Edu News | September 9, 2021
JPL Internship Program Expanding Diversity in STEM
Five years in, a JPL initiative forging relationships with students and faculty at historically Black colleges and universities continues expanding its reach, hosting 48 interns this year.
Brandon Ethridge, a flight systems engineer at NASA’s Jet Propulsion Laboratory in Southern California, has had a year to remember. The 24-year-old got engaged, became a father, and is celebrating the one-year anniversary of starting full time at JPL – his self-described dream job.
“Definitely the most eventful year of my life,” Ethridge said.
While he’s been gaining experience testing systems used to build spacecraft, Ethridge has spent minimal time at the Laboratory due to the pandemic. But the North Carolina native already had plenty of first-hand knowledge of JPL thanks to his summer 2019 internship – an opportunity that presented itself at a JPL informational session that spring at his alma mater, North Carolina A&T State University.
“That allowed me the chance to speak one-on-one with Jenny Tieu and Roslyn Soto [JPL Education project managers],” Ethridge said. “They were incredibly generous with their time and provided resume critiques, feedback, and general advice about how to get an opportunity at JPL.”
Since 2017, Tieu has been leading JPL’s Historically Black Colleges and Universities/Underrepresented Minorities, or HBCU/URM, initiative – an effort to increase and foster a more diverse workforce in technical roles at the Laboratory. It’s one of many programs facilitating the more than 550 internship opportunities offered through the Education Office this year.
Now in its fifth year, the program has seen rapid growth; from seven interns in its first year, to 24 interns in 2020. This year, JPL is welcoming 48 students interning remotely from institutions including Howard, North Carolina A&T, Tuskegee, and Prairie View A&M universities, along with underrepresented-minority students from universities including UCLA, USC, UC Riverside, Duke, Cal Poly Pomona, and more.
The initiative includes funding and support to bring in faculty from the schools to take part in research with the students, building in a cohort model that facilitates sustainable interactions with JPL.
“We’re intentional about addressing the culture shock that some of these students may experience,” Tieu said. “With the cohort model, the faculty members can provide guidance to the students while they are navigating new relationships, connections, and a new city.”
Additionally, interns are invited to participate in roundtable conversations in groups where they can share concerns and openly discuss their experiences at JPL. Tieu has also set up virtual meet-ups where students can get to know employees from outside their groups and hear talks from members of JPL’s Black Excellence Strategic Team and past HBCU alumni.
For Ethridge, being in a position to give back to the program was something he prioritized.
“I wanted to repay some of the many kindnesses that were afforded to me,” Ethridge said. “I also feel that I am in a unique position because I just recently went through the process.”
For Howard University junior Kyndall Jones, the draw to JPL came following a fellow student’s acceptance into the program.
“I was so amazed that he had an internship with NASA, and it really sparked my interest,” Jones said. “After doing my research on the program, I submitted my resume and heard back after a few months, landed an interview, and now here I am [virtually]!”
Despite the telework nature of this summer’s internship, Jones said that even from her home in Dayton, Ohio, she has been able to foster connections with JPL employees and gain valuable experience in her role working on software for an Earth-science instrument that will help NASA understand how different types of air pollution, which can cause serious health problems, affect human health.
And thanks to her mentor, Operations Systems Engineer Janelle Wellons, Jones was able to get the type of hands-on NASA experience that’s been hard to come by since the pandemic.
“My mentor Janelle suggested that I come visit Los Angeles for a few days this summer, and I was finally able to visit and explore the city for the first time,” Jones said. “I am also super grateful for her setting up a tour at the NASA Armstrong Flight Research Center where we were able to view, tour, and learn lots of interesting facts about NASA’s historical aircraft.”
Wellons – who splits her time operating instruments aboard several Earth-observing missions – had been involved in previous years’ roundtable discussions with HBCU interns, but this year, she had the opportunity to hire her own interns through the program. Being from the East Coast herself, Wellons remembers having little awareness of JPL as a potential career landing spot while studying at Massachusetts Institute of Technology.
“Getting visibility and actually partnering with these schools to make these internships happen is so important,” Wellons said. “Actively interacting with HBCUs is only going to do good for people we would otherwise potentially never get an application from, and it benefits JPL by broadening the talent pool and diversity of our workforce.”
As for the future, Jones sees the initiative as one step of many for her and fellow interns toward careers in engineering and science.
“I know a lot of Howard students that are interning or have interned with JPL, and the love from our College of Engineering and Architecture is especially high,” Jones said. “The info sessions, resume workshops, and networking workshops that JPL has been able to put on have been great, and the more they can do, the better for students.”
Tieu agrees, adding, "We are happy to see the growth of the initiative but look forward to making further progress. There's so much more we would like to accomplish in the years ahead."
To learn more about the HBCU/URM initiative and apply, see the Maximizing Student Potential in STEM program page. The HBCU/URM initiative resides within this program.
This Q&A is part of an ongoing series highlighting the stories and experiences of students and faculty who came to JPL as part of the laboratory's collaboration with historically black colleges and universities, or HBCUs. › Read more from the series
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.
TAGS: HBCU, Internships, College Students, Faculty, Research, Careers, Earth Science, Black History Month, Engineering, Intern, Higher Education
Career Guidance | June 16, 2020
Scientist on a Mission
Catherine Elder's office is a small, cavernous space decorated with pictures of the Moon and other distant worlds she studies as a research scientist at NASA's Jet Propulsion Laboratory. Elder has been interested in space science since she was young, but she didn't always imagine she'd be working at one of the few places that builds robotic spacecraft designed to venture to mysterious worlds. A doctorate in planetary science – the study of the evolution of planets and other bodies in space – first brought her to JPL five years ago for research into the geologic history of the Moon. She planned to eventually become a professor, but a sort of gravitational pull has kept her at the laboratory, where in addition to lunar science, she's now involved in projects studying asteroids, Jupiter's moon Europa and future missions. We met up with her earlier this year to talk about her journey, how a program at JPL helped set her career in motion and how she's paying it forward as a mentor to interns.
What do you do at JPL?
A lot of what I do is research science. So that involves interpreting data from spacecraft and doing some modeling to understand the physical properties of places like the Moon, asteroids and Jupiter's moon Europa.
I am also working on mission formulation. So in that case, my role is to work with the engineers to make sure that the missions we're designing will actually be able to obtain the data that we need in order to answer the science questions that we have.
Tell us about some of the projects you're working on.
A lot of my work right now is looking at the Moon. I'm on the team for the Diviner instrument on the Lunar Reconnaissance Orbiter. That instrument observes the Moon in infrared, which we can use to understand the geologic history, such as how rocks break down over time. We can also look at specific features, like volcanoes, and understand their material properties. I do similar work on the OSIRIS-REx mission [which aims to return a sample from the asteroid Bennu].
I'm on the Europa Clipper team right now. I'm the investigation scientist for the cameras on the mission [which is designed to make flybys of Jupiter's moon Europa]. So I serve as a liaison between the camera team and other parts of the project.
I'm also working on a project modeling the convection in the rocky portion of Europa, underneath the liquid-water layer. Our goal is to understand how likely it is that there are volcanoes on the seafloor of Europa. A lot of scientists in their previous work have suggested that life could originate in these volcanoes. So we're going back and looking at how likely it is that they exist.
Sounds like fascinating work and like you're keeping busy! What is your average day like?
When I'm analyzing the data and doing modeling, I'm usually at my computer. I do a lot of computer coding and programming. We do a lot of modeling to help interpret the data that we get. For example, if we think we know the physical properties of a surface, how are those going to affect how the surface heats up or cools down over the course of a day? I compare what we find to the observations [from spacecraft] and circle back and forth until we have a better idea of what those surface materials are like.
Then, for the mission work, it's a lot more meetings. I'm in meetings with the engineers and with other scientists, talking about mission requirements, observation plans and things like that.
Tell us a bit about your background and what brought you to JPL.
I have wanted to be an astronomer since I was nine years old. So I was an astronomy major at Cornell University in New York. I didn't really realize planetary science existed, but luckily Cornell is one of the few universities where planetary science is in the astronomy department. A lot of times it's in the geology department. I started to learn more about planetary science by taking classes and realized that was what I was really interested in. So I went to the University of Arizona for grad school and got a Ph.D. in planetary science.
I thought I eventually wanted to be a professor somewhere. A postdoc position is kind of a stepping stone between grad school and faculty positions or other more permanent positions. So I was looking for a postdoc, and I found one at JPL. It was pretty different from what my thesis work had been on, but it sounded really interesting. I didn't think I was going to stay at JPL, but I ended up really liking it, and I got hired as a research scientist.
You also took part in the Planetary Science Summer School at JPL, working on a simulated mission design project. What made you want to apply for that program and what was the experience like?
I've always been interested in missions. I began PSSS when I was a postdoc at JPL, so I was already working with mission data from the Lunar Reconnaissance Orbiter. But by the time I joined the team, LRO had been orbiting the Moon for more than five years, so it was a well oiled machine.
I was interested in thinking about future missions and how you design one. So PSSS was a really great experience. They gave us a couple targets that we could pick between, and we picked Uranus. We had to come up with all the science objectives we would want to have if we visited Uranus [with a robotic spacecraft]. We had a mix of scientists and engineers, but none of us had studied Uranus, so we had to do a lot of background reading and figure out the big outstanding questions about the planet and its moons. We came up with a ton of them. When we did our first session with Team X, which is JPL's mission formulation team, we realized that we had way too many objectives, and we were never going to be able to achieve all of them in the budget that we had. It was a big wake up call. We had to narrow the scope of what we wanted to do a lot.
Then we had two more sessions with Team X, and we eventually came up with a concept where we were within the budget and we had a couple of instruments that could answer some science questions. Then we presented the mission idea to scientists and engineers at JPL and NASA headquarters who volunteered as judges.
Participants in the Planetary Science Summer School are assigned various roles that are found on real mission design teams. What role did you play?
I had the role of principal investigator [which is the lead scientist for the mission].
How did that experience shape what you're doing today?
Actually, quite a bit. Learning how you develop a science objective and thinking through it, you start with goals like, "I want to understand the formation and evolution of the solar system." That's a huge question. You're never going to answer it in one mission. So the next step is to come up with a testable hypothesis, which for Uranus could be something like, "Is Uranus' current orbit where it originally formed?" And then you have to come up with measurement objectives that can address that hypothesis. Then you have to think about which instruments you need to make those measurements. So learning about that whole process has helped a lot, and it's similar to what I'm doing on the Europa mission now.
I also got really interested in the Uranus system, specifically the moons, because they show a lot of signs of recent geologic activity. They might be just as interesting as the moons of Saturn and Jupiter. But Voyager 2 is the only spacecraft that has visited them. At that time, only half of the moons were illuminated, so we've only seen half of these moons. I really want a mission to go back and look at the other half.
Recently, me and a few friends at JPL – two who also did PSSS and one who did a very similar mission formulation program in Europe – got really interested in the Uranus system. So now, in our free time, we're developing a mission concept to study the Uranus system and trying to convince the planetary science community that it’s worth going back to it.
Are there any other moments or memories from PSSS that stand out?
Actually, one I was thinking about recently is that I was in the same session as Jessica Watkins, who recently became a NASA astronaut. I remember I was super stressed out because we had to give this presentation, and me and the project manager, who is a good friend of mine, were disagreeing on some things. But I talked to Jess, and she was just so calm and understanding. So when she got selected as an astronaut, I was like, "That makes sense," [laughs].
But the other thing that stands out is we worked so hard that week. We were at JPL during the day. And in the evening, we would meet again and work another four hours. Now that I'm working on mission development for actual missions, I realize there's so much more that actually goes into a mission, but PSSS gives you a sense of how planetary missions are such a big endeavor. You really need to work as a team.
You've also served as a mentor, bringing interns to JPL. Tell us a bit about that experience and what made you interested in being a mentor?
I've worked with five students at this point, all undergrads. I've always been interested in being a mentor. I was a teaching assistant for a lot of grad school, and I really enjoyed that. I like working one-on-one with students. I find it really rewarding, too, because it helps you remember how cool the stuff you're doing really is. The interns are learning it for the first time, so being able to explain exciting things about the solar system to them for the first time is pretty fun.
What do you usually look for when choosing an intern?
Enthusiasm is a big one. At the undergrad level, most people haven't specialized that much yet; they have pretty similar backgrounds. So I think enthusiasm is usually what I use to identify candidates. Is this what they really want to be doing? Are they actually interested in the science of planets?
What kinds of things do you typically have interns do?
It varies. It can sometimes be repetitive, like looking at a lot of images and looking for differences between them. One of the projects I have a lot of students working on right now is looking at images of craters on the Moon. There's this class of craters on the Moon that we know are really young. By comparing the material excavated by them, we can actually learn about the Moon's subsurface. So I have students going through and looking at how rocky those craters are. We're basically trying to map the subsurface rocks on the Moon. So that can get a little repetitive, but I find that some students actually end up really liking it, and find it kind of relaxing [laughs].
For students who intern with me longer, I try to tailor it to their interests and their skill set. One student, Jose Martinez-Camacho, was really good at numerical modeling and understanding thermodynamics, so he was developing his own models to understand where ice might be stable near the lunar poles.
What's your mentorship philosophy? What do you want students to walk away with?
I think mentors are usually biased in that they want their students to turn out like them. So I'm always excited when my students decide they want to go to grad school, but grad school is not the path for everyone.
One of the important things to learn from doing research is how to solve a problem on your own. A lot of times coursework can be pretty formulaic, and you're learning how to solve one type of problem so that you can solve a similar problem. But with research, unexpected things come up, and you have to learn how to troubleshoot on your own. I think you learn a little bit about that as an intern.
What's the value of JPL internships and fellowships from your perspective?
We're lucky at JPL that we're working on really exciting things. I think we should share that with as many people as possible, and internships are a good way to do that.
Then, for me personally, participating in PSSS solidified that I was on the right path. I knew I wanted to continue to be involved in mission formulation, and that was a big part of why I decided to stay at JPL, to be really deeply involved in the formulation of space missions. There's only a handful of places in the world where you can do that.
This feature is part of an ongoing series about the stories and experiences of JPL scientists, engineers, and technologists who paved a path to a career in STEM with the help of NASA's Planetary Science Summer School program. › Read more from the series
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.
TAGS: Higher Education, Internships, STEM, Mentors, Science, Moon, Lunar Reconnaissance Orbiter, PSSS, Planetary Science Summer School, Careers, Research, Science, Women at NASA
Edu News | January 24, 2020
Mentors Point the Way to STEM for Interns at NASA-JPL
Each year, 1,000 students come to NASA's Jet Propulsion Laboratory for internships at the place where space robots are born and science is made. Their projects span the STEM spectrum, from engineering the next Mars rover to designing virtual-reality interfaces to studying storms on Jupiter and the possibility of life on other planets. But the opportunity for students to "dare mighty things" at JPL wouldn't exist without the people who bring them to the Laboratory in the first place – the people known as mentors.
A community of about 500 scientists, engineers, technologists and others serve as mentors to students annually as part of the internship programs managed by the JPL Education Office. Their title as mentors speaks to the expansiveness of their role, which isn't just about generating opportunities for students, but also guiding and shaping their careers.
"Mentors are at the core of JPL's mission, pushing the frontiers of space exploration while also guiding the next generation of explorers," says Adrian Ponce, who leads the team that manages JPL's internship programs. "They are an essential part of the career pipeline for future innovators who will inspire and enable JPL missions and science."
Planetary scientist Glenn Orton has been bringing students to JPL for internships studying the atmospheres of planets like Jupiter and Saturn since 1985. He keeps a list of their names and the year they interned with him pinned to his office wall in case he's contacted as a reference. The single-spaced names take up 10 sheets of paper, and he hasn't even added the names of the students he's brought in since just last year.
It makes one wonder what he could need that many students to do – until he takes out another paper listing the 11 projects in which he's involved.
"I think I probably have the record for the largest number of [projects] at JPL," says Orton, who divides his time between observing Jupiter with various ground- and space-based telescopes, comparing his observations with the ones made by NASA's Juno spacecraft, contributing to a database where all of the above is tracked and producing science papers about the team's discoveries.
"Often, you get to be the first person in the world who will know about something," says Orton. "That's probably the best thing in the world. The most exciting moment you have in this job is when you discover something."
Over the years, Orton's interns have been authors on science papers and have even taken part in investigating unexpected stellar phenomena – like the time when a mysterious object sliced into Jupiter's atmosphere, sparking an urgent whodunnit that had Orton and his team of interns on the case.
Orton says his passion for mentoring students comes from the lack of mentorship he received as a first-generation college student. At the same time, he acknowledges the vast opportunities he was given and says he wants students to have them, too.
"As a graduate student, it was close to my first experience doing guided research, so I had no idea how research was communicated or conducted," says Orton of his time at Caltech, when he often worried that his classmates and professors would discover he wasn't "Nobel material." "I want to be able to work with students, which I sincerely enjoy, to instruct them on setting down a research goal, determining an approach, modifying it when things inevitably hit a bump, as well as communicating results and evaluating next steps."
For Alexandra Holloway and Krys Blackwood, the chance to provide new opportunities isn't just what drives them to be mentors, but also something they look for when choosing interns.
"I look for underdogs, students who are not representing themselves well on paper," says Holloway. "Folks from underrepresented backgrounds are less likely to have somebody guide them through, 'Here's how you make your résumé. Here's how you apply.' The most important thing is their enthusiasm for learning something new or trying something new."
It's for this reason that Holloway and Blackwood have become evangelists for JPL's small group of high-school interns, who come to the Laboratory through a competitive program sponsored by select local school districts. While less experienced than college students, high-school interns more than make up for it with perseverance and passion, says Blackwood.
"[High-school interns] compete to get a spot in the program, so they are highly motivated kids," she says. "Your results may vary on their level of skill when they come in, but they work so hard and they put out such great work."
Holloway and Blackwood met while working on the team that designs the systems people use to operate spacecraft and other robotic technology at JPL – that is, the human side of robotics. Holloway has since migrated back to robots as the lead software engineer for NASA's next Mars rover. But the two still often work together as mentors for the students they bring in to design prototypes or develop software used to operate rovers and the antennas that communicate with spacecraft across the solar system.
It's important to them that students get a window into different career possibilities so they can discover the path that speaks to them most. The pair say they've seen several students surprised by the career revelation that came at the end of their internships.
"For all of our interns, we tailor the project to the intern, the intern's abilities, their desires and which way they want to grow," says Holloway. "This is such a nice place where you can stretch for just a little bit of time, try something new and decide whether it's for you or not. We've had interns who did design tasks for us and at the end of the internship, they were like, 'You know what? I've realized that this is not for me.' And we were like, 'Awesome! You just saved yourself five years.'"
The revelations of students who intern with Parag Vaishampayan in JPL's Planetary Protection group come from something much smaller in scale – microscopic, even.
Vaishampayan's team studies some of the most extreme forms of life on Earth. The group is trying to learn whether similar kinds of tough microbes could survive on other worlds – and prevent those on Earth from hitching a ride to other planets on NASA spacecraft. An internship in Planetary Protection means students may have a chance to study these microbes, collect samples of bacteria inside the clean room where engineers are building the latest spacecraft or, for a lucky few, name bacteria.
"Any researcher who finds a new kind of bacteria gets a chance to name it," says Vaishampayan. "So we always give our students a chance to name any bacterium they discover after whoever they want. People have named bacteria after their professors, astronauts, famous scientists and so forth. We just published a paper where we named a bacterium after Carl Sagan."
The Planetary Protection group hosts about 10 students a year, and Vaishampayan says he's probably used every JPL internship program to bring them in. Recently, he's become a superuser of one designed for international students and another that partners with historically black colleges and universities, or HBCUs, to attract students from diverse backgrounds and set them on a pathway to a career at the Laboratory.
"I can talk for hours and hours about JPL internships. I think they are the soul of the active research we are doing here," says Vaishampayan. "Had we not had these programs, we would not have been able to do so much research work." In the years ahead, the programs might become even more essential for Vaishampayan as he takes on a new project analyzing 6,000 bacteria samples collected from spacecraft built in JPL's clean rooms since 1975.
With interns making up more than 15 percent of the Laboratory population each year, Vaishampayan is certainly not alone in his affection for JPL's internship programs. And JPL is equally appreciative of those willing to lend time and support to mentoring the next generation of explorers.
Says Adrian Ponce of those who take on the mentorship role through the programs his team manages, "Especially with this being National Mentoring Month, it's a great time to highlight the work of our thriving mentor community. I'd like to thank JPL mentors for their tremendous efforts and time commitment as they provide quality, hands-on experiences to students that support NASA missions and science, and foster a diverse and talented future workforce."
Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern
Career opportunities in STEM and beyond can be found at: jpl.jobs
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
TAGS: Higher Education, Internships, Mentors, Research, Researchers, STEM, Interns, Juno, Jupiter, Science, Astrobiology, Planetary Protection, Computer Science, Design, Mentoring, Careers, Women at NASA
Edu News | October 23, 2019
Mars Rovers and Navigation Tech Collide in NASA-JPL Education Program
Finding the best driving route for a Mars rover isn't as easy as turning on a navigation app – but John Park and Hiro Ono want to make it so. A program at NASA's Jet Propulsion Laboratory is helping them turn their idea into a reality, all while promoting diversity in STEM.
A tenure-track faculty member at North Carolina A&T State University, Park has spent the past two summers at JPL through an Education Office initiative designed to connect students and researchers from Historically Black Colleges and Universities (HBCUs) to the Laboratory's missions and science. The NASA-backed pilot program has brought more than a dozen student interns and several faculty researchers to JPL for projects investigating Mars, Earth and planets beyond our solar system.
Until his stint at JPL, Park's research focused solely on Earth-bound transportation technologies, such as those used by self-driving cars. When he learned about JPL's HBCU initiative from a colleague who had participated in the program, he seized on the chance to apply his research to space exploration.
"My previous projects and publications have dealt with decision-making tools for exploring uncertain areas on Earth and maximizing the information that's available," says Park, who also helped connect several students from North Carolina A&T to internship opportunities with the HBCU initiative. "I thought I could help bring that perspective to Mars rovers and helicopters."
While researching potential applications for his research at JPL, Park learned that the challenges of getting around on Mars are similar to those faced by drivers on Earth. Rovers also need to get from place to place safely and efficiently – they're just avoiding boulders instead of traffic jams.
It was precisely those challenges that Hiro Ono in JPL's Robotic Mobility Group also wanted to overcome. "I had an idea that I wanted to try, and we had all the ingredients," says Ono, who designs artificial intelligence systems for future rover missions. "The HBCU program allowed us to try the idea."
The HBCU initiative brought Park and Ono together along with Larkin Folsom, a student intern from North Carolina A&T. Together, the trio developed a proposal for a future system that would work similarly to the navigation apps we use to get through rush-hour traffic. The system would allow rovers to analyze routes as they drive, providing mission planners with information about the routes most likely to be hazard-free so they can make the most efficient use of the spacecraft's limited energy supply and maximize the mission's science goals.
"Previously, the way that we operated on Mars was to make the best guess about drivability solely from looking at orbital images," says Ono. "The idea that we are working on is to introduce the concept of probability. So if there are two terrains that are important to you but one of them is 90% traversable and the other is 60% traversable, which are you going to choose?"
In September, the National Science Foundation awarded Park, who submitted the proposal, with a grant to pursue the project. Park says the funding will go toward a JPL internship opportunity for a Ph.D. student from his university to continue research with Ono's team.
Jenny Tieu is a STEM education project manager at JPL who manages the HBCU initiative with Roslyn Soto. She helped connect Park and Ono and says it's collaborations like these that the initiative was designed to foster.
"Our goal with this initiative is to expand the number of HBCU students and faculty members participating in research at JPL and ultimately increase diversity among the Laboratory's workforce," says Tieu. "This National Science Foundation award is a positive indication that the initiative is not only building strong relationships between HBCUs and JPL, but also creating a ripple effect for additional opportunities."
Now in its fourth year, the HBCU initiative will once again bring students and faculty to JPL for research opportunities in the summer of 2020.
Meanwhile, Park and Ono are exploring ways to expand their technology into other arenas, including hurricane research and emergency response. Park has already received support from the U.S. Department of Transportation as well as the state DOT in Virginia and North Carolina for additional Earth-based applications of the technology.
Ono is serving as a consultant on the projects and has high hopes the results of the research will make their way back to JPL.
Says Ono, "In the long run, having an intern, giving them a good experience, helping their career is going to come back to us. We, as JPL, can build connections around the world and among industry partners that are going to come back to us eventually."
This Q&A is part of an ongoing series highlighting the stories and experiences of students and faculty who came to JPL as part of the laboratory's collaboration with historically black colleges and universities, or HBCUs. › Read more from the series
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.
TAGS: Higher Education, Internships, STEM, Engineering, HBCU, Research, Mars, Mars rovers, robotics, AI, navigation, universities, college, Asian Pacific American Heritage Month