,000 miles away or working alongside siblings, kids, and pets.


In the image on the left, Jennifer Brag stands in front of a series of observatories. In the image on the right, her bird is pirched on top of open laptop.

Courtesy of Jennifer Bragg | + Expand image

"I am working with an astronomer on the NEOWISE project, which is an automated system that detects near-Earth objects, such as asteroids. The goal of my project is to identify any objects missed by the automated system and use modeling to learn more about their characteristics. My average day consists of writing scripts in Python to manipulate the NEOWISE data and visually vet that the objects in the images are asteroids and not noise or stars.

My office setup consists of a table with scattered books, papers, and pencils, a laptop, television, a child in the background asking a million questions while I work, and a bird on my shoulder that watches me at times."

– Jennifer Bragg will be studying optics at the University of Arizona as an incoming graduate student starting this August. She is completing her summer internship from Pahoa, Hawaii.


Radina Yanakieva poses in front of a model of the Curiosity Mars rover at JPL

Courtesy of Radina Yanakieva | + Expand image

"I'm helping support the Perseverance Mars rover launch this summer. So far, I have been working remotely, but I'm lucky enough to have the opportunity to go to Pasadena, California, in late July to support the launch from JPL! On launch day, I will be in the testbed, where myself and a few other members of my group will be 'shadowing' the spacecraft. This means that when operators send their commands to the actual spacecraft, when it’s on the launch pad and during its first day or so in space, we'll send the same instructions to the test-bed version. This way, if anything goes wrong, we'll have a high-fidelity simulation ready for debugging.

I have a desk in my bedroom, so my office setup is decent enough. I bought a little whiteboard to write myself notes. As for my average working day, it really depends on what I'm doing. Some days, I'm writing procedures or code, so it's a text editor, a hundred internet tabs, and a messenger to ask my team members questions. Other days, I'm supporting a shift in the test bed, so I'm on a web call with a few other people talking about the test we're doing. Luckily, a large portion of my team's work can be done on our personal computers. The biggest change has been adding the ability to operate the test bed remotely. I'm often amazed that from New York, I can control hardware in California.

I was ecstatic that I was still able to help with the Perseverance Mars rover mission! I spent the second half of 2019 working on launch and cruise testing for the mission, so I'm happy to be able to see it through."

– Radina Yanakieva is an undergraduate student studying aerospace engineering at Georgia Tech and interning from Staten Island, New York.


Aditya Khuller stands with his arms outstretched and poses in front of a model Mars rover in a garage at JPL.

Courtesy of Aditya Khuller | + Expand image

"Our team is using radar data [from the European Space Agency’s Mars Express spacecraft] to find out what lies beneath the large icy deposits on Mars' south pole. My average day consists of analyzing this radar data on my computer to find and map the topography of an older surface that lies below the ice on Mars’ south pole, while my plants look on approvingly.

I was delighted to be offered the chance to work at JPL again. (This is my fourth JPL internship.) Even though it's better to be 'on lab,' it is an honor to get to learn from the coolest and smartest people in the world."

– Aditya Khuller is a graduate student working toward a Ph.D. in planetary science at Arizona State University and interning from Tempe, Arizona.


Breanna Ivey wears a Georgia Tech T-Shirt and poses in front of a river with her arms outstretched on concrete railing.

Courtesy of Breanna Ivey | + Expand image

"I am working on the Perseverance Mars rover mission [launching this summer]. As a member of the mobility team, I am testing the rover's auto-navigation behaviors. If given a specific location, flight software should be able to return data about where that location is relative to the rover. My project is to create test cases and develop procedures to verify the data returned by the flight software when this feature is used.

My average day starts with me eating breakfast with my mom who is also working from home. Then, I write a brief plan for my day. Next, I meet with my mentor to discuss any problems and/or updates. I spend the rest of my day at my portable workstation working on code to test the rover's behaviors and analyzing the data from the tests. I have a mini desk that I either set up in my bedroom in front of my Georgia Tech Buzz painting or in the dining room.

If I could visit in person, the first thing I would want to see is the Mars rover engineering model "Scarecrow." I would love to visit the Mars Yard [a simulated Mars environment at JPL] and watch Scarecrow run through different tests. It would be so cool to see a physical representation of the things that I've been working on."

– Breanna Ivey is an undergraduate student studying electrical engineering at the Georgia Institute of Technology and interning from Macon, Georgia.


Kaelan Oldani wears her graduation gown and holds her cap while posing in front of a sign that reads 'Michigan Union.'

Courtesy of Kaelan Oldani | + Expand image

"I am working on the Psyche mission as a member of the Assembly Test and Launch Operations team, also known as ATLO. (We engineers love our acronyms!) Our goal is to assemble and test the Psyche spacecraft to make sure everything works correctly so that the spacecraft will be able to orbit and study its target, a metal asteroid also called Psyche. Scientists theorize that the asteroid is actually the metal core of what was once another planet. By studying it, we hope to learn more about the formation of Earth.

I always start out my virtual work day by giving my dog a hug, grabbing a cup of coffee and heading up to my family's guest bedroom, which has turned into my office for the summer. On the window sill in my office are a number of space-themed Lego sets including the 'Women of NASA' set, which helps me get into the space-exploration mood! Once I have fueled up on coffee, my brain is ready for launch, and I log in to the JPL virtual network to start writing plans for testing Psyche's propulsion systems. While the ATLO team is working remotely, we are focused on writing test plans and procedures so that they can be ready as soon as the Psyche spacecraft is in the lab for testing. We have a continuous stream of video calls set up throughout the week to meet virtually with the teams helping to build the spacecraft."

– Kaelan Oldani is a master's student studying aerospace engineering at the University of Michigan and interning from Ann Arbor, Michigan. She recently accepted a full-time position at JPL and is starting in early 2021.


In the image on the left, Richardo Isai Melgar poses in front of a model of the Curiosity Mars rover at JPL. In the image on the right, he kneels in front of a model Mars rover in the Mars Yard at JPL.

Courtesy of Ricardo Isai Melgar | + Expand image

"NASA's Deep Space Network is a system of antennas positioned around the world – in Australia, Spain, and Goldstone, California – that's used to communicate with spacecraft. My internship is working on a risk assessment of the hydraulic system for the 70-meter antenna at the Goldstone facility. The hydraulic system is what allows the antenna and dish surrounding it to move so it can accurately track spacecraft in flight. The ultimate goal of the work is to make sure the antenna's hydraulic systems meet NASA standards.

My average day starts by getting ready for work (morning routine), accessing my work computer through a virtual interface and talking with my mentor on [our collaboration tool]. Then, I dive into work, researching hydraulic schematics, JPL technical drawings of the antenna, and NASA standards, and adding to a huge spreadsheet that I use to track every component of the antenna's hydraulic system. Currently, I'm tracking every flexible hydraulic fluid hose on the system and figuring out what dangers a failure of the hose could have on personnel and the mission."

– Ricardo Isai Melgar is an undergraduate student studying mechanical engineering at East Los Angeles College and interning from Los Angeles.


Susanna Eschbach poses in front of a mirrored background.

Courtesy of Susanna Eschbach | + Expand image

"My project this summer is to develop a network of carbon-dioxide sensors to be used aboard the International Space Station for monitoring the levels of carbon dioxide that crewmembers experience.

My 'office setup' is actually just a board across the end of my bed balanced on the other side by a small dresser that I pull into the middle of the room every day so that I can sit and have a hard surface to work on.

At first I wasn't sure if I was interested in doing a virtual engineering internship. How would that even work? But after talking to my family, I decided to accept. Online or in person, getting to work at JPL is still a really cool opportunity."

– Susanna Eschbach is an undergraduate student studying electrical and computer engineering at Northern Illinois University and interning from DeKalb, Illinois.


Izzie Torres poses in front of an ancient pyramid.

Courtesy of Izzie Torres | + Expand image

"I'm planning test procedures for the Europa Clipper mission [which is designed to make flybys of Jupiter's moon Europa]. The end goal is to create a list of tests we can perform that will prove that the spacecraft meets its requirements and works as a whole system.

I was very excited when I got the offer to do a virtual internship at JPL. My internship was originally supposed to be with the Perseverance Mars rover mission, but it required too much in-person work, so I was moved to the Europa Clipper project. While I had been looking forward to working on a project that was going to be launching so soon, Jupiter's moon Europa has always captured my imagination because of the ocean under its surface. It was an added bonus to know I had an internship secured for the summer."

– Izzie Torres is an undergraduate student studying aerospace engineering and management at MIT and interning from Seattle.


Jared Blanchard poses in front of a visualization in the VIVID lab at JPL.

Courtesy of Jared Blanchard | + Expand image

"I am investigating potential spacecraft trajectories to reach the water worlds orbiting the outer planets, specifically Jupiter's moon Europa. If you take both Jupiter and Europa into account, their gravitational force fields combine to allow for some incredibly fuel-efficient maneuvers between the two. The ultimate goal is to make it easier for mission designers to use these low-energy trajectories to develop mission plans that use very little fuel.

I'm not a gamer, but I just got a new gaming laptop because it has a nice graphics processing unit, or GPU. During my internship at JPL last summer, we used several GPUs and a supercomputer to make our trajectory computations 10,000 times faster! We plan to use the GPU to speed up my work this summer as well. I have my laptop connected to a second monitor up in the loft of the cabin where my wife and I are staying. We just had a baby two months ago, so I have to make the most of the quiet times when he's napping!"

– Jared Blanchard is a graduate student working toward a Ph.D. in aeronautics and astronautics at Stanford University.


Yohn Ellis, wearing a suit and tie, poses in front of yellow and gold balloons.

Courtesy of Yohn I. Ellis Jr. | + Expand image

"I'm doing a theory-based project on the topic of nanotechnology under the mentorship of Mohammad Ashtijou and Eric Perez.

I vividly remember being infatuated with NASA as a youth, so much so that my parents ordered me a pamphlet from Space Center Houston with posters and stickers explaining all of the cool things happening across NASA. I will never forget when I was able to visit Space Center Houston on spring break in 2009. It was by far the most amazing thing I have ever witnessed as a youth. When I was offered the internship at JPL, I was excited, challenged, and motivated. There is a great deal of respect that comes with being an NASA intern, and I look forward to furthering my experiences.

But the challenges are prevalent, too. Unfortunately, the internship is completely virtual and there are limitations to my experience. It is hard working at home with the multiple personalities in my family. I love them, but have you attempted to conduct research with a surround system of romantic comedies playing in the living room, war video games blasting grenades, and the sweet voice of your grandmother asking for help getting pans from the top shelf?"

– Yohn I. Ellis Jr. is a graduate student studying electrical engineering at Prairie View A&M University and interning from Houston.


Mina Cezairli wears a NASA hat and poses in front of a landscape of green mountains a turqoise ocean and puffy white and grey clouds.

Courtesy of Mina Cezairli | + Expand image

"This summer, I am supporting the proposal for a small satellite mission concept called Cupid’s Arrow. Cupid’s Arrow would be a small probe designed to fly through Venus’ atmosphere and collect samples. The ultimate goal of the project is to understand the “origin story” of Venus' atmosphere and how, despite their comparable sizes, Earth and Venus evolved so differently geologically, with the former being the habitable, friendly planet that we call home and the latter being the hottest planet in our solar system with a mainly carbon dioxide atmosphere.

While ordinary JPL meetings include discussions of space probes, rockets, and visiting other planets, my working day rarely involves leaving my desk. Because all of my work can be done on my computer, I have a pretty simple office setup: a desk, my computer, and a wall full of posters of Earth and the Solar System. An average day is usually a combination of data analysis, reading and learning about Venus, and a number of web meetings. The team has several different time zones represented, so a morning meeting in Pacific time accommodates all of Pacific, Eastern and European time zones that exist within the working hours of the team."

– Mina Cezairli is an undergraduate student studying mechanical engineering at Yale University and is interning from New Haven, Connecticut.


Izabella Zamora sits on steps leading up to a building with pumpkins decorating the steps to her right.

Courtesy of Izabella Zamora | + Expand image

“I'm characterizing the genetic signatures of heat-resistant bacteria. The goal is to improve the techniques we use to sterilize spacecraft to prevent them from contaminating other worlds or bringing contaminants back to Earth. Specifically, I'm working to refine the amount of time spacecraft need to spend getting blasted by dry heat as a sanitation method.

"As someone who has a biology-lab heavy internship, I was quite skeptical of how an online internship would work. There was originally supposed to be lab work, but I think the project took an interesting turn into research and computational biology. It has been a really cool intersection to explore, and I have gained a deeper understanding of the math and analysis involved in addition to the biology concepts."

– Izabella Zamora is an undergraduate student studying biology and computer science at the Massachusetts Institute of Technology and interning from Brimfield, Massachusetts.


Leilani Trautman poses for a photo at an outside table. The back of her open laptop has dozens of stickers attached to it, including a NASA meatball.

Courtesy of Leilani Trautman | + Expand image

"I am working on the engineering operations team for the Perseverance Mars rover. After the rover lands on Mars, it will send daily status updates. Every day, an engineer at JPL will need to make sure that the status update looks healthy so that the rover can continue its mission. I am writing code to make that process a lot faster for the engineers.

When I was offered the internship back in November, I thought I would be working on hardware for the rover. Once the COVID-19 crisis began ramping up and I saw many of my friends' internships get cancelled or shortened, I was worried that the same would happen to me. One day, I got a call letting me know that my previous internship wouldn't be possible but that there was an opportunity to work on a different team. I was so grateful to have the opportunity to retain my internship at JPL and get the chance to work with my mentor, Farah Alibay, who was once a JPL intern herself."

– Leilani Trautman is an undergraduate student studying electrical engineering and computer science at MIT and interning from San Diego, California.


Kathryn Chamberlin poses for an outdoor photo in front of a green hedge.

Courtesy of Kathryn Chamberlin | + Expand image

"I am working on electronics for the coronagraph instrument that will fly aboard the Nancy Grace Roman Space Telescope. The Roman Space Telescope will study dark energy, dark matter, and exoplanets [planets outside our solar system]. The science instrument I'm working on will be used to image exoplanets. It's also serving as a technology demonstration to advance future coronagraphs [which are instruments designed to observe objects close to bright stars].

I was both nervous and excited to have a virtual internship. I’m a returning intern, continuing my work on the coronagraph instrument. I absolutely love my work and my project at JPL, so I was really looking forward to another internship. Since I’m working with the same group, I was relieved that I already knew my team, but nervous about how I would connect with my team, ask questions, and meet other 'JPLers.' But I think my team is just as effective working virtually as we were when working 'on lab.' My mentor and I have even figured out how to test hardware virtually by video calling the engineer in the lab and connecting remotely into the lab computer."

– Kathryn Chamberlin is an undergraduate student studying electrical engineering at Arizona State University and interning from Phoenix.


Daniel Stover is shown in a screengrab from a web meeting app pointing to an illustration of the Perseverance Mars rover.

Courtesy of Daniel Stover | + Expand image

"I am working on the flight system for the Perseverance Mars rover. The first half of my internship was spent learning the rules of the road for the entire flight system. My first task was updating command-line Python scripts, which help unpack the data that is received from the rover. After that, I moved on to testing a part of the flight software that manages which mechanisms and instruments the spacecraft can use at a certain time. I have been so grateful to contribute to the Perseverance Mars rover project, especially during the summer that it launches!

I have always been one to be happy with all the opportunities I am granted, but I do have to say it was hard to come to the realization that I would not be able to step foot on the JPL campus. However, I was truly grateful to receive this opportunity, and I have been so delighted to see the JPL spirit translate to the online video chats and communication channels. It's definitely the amazing people who make JPL into the place that everybody admires. Most important, I would like to thank my mentor, Jessica Samuels, for taking the time to meet with me every day and show me the true compassion and inspiration of the engineers at JPL."

– Daniel Stover is an undergraduate student studying electrical and computer engineering at Virginia Tech and interning from Leesburg, Virginia.


In the image on the left, Sophia Yoo poses for a selfie. In the image on the right, her laptop, mouse, headphones and open notebook are shown at a table outside surrounded by a wooden porch and a green landscape.

Courtesy of Sophia Yoo | + Expand image

"I'm working on a project called the Multi-Angle Imager for Aerosols, or MAIA. It's an instrument that will go into lower Earth orbit and collect images of particulate matter to learn about air pollution and its effects on health. I'm programming some of the software used to control the instrument's electronics. I'm also testing the simulated interface used to communicate with the instrument.

I was ecstatic to still have my internship! I'm very blessed to be able to do all my work remotely. It has sometimes proven to be a challenge when I find myself more than four layers deep in virtual environments. And it can be confusing to program hardware on the West Coast with software that I wrote all the way over here on the East Coast. However, I've learned so much and am surprised by and grateful for the meaningful relationships I've already built."

– Sophia Yoo is an incoming graduate student studying electrical and computer engineering at Princeton University and is interning from Souderton, Pennsylvania.


Natalie Maus can be seen in the right corner of the image as she looks at a graph on her laptop.

Courtesy of Natalie Maus | + Expand image

"My summer research project is focused on using machine-learning algorithms to make predictions about the density of electrons in Earth’s ionosphere [a region of the planet's upper atmosphere]. Our work seeks to allow scientists to forecast this electron density, as it has important impacts on things such as GPS positioning and aircraft navigation.

Despite the strangeness of working remotely, I have learned a ton about the research process and what it is like to be part of a real research team. Working alongside my mentors to adapt to the unique challenges of working remotely has also been educational. In research, and in life, there will always be new and unforeseen problems and challenges. This extreme circumstance is valuable in that it teaches us interns the importance of creative problem solving, adaptability, and making the most out of the situation we are given."

– Natalie Maus is an undergraduate student studying astrophysics and computer science at Colby College and interning from Evergreen, Colorado.


Lucas Lange wears hiking gear and poses next to an American Flag at the top of a mountain with a valley visible in the background.

Courtesy of Lucas Lange | + Expand image

"I have two projects at JPL. My first project focuses on the Europa Clipper mission [designed to make flybys of Jupiter's moon Europa]. I study how the complex topography on the icy moon influences the temperature of the surface. This work is crucial to detect 'hot spots,' which are areas the mission (and future missions) aim to study because they might correspond to regions that could support life! My other work consists of studying frost on Mars and whether it indicates the presence of water-ice below the surface.

JPL and NASA interns are connected through social networks, and it's impressive to see the diversity. Some talks are given by 'JPLers' who make themselves available to answer questions. When I came to JPL, I expected to meet superheroes. This wish has been entirely fulfilled. Working remotely doesn't mean working alone. On the contrary, I think it increases our connections and solidarity."

– Lucas Lange is an undergraduate student studying aerospace engineering and planetary science at ISAE-SUPAERO [aerospace institute in France] and interning from Pasadena, California.


Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, College Students, Virtual Internships, Telework, Mars 2020 interns, Mars 2020, Perseverance, DSN, Deep Space Network, Mars, Asteroids, NEOWISE, Science, Technology, Engineering, Computer Science, Psyche, International Space Station, ISS, Europa, Jupiter, Europa Clipper, trajectory, nanotechnology, Cupid's Arrow, Proposal, Venus, Planetary Protection, Biology, Nancy Grace Roman Space Telescope, Dark Matter, Exoplanets, Multi-Angle Imager for Aerosols, MAIA, Earth, Earth science, air pollution, Hispanic Heritage Month, Black History Month, Asian Pacific American Heritage Month

  • Kim Orr
READ MORE

Artist's concept of the Perseverance rover on Mars

Update: July 6, 2020 – Due to processing delays in preparations to unite the spacecraft with the rocket, the first launch attempt will be no earlier than July 30 at 4:50 a.m. PDT (7:50 a.m. EDT). The launch period has been expanded to Aug. 15. Dates updated below. › Read more


Perseverance, NASA's most advanced Mars rover yet, is scheduled to leave Earth for its seven-month journey to the Red Planet this summer.

Only the fifth NASA rover destined for Mars, Perseverance is designed to build on the work and scientific discoveries of its predecessors. Find out more about the rover's science goals and new technologies below. Plus, learn how you can bring the exciting engineering and science of this mission to students with lessons and DIY projects covering topics like biology, geology, physics, mathematics, engineering, coding and language arts.

Why It's Important

Perseverance may look similar to Curiosity – the NASA rover that's been exploring Mars since 2012 – but the latest rover's new science instruments, upgraded cameras, improved onboard computers and new landing technologies make it uniquely capable of accomplishing the science goals planned for the mission.

Diagram of the Perseverance Mars rover's science instruments. Credit: NASA/JPL-Caltech | + Expand image

Looking for signs of habitability

The first of the rover's four science goals deals with studying the habitability of Mars. The mission is designed to look for environments that could have supported life in the past.

Perseverance will land in Jezero Crater, a 28-mile-wide (45-kilometer-wide) crater that scientists believe was once filled with water. Data from orbiters at the Red Planet suggest that water once flowed into the crater, carrying clay minerals from the surrounding area, depositing them in the crater and forming a delta. We find similar conditions on Earth, where the right combination of water and minerals can support life. By comparing these to the conditions we find on Mars, we can better understand the Red Planet's ability to support life. The Perseverance rover is specially designed to study the habitability of Mars' Jezero Crater using a suite of scientific instruments, or tools, that can evaluate the environment and the processes that influence it.

This animated flyover shows the area where Perseverance will land in February 2021 and is narrated by the mission's project scientist, Ken Farley. Credit: NASA/JPL-Caltech | › Learn more about the mission's landing site | Watch on YouTube

Seeking signs of ancient life

The rover's second science goal is closely linked with its first: Perseverance will seek out evidence that microbial life once existed on Mars in the past. In doing so, the mission could make progress in understanding the origin, evolution and distribution of life in the universe – the scientific field known as astrobiology.

It's important to note that the rover won't be looking for present-day life. Instead, its instruments are designed to look for clues left behind by ancient life. We call those clues biosignatures. A biosignature might be a pattern, object or substance that was created by life in the past and can be identified by certain properties, such as chemical composition, mineralogy or structure.

To better understand if a possible biosignature is really a clue left behind by ancient life, we need to look for biosignatures and study the habitability of the environment. Discovering that an environment is habitable does not automatically mean life existed there and some geologic processes can leave behind biosignature-like signs in non-habitable environments.

Collecting samples

Perseverance's third science goal is to gather samples of Martian rocks and soil. The rover will leave the samples on Mars, where future missions could collect them and bring them back to Earth for further study.

Scientists can learn a lot about Mars with a rover like Perseverance that can take in situ (Latin for "on-site") measurements. But examining samples from Mars in full-size laboratories on Earth can provide far more information about whether life ever existed on Mars than studying them on the Martian surface.

Perseverance will take the first step toward making a future sample return possible. The rover is equipped with special coring drill bits that will collect scientifically interesting samples similar in size to a piece of chalk. Each sample will be capped and sealed in individual collection tubes. The tubes will be stored aboard the rover until the mission team determines the best strategic locations on the planet's surface to leave them. The collection tubes will stay on the Martian surface until a potential future campaign collects them for return to Earth. NASA and the European Space Agency are solidifying concepts for the missions that will complete this campaign.

Preparing for future astronauts

Astronauts, an exploration vehicle and a habitat are shown among a rich orange landscape

This artist's concept depicts astronauts and human habitats on Mars. The Perseverance Mars rover will carry a number of technologies that could pave the way for astronauts to explore Mars. Credit: NASA | + Expand image

Like the robotic spacecraft that landed on the Moon to prepare for the Apollo astronauts, the Perseverance rover's fourth science goal will help pave the way for humans to eventually visit Mars.

Before humans can set foot on the Red Planet, we need to know more about conditions there and demonstrate that technologies needed for returning to Earth, and survival, will work. That’s where MOXIE comes in. Short for Mars Oxygen In-Situ Resource Utilization Experiment, MOXIE is designed to separate oxygen from carbon dioxide (CO2) in Mars' atmosphere. The atmosphere that surrounds the Red Planet is 96% CO2. But there's very little oxygen – only 0.13%, compared with the 21% in Earth’s atmosphere.

Oxygen is a crucial ingredient in rocket fuel and is essential for human survival. MOXIE could show how similar systems sent to Mars ahead of astronauts could generate rocket fuel to bring astronauts back to Earth and even create oxygen for breathing.

Join JPL mechanical engineer Mike Meacham to find out how the MOXIE instrument on NASA's Perseverance Mars rover is designed to convert carbon dioxide from Mars' atmosphere into oxygen. Credit: NASA/JPL-Caltech | Watch on YouTube

Flying the first Mars helicopter

Joining the Perseverance rover on Mars is the first helicopter designed to fly on another planet. Dubbed Ingenuity, the Mars Helicopter is a technology demonstration that will be the first test of powered flight on another planet.

The lightweight helicopter rides to Mars attached to the belly of the rover. After Perseverance is on Mars, the helicopter will be released from the rover and will attempt up to five test flights in the thin atmosphere of Mars. After a successful first attempt at lifting off, hovering a few feet above the ground for 20 to 30 seconds and landing, the operations team can attempt incrementally higher and longer-distance flights. Ingenuity is designed to fly for up to 90 seconds, reach an altitude of 15 feet and travel a distance of nearly 980 feet. Sending commands to the helicopter and receiving information about the flights relayed through the rover, the helicopter team hopes to collect valuable test data about how the vehicle performs in Mars’ thin atmosphere. The results of the Mars Helicopter's test flights will help inform the development of future vehicles that could one day explore Mars from the air. Once Ingenuity has completed its technology demonstration, Perseverance will continue its mission on the surface of the Red Planet.

Join JPL mechanical engineer Mike Meacham to learn about the first helicopter designed for Mars. Credit: NASA/JPL-Caltech | Watch on YouTube

How It Works

Before any of that can happen, the Perseverance Mars rover needs to successfully lift off from Earth and begin its journey to the Red Planet. Here's how the launch is designed to ensure that the spacecraft and Mars are at the same place on landing day.

About every 26 months, Mars and Earth are at points in their orbits around the Sun that allow us to launch spacecraft to Mars most efficiently. This span of time, called a launch period, lasts several weeks. For Perseverance, the launch period is targeted to begin at 4:50 a.m. PDT (7:50 a.m. EDT) on July 30 and end on Aug. 15. Each day, there is a launch window lasting about two hours. If all conditions are good, we have liftoff! If there's a little too much wind or other inclement weather, or perhaps engineers want to take a look at something on the rocket during the window, the countdown can be paused, and teams will try again the next day.

Regardless of when Perseverance launches during this period, the rover will land on Mars on Feb. 18, 2021, at around 12:30 PST. Engineers can maintain this fixed landing date because when the rover launches, it will go into what's called a parking orbit around Earth. Depending on when the launch happens, the rover will coast in the temporary parking orbit for 24 to 36 minutes. Then, the upper stage of the rocket will ignite for about seven minutes, giving the spacecraft the velocity it needs to reach Mars.

Like the Curiosity rover, Perseverance will launch from Launch Complex 41 at Cape Canaveral Air Force Station in Florida on an Atlas V 541 rocket – one of the most powerful rockets available for interplanetary spacecraft.

Watch a live broadcast of the launch from the Kennedy Space Center on NASA TV and the agency’s website. Visit the Perseverance rover mission website to explore a full listing of related virtual events and programming, including education workshops, news briefings and conversations with mission experts. Follow launch updates on NASA's Twitter, Facebook and Instagram accounts.

Teach It

The launch of NASA's next Mars rover and the first Mars Helicopter is a fantastic opportunity to engage students in real-world problem solving across the STEM fields. Check out some of the resources below to see how you can bring NASA missions and science to students in the classroom and at home.

Virtual Education Workshops

Lessons for Educators

Activities for Students

Explore More


TAGS: Mars, Mars 2020, Perseverance, Mars Rover, launch, Teach, teachers, educators, parents, lessons, activities, resources, K-12, STEM, events, students, science, engineering

  • Lyle Tavernier
READ MORE

Catherine Elder poses in front of a brown-colored mural of the planets.

Catherine Elder's office is a small, cavernous space decorated with pictures of the Moon and other distant worlds she studies as a research scientist at NASA's Jet Propulsion Laboratory. Elder has been interested in space science since she was young, but she didn't always imagine she'd be working at one of the few places that builds robotic spacecraft designed to venture to mysterious worlds. A doctorate in planetary science – the study of the evolution of planets and other bodies in space – first brought her to JPL five years ago for research into the geologic history of the Moon. She planned to eventually become a professor, but a sort of gravitational pull has kept her at the laboratory, where in addition to lunar science, she's now involved in projects studying asteroids, Jupiter's moon Europa and future missions. We met up with her earlier this year to talk about her journey, how a program at JPL helped set her career in motion and how she's paying it forward as a mentor to interns.

What do you do at JPL?

A lot of what I do is research science. So that involves interpreting data from spacecraft and doing some modeling to understand the physical properties of places like the Moon, asteroids and Jupiter's moon Europa.

I am also working on mission formulation. So in that case, my role is to work with the engineers to make sure that the missions we're designing will actually be able to obtain the data that we need in order to answer the science questions that we have.

Tell us about some of the projects you're working on.

A lot of my work right now is looking at the Moon. I'm on the team for the Diviner instrument on the Lunar Reconnaissance Orbiter. That instrument observes the Moon in infrared, which we can use to understand the geologic history, such as how rocks break down over time. We can also look at specific features, like volcanoes, and understand their material properties. I do similar work on the OSIRIS-REx mission [which aims to return a sample from the asteroid Bennu].

I'm on the Europa Clipper team right now. I'm the investigation scientist for the cameras on the mission [which is designed to make flybys of Jupiter's moon Europa]. So I serve as a liaison between the camera team and other parts of the project.

I'm also working on a project modeling the convection in the rocky portion of Europa, underneath the liquid-water layer. Our goal is to understand how likely it is that there are volcanoes on the seafloor of Europa. A lot of scientists in their previous work have suggested that life could originate in these volcanoes. So we're going back and looking at how likely it is that they exist.

Sounds like fascinating work and like you're keeping busy! What is your average day like?

When I'm analyzing the data and doing modeling, I'm usually at my computer. I do a lot of computer coding and programming. We do a lot of modeling to help interpret the data that we get. For example, if we think we know the physical properties of a surface, how are those going to affect how the surface heats up or cools down over the course of a day? I compare what we find to the observations [from spacecraft] and circle back and forth until we have a better idea of what those surface materials are like.

Then, for the mission work, it's a lot more meetings. I'm in meetings with the engineers and with other scientists, talking about mission requirements, observation plans and things like that.

Tell us a bit about your background and what brought you to JPL.

I have wanted to be an astronomer since I was nine years old. So I was an astronomy major at Cornell University in New York. I didn't really realize planetary science existed, but luckily Cornell is one of the few universities where planetary science is in the astronomy department. A lot of times it's in the geology department. I started to learn more about planetary science by taking classes and realized that was what I was really interested in. So I went to the University of Arizona for grad school and got a Ph.D. in planetary science.

I thought I eventually wanted to be a professor somewhere. A postdoc position is kind of a stepping stone between grad school and faculty positions or other more permanent positions. So I was looking for a postdoc, and I found one at JPL. It was pretty different from what my thesis work had been on, but it sounded really interesting. I didn't think I was going to stay at JPL, but I ended up really liking it, and I got hired as a research scientist.

You also took part in the Planetary Science Summer School at JPL, working on a simulated mission design project. What made you want to apply for that program and what was the experience like?

I've always been interested in missions. I began PSSS when I was a postdoc at JPL, so I was already working with mission data from the Lunar Reconnaissance Orbiter. But by the time I joined the team, LRO had been orbiting the Moon for more than five years, so it was a well oiled machine.

I was interested in thinking about future missions and how you design one. So PSSS was a really great experience. They gave us a couple targets that we could pick between, and we picked Uranus. We had to come up with all the science objectives we would want to have if we visited Uranus [with a robotic spacecraft]. We had a mix of scientists and engineers, but none of us had studied Uranus, so we had to do a lot of background reading and figure out the big outstanding questions about the planet and its moons. We came up with a ton of them. When we did our first session with Team X, which is JPL's mission formulation team, we realized that we had way too many objectives, and we were never going to be able to achieve all of them in the budget that we had. It was a big wake up call. We had to narrow the scope of what we wanted to do a lot.

Then we had two more sessions with Team X, and we eventually came up with a concept where we were within the budget and we had a couple of instruments that could answer some science questions. Then we presented the mission idea to scientists and engineers at JPL and NASA headquarters who volunteered as judges.

Participants in the Planetary Science Summer School are assigned various roles that are found on real mission design teams. What role did you play?

I had the role of principal investigator [which is the lead scientist for the mission].

How did that experience shape what you're doing today?

Actually, quite a bit. Learning how you develop a science objective and thinking through it, you start with goals like, "I want to understand the formation and evolution of the solar system." That's a huge question. You're never going to answer it in one mission. So the next step is to come up with a testable hypothesis, which for Uranus could be something like, "Is Uranus' current orbit where it originally formed?" And then you have to come up with measurement objectives that can address that hypothesis. Then you have to think about which instruments you need to make those measurements. So learning about that whole process has helped a lot, and it's similar to what I'm doing on the Europa mission now.

Catherine Elder wears a purple shirt and sits in an office chair surrounded by images of the Moon and other worlds

Elder sits in her office in the "science building" at JPL surrounded by images of the places she's working to learn more about. More than just pretty pictures, the images from spacecraft are also one of the key ways she and her interns study moons and planets from afar. Image credit: NASA/JPL-Caltech | + Expand image

I also got really interested in the Uranus system, specifically the moons, because they show a lot of signs of recent geologic activity. They might be just as interesting as the moons of Saturn and Jupiter. But Voyager 2 is the only spacecraft that has visited them. At that time, only half of the moons were illuminated, so we've only seen half of these moons. I really want a mission to go back and look at the other half.

Recently, me and a few friends at JPL – two who also did PSSS and one who did a very similar mission formulation program in Europe – got really interested in the Uranus system. So now, in our free time, we're developing a mission concept to study the Uranus system and trying to convince the planetary science community that it’s worth going back to it.

Are there any other moments or memories from PSSS that stand out?

Actually, one I was thinking about recently is that I was in the same session as Jessica Watkins, who recently became a NASA astronaut. I remember I was super stressed out because we had to give this presentation, and me and the project manager, who is a good friend of mine, were disagreeing on some things. But I talked to Jess, and she was just so calm and understanding. So when she got selected as an astronaut, I was like, "That makes sense," [laughs].

But the other thing that stands out is we worked so hard that week. We were at JPL during the day. And in the evening, we would meet again and work another four hours. Now that I'm working on mission development for actual missions, I realize there's so much more that actually goes into a mission, but PSSS gives you a sense of how planetary missions are such a big endeavor. You really need to work as a team.

You've also served as a mentor, bringing interns to JPL. Tell us a bit about that experience and what made you interested in being a mentor?

I've worked with five students at this point, all undergrads. I've always been interested in being a mentor. I was a teaching assistant for a lot of grad school, and I really enjoyed that. I like working one-on-one with students. I find it really rewarding, too, because it helps you remember how cool the stuff you're doing really is. The interns are learning it for the first time, so being able to explain exciting things about the solar system to them for the first time is pretty fun.

What do you usually look for when choosing an intern?

Enthusiasm is a big one. At the undergrad level, most people haven't specialized that much yet; they have pretty similar backgrounds. So I think enthusiasm is usually what I use to identify candidates. Is this what they really want to be doing? Are they actually interested in the science of planets?

What kinds of things do you typically have interns do?

It varies. It can sometimes be repetitive, like looking at a lot of images and looking for differences between them. One of the projects I have a lot of students working on right now is looking at images of craters on the Moon. There's this class of craters on the Moon that we know are really young. By comparing the material excavated by them, we can actually learn about the Moon's subsurface. So I have students going through and looking at how rocky those craters are. We're basically trying to map the subsurface rocks on the Moon. So that can get a little repetitive, but I find that some students actually end up really liking it, and find it kind of relaxing [laughs].

For students who intern with me longer, I try to tailor it to their interests and their skill set. One student, Jose Martinez-Camacho, was really good at numerical modeling and understanding thermodynamics, so he was developing his own models to understand where ice might be stable near the lunar poles.

What's your mentorship philosophy? What do you want students to walk away with?

I think mentors are usually biased in that they want their students to turn out like them. So I'm always excited when my students decide they want to go to grad school, but grad school is not the path for everyone.

One of the important things to learn from doing research is how to solve a problem on your own. A lot of times coursework can be pretty formulaic, and you're learning how to solve one type of problem so that you can solve a similar problem. But with research, unexpected things come up, and you have to learn how to troubleshoot on your own. I think you learn a little bit about that as an intern.

What's the value of JPL internships and fellowships from your perspective?

We're lucky at JPL that we're working on really exciting things. I think we should share that with as many people as possible, and internships are a good way to do that.

Then, for me personally, participating in PSSS solidified that I was on the right path. I knew I wanted to continue to be involved in mission formulation, and that was a big part of why I decided to stay at JPL, to be really deeply involved in the formulation of space missions. There's only a handful of places in the world where you can do that.


Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, Mentors, Science, Moon, Lunar Reconnaissance Orbiter, PSSS, Planetary Science Summer School, Careers, Research, Science

  • Kim Orr
READ MORE

Adrien Dias-Ribiero stands in the gallery above the clean room at JPL and points down at engineers in building the Mars 2020 rover.

Adrien Dias-Ribiero poses for a photo in the gallery above the clean room at JPL with the Mars 2020 rover behind him.

With microbes capable of living in the harshest environments and life-affirming chemical compounds that can arise from the right mixture of heat and materials, the job of keeping spacecraft as contamination-free as possible is not an easy one. This was the task of French aerospace engineering student Adrien Dias-Ribeiro this past summer when he joined the team building the Perseverance Mars rover as a contamination-control engineering intern. With the rover set to collect the first samples of Martian rock and soil for a possible return to Earth, the team at NASA's Jet Propulsion Laboratory has to ensure the sample-collection system stays "clean" throughout its journey to Mars. We caught up with Dias-Ribeiro to find out how he's contributing to the mission and what brought him to JPL from France.

What are you working on at JPL?

I'm working in contamination control engineering for the Perseverance Mars rover mission. I am working, specifically, on the part of Perseverance that is designed to collect samples that could eventually be returned to Earth one day.

Perseverance is looking to measure the presence of organic carbons, like methane, and search for evidence of past microbial life on Mars, so our job is to be sure that contamination on the rover doesn't interfere with what it's trying to study. All the material [used to build the science instruments on the rover] naturally emits some carbons, so we just try to reduce them as much as possible. We've done several tests on the materials used in the science instruments on the rover. My job is to take the results of the tests and make models to predict whether we're meeting the requirements that are needed. We cannot go above a certain level of contamination or the mission will not meet its requirements.

Watch the latest video updates and interviews with NASA scientists and engineers about the Mars 2020 Perseverance rover, launching to the Red Planet in summer 2020. | Watch on YouTube

What is your average day like?

It's mostly coding. I take some measurements and I read them in Python [a programming language]. I also read articles about people doing this kind of work and try to improve their models or produce the models at JPL.

Where do you go to school, and what are you studying?

I go to ISAE-SUPAERO, the aerospace university in Toulouse, France. I'm studying space engineering.

What brought you to JPL for this internship?

I've done another internship in a similar area at the European Space Agency, but I was really interested to be part of the kinds of projects we have at JPL, like the Perseverance rover and Europa Clipper. I also really wanted to work internationally with a different culture than I'm used to. So I got some contacts with my previous supervisors. They knew people working here, so they recommended me.

I feel really lucky to be at JPL as a French person. One year ago, it was not imaginable that I would be at JPL, so I feel really grateful to be here.

What is the most uniquely JPL or NASA experience you've had so far?

I think it's when I was in the clean room [where the Perseverance rover is being built]. I was able to be one meter away from the rover and the descent vehicle [that will help land the rover on Mars].

Some people on my team had to do some measurements in the clean room and asked if I wanted to go with them, and so I did. I wasn't able to touch anything [laughs]. I just looked. I'm working on models of the rover, so it was really interesting to go closer to the hardware and the real spacecraft. I'd also never been inside the clean room before.

How do you feel you are contributing to the mission and making it a success?

I feel really lucky because the job I'm doing now will be directly applied to ensuring that the mission meets its requirements, which is to not go above the limit of organic carbon emitted by the hardware in charge of collecting the samples.

What is your ultimate career goal?

I'm really interested in systems engineering, so I'm trying to learn as much as possible about different types of engineering, modeling and how to manage projects.

If you could play any role in NASA's plans to send humans back to the Moon or on to Mars, what would you want to do?

I guess a lot of people would say, "Be an astronaut," but I really like living here on Earth, so I think I wouldn't really want to be an astronaut. If I could ensure the safety of the astronauts going to the Moon or Mars, that's the kind of job I would like to do.


Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern

Career opportunities in STEM and beyond can be found at: jpl.jobs

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Robotics, Mars, Rover, Mars 2020, Coding, Computer Science, Mars 2020 Interns, Perseverance

  • Kim Orr
READ MORE

Tiffany Shi poses for a photo in front of a steel and glass building at JPL with the words "Flight Projects Center" displayed on the front of the building.

Deciding where to land on Mars has always meant striking the right balance between potential science wins and the risk of mission failure. But new technology that will allow NASA's next Mars rover, Perseverance, to adjust its trajectory to the safest spot within an otherwise riskier landing area is giving science its biggest edge yet. This past summer, it was intern Tiffany Shi's task to help prepare the new technology, called the Lander Vision System, for its debut on Mars. Analyzing data from test flights in California's Death Valley, the Stanford University student joined the team at NASA's Jet Propulsion Laboratory to make sure the new landing system will work as designed, guiding the Perseverance rover to a safe landing as the spacecraft speeds toward the surface into Mars' Jezero Crater. We caught up with Shi to find out what it was like to work on the technology, how she managed the 8-to-5 and how she found a new approach to problem solving.

What are you working on at JPL?

I'm working with the Mars 2020 mission, building the lander system for the Perseverance Mars rover. This is new technology in that [as the rover is landing on Mars] it is going to be able to look down at the surface below and figure out where is the safest place to land within the chosen area. Because of this technology, we're going to be able to land in a place that's more geologically and scientifically interesting than anywhere else we've been on Mars.

How did previous Mars landings work?

Before, it was only really safe to land if we picked a huge, flat area and programmed the spacecraft to land somewhere in there. But for the Mars 2020 mission, the spacecraft will take images of the terrain below as it descends into the atmosphere and will match those images to reference maps that we have from the work of previous missions. This will allow us to autonomously detect potential landing hazards and divert our spacecraft from them. In other words, the spacecraft is going to be able to look below and find the safest place to land in an area that's generally more hazardous [than what previous rovers have landed in].

What is your average day like on the project?

My average day consists of coming here at 8. That is very new for me [laughs]. I sit in the basement with two office mates, and we each work on our own things. I'm doing error analysis to find any bugs in the Lander Vision System, which is what will be used to land the rover on Mars. The algorithm for the landing system is pretty much written, and I'm analyzing the field-test data that they got from the tests that were done in Death Valley in February. Both my office mates are also working on the Lander Vision System, but they're not on the same exact project. They are all super-nice and helpful, and we all talk about our work, so it's a lot of fun.

Watch the latest video updates and interviews with NASA scientists and engineers about the Mars 2020 Perseverance rover, launching to the Red Planet in summer 2020. | Watch on YouTube

Tell me more about the field tests and how you're analyzing the results.

In February, the team took a helicopter and they attached a copy of the Lander Vision System to the front. The helicopter did a bunch of nosedives and spirals over the terrain, which is really similar to what the rover will see on Mars. The goal is to see how accurate our predictions are for our algorithm relative to our reference maps. We're using the tests to improve our algorithm before the spacecraft launches.

What are you studying at Stanford?

I'm not sure what my major will be yet. I don't have to declare it until the end of my second year. I've only just finished my freshman year. I'm thinking maybe computer science or a mix of computer science and philosophy, because I really like both.

What got you interested in those majors?

I did debate in high school, and a lot of debaters use philosophy to argue different perspectives. So that's what got me started.

What about the computer science side?

I was in Girls Who Code while I was in high school, and there were JPL mentors who came to my school every Friday and taught us everything that we wanted to know. It was a super-fun place, super-inclusive. You see a lot of shy girls who don't normally talk in classes really open up. They had great debates, great questions, and it was just really cool to see.

Had you had any experience coding before that?

No, but I started taking some classes after that, and I did an internship at Caltech my junior year.

What was the internship at Caltech?

It was actually with Christine Moran, who now works at JPL. When she was doing her postdoc at Caltech, she brought in 12 high-school student interns through a program called Summer App Space. I worked in a team that classified galaxies into 36 different categories using training and test images from an online machine-learning community.

Very cool! What has been the most uniquely JPL or NASA experience that you've had while you've been here?

I went to see the rover being built in the clean room with my mentor, and that was just surreal. Even though I am sure my contributions are going to be very small, I think it's wild that I am actually working on something that's going to Mars.

Has your internship opened your eyes to any potential career paths?

I haven't taken any aeronautics and astronautics classes, and I think I might see if I'm interested in studying that. It is so interesting working on something that is literally going to be in space. In college, you have an answer to work towards, and here you are finding the answer. I think I didn't really process what I was going to be doing before coming here.

Eventually, I know I want to go into computer science, but also I want to go into maybe social impact work. I'd love to find some intersection between those. I feel like I grew up really privileged, so I want to use my skills to help other people. But I do love computer science or something where I'd be really at the forefront of research.

If you could play any role in NASA's plans to send humans back to the Moon or on to Mars, what would you want to do?

Be there. I met Jessica Watkins, who used to intern here, and now she's one of the new NASA astronauts. She spoke to us during my Caltech internship. It was super surreal meeting her. So if I could play any part, I'd want to be up there.


Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern

Career opportunities in STEM and beyond can be found at: jpl.jobs

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Robotics, Mars, Rover, Mars 2020, Landing, Mars 2020 Interns, Perseverance, Asian Pacific American Heritage Month

  • Kim Orr
READ MORE

Illustration of spacecraft on a light purple background that reads "NASA Pi Day Challenge"

Update: March 16, 2020 – The answers to the 2020 NASA Pi Day Challenge are here! View the illustrated answer key (also available as a text-only doc).


In the News

Our annual opportunity to indulge in a shared love of space exploration, mathematics and sweet treats has come around again! Pi Day is the March 14 holiday that celebrates the mathematical constant pi – the number that results from dividing any circle's circumference by its diameter.

Infographic of all of the Pi in the Sky 7 graphics and problems

Visit the Pi in the Sky 7 lesson page to explore classroom resources and downloads for the 2019 NASA Pi Day Challenge. Image credit: NASA/JPL-Caltech | + Expand image

Overhead view of Mars with a comparison of the smaller landing ellipse made possible by Range Trigger technology

A new Mars landing technique called Range Trigger is reducing the size of the ellipse where spacecraft touch down. Image credit: NASA/JPL-Caltech | › Full image and caption

Composite image of the Kuiper Belt object Arrokoth from NASA's New Horizons spacecraft. Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Roman Tkachenko | › Full image and caption

Diagram of an airplane flying over a section of ocean with an example of the spectral data that CORAL collects

The CORAL mission records the spectra of light reflected from the ocean to study the composition and health of Earth's coral reefs. Image credit: NASA | + Expand image

Rays of bright orange and red shoot out diagonally from a blue circle surrounding the star Beta Pictoris

The star Beta Pictoris and its surrounding debris disk in near-infrared light. Image credit: ESO/A.-M. Lagrange et al. | › Full image and caption

Besides providing an excuse to eat all varieties of pie, Pi Day gives us a chance to appreciate some of the ways NASA uses pi to explore the solar system and beyond. You can do the math for yourself – or get students doing it – by taking part in the NASA Pi Day Challenge. Find out below how to test your pi skills with real-world problems faced by NASA space explorers, plus get lessons and resources for educators.

How It Works

The ratio of any circle's circumference to its diameter is equal to pi, which is often rounded to 3.14. But pi is what is known as an irrational number, so its decimal representation never ends, and it never repeats. Though it has been calculated to trillions of digits, we use far fewer at NASA.

Pi is useful for all sorts of things, like calculating the circumference and area of circular objects and the volume of cylinders. That's helpful information for everyone from farmers irrigating crops to tire manufacturers to soup-makers filling their cans. At NASA, we use pi to calculate the densities of planets, point space telescopes at distant stars and galaxies, steer rovers on the Red Planet, put spacecraft into orbit and so much more! With so many practical applications, it's no wonder so many people love pi!

In the U.S., 3.14 is also how we refer to March 14, which is why we celebrate the mathematical marvel that is pi on that date each year. In 2009, the U.S. House of Representatives passed a resolution officially designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi.

The NASA Pi Day Challenge

This year's NASA Pi Day Challenge poses four puzzlers that require pi to compare the sizes of Mars landing areas, calculate the length of a year for one of the most distant objects in the solar system, measure the depth of the ocean from an airplane, and determine the diameter of a distant debris disk. Learn more about the science and engineering behind the problems below or click the link to jump right into the challenge.

› Take the NASA Pi Day Challenge
› Educators, get the lesson here!

Mars Maneuver

Long before a Mars rover touches down on the Red Planet, scientists and engineers must determine where to land. Rather than choosing a specific landing spot, NASA selects an area known as a landing ellipse. A Mars rover could land anywhere within this ellipse. Choosing where the landing ellipse is located requires compromising between getting as close as possible to interesting science targets and avoiding hazards like steep slopes and large boulders, which could quickly bring a mission to its end. In the Mars Maneuver problem, students use pi to see how new technologies have reduced the size of landing ellipses from one Mars rover mission to the next.

Cold Case

In January 2019, NASA's New Horizons spacecraft sped past Arrokoth, a frigid, primitive object that orbits within the Kuiper Belt, a doughnut-shaped ring of icy bodies beyond the orbit of Neptune. Arrokoth is the most distant Kuiper Belt object to be visited by a spacecraft and only the second object in the region to have been explored up close. To get New Horizons to Arrokoth, mission navigators needed to know the orbital properties of the object, such as its speed, distance from the Sun, and the tilt and shape of its orbit. This information is also important for scientists studying the object. In the Cold Case problem, students can use pi to determine how long it takes the distant object to make one trip around the Sun.

Coral Calculus

Coral reefs provide food and shelter to many ocean species and protect coastal communities against extreme weather events. Ocean warming, invasive species, pollutants, and acidification caused by climate change can harm the tiny living coral organisms responsible for building coral reefs. To better understand the health of Earth's coral reefs, NASA's COral Reef Airborne Laboratory, or CORAL, mission maps them from the air using spectroscopy, studying how light interacts with the reefs. To make accurate maps, CORAL must be able to differentiate among coral, algae and sand on the ocean floor from an airplane. And to do that, it needs to calculate the depth of the ocean at every point it maps by measuring how much sunlight passes through the ocean and is reflected upward from the ocean floor. In Coral Calculus, students use pi to measure the water depth of an area mapped by the CORAL mission and help scientists better understand the status of Earth's coral reefs.

Planet Pinpointer

Our galaxy contains billions of stars, many of which are likely home to exoplanets – planets outside our solar system. So how do scientists decide where to look for these worlds? Using data gathered by NASA's Spitzer Space Telescope, researchers found that they're more likely to find giant exoplanets around young stars surrounded by debris disks, which are made up of material similar to what's found in the asteroid belt and Kuiper Belt in our solar system. Sure enough, after discovering a debris disk around the star Beta Pictoris, researchers later confirmed that it is home to at least two giant exoplanets. Learning more about Beta Pictoris' debris disk could give scientists insight into the formation of these giant worlds. In Planet Pinpointer, put yourself in the role of a NASA scientist to learn more about Beta Pictoris' debris disk, using pi to calculate the distance across it.

Participate

Join the conversation and share your Pi Day Challenge answers with @NASAJPL_Edu on social media using the hashtag #NASAPiDayChallenge

Blogs and Features

Related Lessons for Educators

Related Activities for Students

NOAA Video Series: Coral Comeback

Multimedia

Facts and Figures

Missions and Instruments

Websites

TAGS: K-12 Education, Math, Pi Day, Pi, NASA Pi Day Challenge, Events, Space, Educators, Teachers, Parents, Students, STEM, Lessons, Problem Set, Mars 2020, Perseverance, Curiosity, Mars rovers, Mars landing, MU69, Arrokoth, New Horizons, Earth science, Climate change, CORAL, NASA Expeditions, coral reefs, oceans, Spitzer, exoplanets, Beta Pictoris, stars, universe, space telescope

  • Lyle Tavernier
READ MORE

Mariah Woody poses for the camera with her hands clasped behind her back in front of a metal starburst screen.

This past month, intern Mariah Woody joined her team in mission control at NASA's Jet Propulsion Laboratory to say goodbye to the Spitzer Space Telescope, a mission that provided never-before-seen views of the cosmos for more than 16 years. Woody has only been interning with the Spitzer team since June, but she played a key role in planning the mission's final moments. And now that the mission has ended, she's helping document its legacy. While her internship has largely been about bringing the Spitzer mission to a close, the experience is marking a new beginning for Woody. Even as a master's student in engineering, Woody never thought her skills would qualify her for a career in space exploration. It wasn't until she heard about an internship opportunity with JPL through an initiative designed to foster connections with historically black colleges and universities, or HBCUs, that she decided to apply. Now at JPL, she's getting a whole new perspective on where her career path might lead. We caught up with Woody to find out what it was like to join the team for Spitzer's final voyage, how she's archiving the mountain of mission images and data, and where she's hoping to go from here.

What are you working on at JPL?

I'm working on the Spitzer Space Telescope mission. Spitzer was a telescope that was designed to observe and study the early universe. It used infrared light, which can capture images of a wide range of objects that are found in the universe. It studied and observed new galaxies, stars and exoplanets. It was launched on Aug. 25, 2003, and it was one of NASA's four Great Observatories. It was originally planned for five years, but it was extended multiple times, so it lasted for more than 16 years. We just had the end of the mission on January 30. When I started, I was working on implementing a plan to archive all the data at the end of the mission and learning about spacecraft operations. Now, I'm working on the end-of-mission closeout activities.

What was your average day like when you were working on the final days of the mission?

I didn't have an average day when I was working on the operations team. We did a lot of different tasks, so each day was different. But usually, I would meet with my mentor and co-mentor to discuss the tasks that I was working on or the timeline and deliverables for the project. I learned about mission operations for the spacecraft and the systems on the ground that support the spacecraft. The spacecraft is controlled by programmed commands that we send through various antennas on the ground. The Spitzer team would have status and coordination meetings every week. All the team leads within the project would come together and discuss updates about the spacecraft, science details and other closeout tests that needed to be completed after the mission ended.

Even though the spacecraft is no longer operational, there's still more to do on the mission. What does closing out the mission entail?

The closeout team has to archive all the information into a repository where it can be looked at later, including the information that different team members have. It could be anything from documentation to images to any records, scripts or tools that were used. Once that information has been submitted, then I go in and audit the list and make sure that all of the products that need to be delivered are there and archive them.

You got to be in mission control for Spitzer's final moments. What was that experience like?

That experience was really fun for me. We called it Spitzers' final voyage, and I was able to be a part of the operations team in mission control, monitoring the status of the spacecraft in real-time as we all said goodbye. It was amazing to see all the different team members for the Spitzer mission come together on the last day to collaborate and do all of our work at once. It was a wonderful day in history, and I was proud to be a part of it.

Have there been any other standout moments from your time at JPL?

Meeting and learning from other people at the Lab. It's very nice to be able to just reach out to someone and sit down for lunch to learn about what they do and what experiences they have. I'm able to learn a little bit about all the different things that are going on here.

You're working toward your Ph.D. at North Carolina A&T State University. What's your research focus, and what got you interested in that field?

I'm studying industrial and systems engineering. It came to my attention because it's a broad area. You can do so much with it. I wasn't quite sure what industry I wanted to go into, so that's one of the reasons that I chose it. The fact that I can work in space exploration is very cool. I know that I like to explore different areas, improve things and make things more efficient. So I thought that this would be the perfect field for me to study.

What made you interested in engineering in the first place?

I've always loved math and science, and I performed very well in those subject areas when I was in school. When it comes to new ideas, I'm very creative. So I always wondered, "What can I do with this?" A lot of my teachers mentioned that I should look into becoming an engineer, so that's what I did.

What brought you to JPL for this internship?

I heard JPL was coming to my campus – they had an info session. I was notified about it at the last minute, so I missed out. I told myself, "I should still apply even though I missed the info session." So I applied, and then I received a call and got the offer.

But I feel like there was more to what brought me here than just applying and receiving the offer. I know that the offer was based on my hard work and saying yes to the challenges and opportunities that have come my way. I've always known about JPL, but I never pictured myself actually working here. I thought that it would be challenging, and I would be coming from so far away. It was a lot all at once, but I accepted the opportunity because I wanted to be exposed to and have the experience to work in space exploration. It's an area that I'd never really thought I'd go into coming from industrial and systems engineering. Now that I have some experience in the aerospace field, I have realized how much it impacts the industry in general and the economy of this country. It's a great field for my background.

Now that you've got some experience at JPL, how has it shaped your career path?

It's provided focus for my career path. I really want to stay within this industry. It's opened my eyes to see where I can branch off and where I can contribute and apply my skills. There's so much I can do with my background just in space exploration. I'm happy that my career path went in this direction.

What did you imagine that you would be doing before you came to JPL?

I wanted to be a part of designing something to improve a process at an organization or company. I didn't really have a specific job in mind. I've always thought that I'd maybe work in the medical industry, designing and improving medical devices. I've always had a lot of different ideas of what I wanted to do. I've kind of just explored and applied to many areas that were of interest.

Now for the fun question: If, you could have any role in NASA's plans to send humans to the Moon or on to Mars, what would you want it to be?

I think that I'd want to be involved in the training process – not necessarily me going through the training, but maybe coming up with ideas or requirements to get astronauts ready to go to space efficiently and safely.


Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern

Career opportunities in STEM and beyond can be found at: jpl.jobs

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Higher Education, Internships, STEM, Engineering, Interns, College, Black History Month, Spitzer, Universe, HBCU

  • Kim Orr
READ MORE