Edu News | May 14, 2024
Our Favorite Projects for Summertime STEAM
We're launching into summer by highlighting 15 of our favorite summertime projects for students, including a Mars student challenge you can do again and again.
Just because the school year is coming to a close doesn't mean student learning has to go on vacation. In fact, with our collections of more than 100 guided out-of-school time activities and student projects that are perfect for summertime, you can find a number of ideas for keeping kids engaged while they learn about STEAM and explore NASA missions and science in the process.
Here are 15 of our favorite summer-worthy activities, plus more ways to engage students in STEAM this summer.
- Project
Make a Scale Solar System
Use beads and string, sidewalk chalk, or your own creative choice of materials to build a scale model of planet sizes or distances in the solar system.
Subject Science
Grades 2-12
Time 30-60 mins
- Project
NASA Space Voyagers: The Game
In this strategy card game, you'll build spacecraft that can explore the Moon, Mars, and other destinations throughout our solar system while withstanding challenges thrown your way.
Subject Engineering
Grades 6-12
Time 1-2 hours
- Project
Look at the Moon! Journaling Project
Draw what you see in a Moon Journal and see if you can predict the moon phase that comes next.
Subject Science
Grades K-8
Time 1-2 mins/day for 30 days
- Project
Make a Moon Phases Calendar and Calculator
Like a decoder wheel for the Moon, this calendar will show you where and when to see the Moon and every moon phase throughout the year.
Subject Science
Grades K-12
Time Less than 30 mins
- Project
Make and Code a Light-Powered Device
In this challenge, you will build and program a light-powered device that can move to collect as much light as possible while not overheating.
Subject Technology
Grades 6-12
Time 2+ hours
- Project
Make a Paper Mars Helicopter
Build a paper helicopter, then see if you can improve the design like NASA engineers did when making the first helicopter for Mars.
Subject Engineering
Grades 2-8
Time 30-60 mins
- Project
Make a Straw Rocket
Create a paper rocket that can be launched from a soda straw – then, modify the design to make the rocket fly farther!
Subject Engineering
Grades 4-8
Time Less than 30 mins
- Project
Make a Paper Glider
Turn a piece of paper into a glider inspired by a NASA design.
Subject Engineering
Grades 3-8
Time 30-60 mins
- Project
Space Origami: Make Your Own Starshade
Make your own model of this folding NASA space technology designed to help capture the first images of planets outside our solar system!
Subject Engineering
Grades 4-12
Time Less than 30 mins
- Project
Do a Mineral Mystery Experiment
Dissolve salts in water, then observe what happens when the water evaporates. Now updated with findings from Mars!
Subject Science
Grades 2-12
Time Two sessions of 30-60 mins
- Project
Make a Moon Crater
Make craters like the ones you can see on the Moon using simple baking ingredients!
Subject Science
Grades 2-8
Time 30-60 mins
- Instructor Guide
Design an Alien
Learners imagine and draw an alien that can survive with traits and environmental conditions that scientists look for in the search for life beyond Earth.
Subject Science
Grades 2-8
Time 30-60 mins
- Instructor Guide
Modeling an Asteroid
Learners imagine and draw an alien that can survive with traits and environmental conditions that scientists look for in the search for life beyond Earth.
Subject Science
Grades 3-5
Time 30-60 mins
- Instructor Guide
Model the Expanding Universe
Students learn about the role of dark energy and dark matter in the expansion of the universe, then make a model using balloons.
Subject Science
Grades 6-12
Time 30-60 mins
This last one is a great option for summer camps and other out-of-school time groups looking to fill their summer programming with STEAM. Explore seven weeks worth of lessons and activities that can be customized to your group's needs and get kids planning and designing their own mission to Mars!
Explore More
Explore the full collections of guided activities and projects at the links below:- Collection
Out-of-School Time STEAM
Explore a collection of guided STEAM activities for out-of-school time groups.
- Collection
Summertime Projects for Students
Build paper rockets and gliders, make a moon journal, write space poetry and more. These projects are the perfect way to launch into summer.
TAGS: K-12 Education, Out-of-School Time, Afterschool, Informal Education, Summer, Resources, Projects, Students, STEAM
Edu News | August 24, 2022
A Lesson for Every Day of the School Year
With 180 lessons in our online catalog, you can explore Earth and space with us all year long. We show you how with this handy NASA-JPL school year calendar.
We just added the 180th lesson to our online catalog of standards-aligned STEM lessons, which means JPL Education now has a lesson for every day of the school year. To celebrate and help you make the year ahead stellar, we've put together this monthly calendar of upcoming NASA events along with links to our related lessons, Teachable Moments articles, and student projects you can use to engage students in STEM while they explore Earth and space with us all year long.
August
The Voyagers Turn 45
The twin Voyager spacecraft launched in 1977 on a journey to explore the outer planets and beyond – and they're still going. Now more than 12 billion miles (19 billion kilometers) from Earth in a region known as interstellar space, they're the most distant human-made objects in space.
Get a primer on these fascinating spacecraft from Teachable Moments, then use it as a jumping off point for lessons on the scale, size, and structure of our solar system and how we communicate with distant spacecraft.
Lessons & Resources:
- Collection
Voyager Lessons for Educators
Explore the science behind NASA's Voyager spacecraft with this collection of standards-aligned STEM lessons.
- Collection
Voyager Activities for Students
These DIY projects, slideshows, and videos will get students exploring the science behind NASA's Voyager spacecraft.
- Teachable Moments
The Farthest Operating Spacecraft, Voyagers 1 and 2, Still Exploring
The twin spacecraft launched in 1977 on an epic journey through the solar system and beyond offer lessons in what it takes to travel farther than ever before.
- Teachable Moments
Then There Were Two: Voyager 2 Reaches Interstellar Space
Find out how the twin Voyager spacecraft took advantage of a rare planetary alignment to embark on a journey no spacecraft had before – or has since.
September
Rendezvous with an Asteroid
A distant asteroid system 6.8 million miles (11 million kilometers) from Earth was the site of NASA's first attempt at redirecting an asteroid. On September 26, the Double Asteroid Redirection Test, or DART, mission impacted the asteroid Dimorphos in an attempt to alter its speed and path around a larger asteroid known as Didymos. Dimorphos and Didymos do not pose a threat to Earth, which makes them a good proving ground for testing whether a similar technique could be used to defend Earth against potential impacts by hazardous asteroids in the future.
Get a primer on the DART mission and find related resources for the classroom in this article from our Teachable Moments series. Plus, explore our collection of standards-aligned lessons and activities all about asteroids to get students learning about different kinds of space rocks, geology, and meteoroid math.
Lessons & Resources:
- Teachable Moments
The Science Behind NASA's First Attempt at Redirecting an Asteroid
Find out more about the historic first test, which could be used to defend our planet if a hazardous asteroid were discovered. Plus, explore lessons to bring the science and engineering of the mission into the classroom.
- Collection
Asteroids Lessons for Educators
Explore a collection of standards-aligned lessons all about asteroids and craters.
- Collection
Asteroids Actvities for Students
Explore projects, videos, slideshows, and games for students all about asteroids.
A Closer Look at Europa
Just a few days later, on September 29, the Juno spacecraft that had been orbiting Jupiter since 2016 captured the closest views of Jupiter’s moon Europa in more than 20 years. The ice-covered moon is thought to contain a subsurface liquid-water ocean, making it an exciting new frontier in our search for life beyond Earth. NASA's Europa Clipper mission, which is scheduled to launch in 2024 is designed to study the moon in more detail. But until Europa Clipper arrives at the Jovian system in 2030, these observations from Juno are our best chance to get a closer look at this fascinating moon.
Learn more about Europa and why it is interesting to scientists in this talk from our Teaching Space With NASA series featuring a Europa Clipper mission scientist. Then, explore our Ocean Worlds Lesson Collection for ideas on making classroom connections.
Lessons & Resources:
- Collection
Ocean Worlds Lessons for Educators
Explore a collection of standards-aligned STEM lessons all about ocean worlds throughout our solar system.
- Collection
Ocean Worlds Actvities for Students
Learn about the ocean worlds throughout our solar system with these science and engineering activities for students.
- Expert Talk
Teaching Space With NASA – Robotic Oceanographers
Hear from scientists exploring Earth's oceans and learn about how we use robotic explorers to collect data on how our oceans are changing as well as explore ocean worlds beyond Earth.
October
Celebrate Halloween Like a Space Explorer
The month of October is the perfect time to get students exploring our STEM activities with a Halloween twist. Students can learn how to carve a pumpkin like a JPL engineer, take a tour of mysterious locations throughout the solar system, and dig into the geology inside their Halloween candy.
October 31 is also JPL's 86th birthday, which makes October a great time to learn more about JPL history, including the team of female mathematicians known as "human computers" who performed some of the earliest spacecraft-tracking calculations and the Laboratory's role in launching the first U.S. space satellite.
Lessons & Resources:
- Collection
Halloween Actvities for Students
Explore student projects and slideshows that put a Halloween twist on STEM.
- Project for Kids
Pumpkin Stencils
Celebrate the fall season and Halloween by making your very own space-themed pumpkins with these easy-to-use stencils from NASA's Space Place!
- Teachable Moments
When Computers Were Human
Learn about the important but little-known role women played in the early days of space exploration, then try a math lesson inspired by their work.
- Teachable Moments
Explorer 1 Anniversary Marks 60 Years of Science in Space
The fascinating history of America’s first space satellite serves as a launching point for lessons in engineering design, motion and flight, and Earth science.
November
Watch a Total Lunar Eclipse
Look up in the early morning hours of November 8 to watch one of the most stunning spectacles visible from Earth: a total lunar eclipse. This one will be viewable in North and South America, as well as Asia and Australia.
Learn more about lunar eclipses and how to watch them from our Teachable Moments series. Then, get students of all ages outside and observing the Moon with lessons on moon phases and the hows and whys of eclipses. Students can even build a Moon calendar so they always know when and where to look for the next eclipse.
Lessons & Resources:
- Teachable Moments
How to Watch a Total Lunar Eclipse and Get Students Observing the Moon
There’s no better time to learn about the Moon than during a lunar eclipse. Here’s how eclipses work, what to expect, and how to get students engaged.
- Collection
Moon Lessons for Educators
Teach students about the Moon with this collection of standards-aligned activities inspired by real NASA missions and science.
- Collection
Moon Activities for Students
Learn all about the Moon with these projects, slideshows, and videos for students.
Artemis Takes a Giant Leap
NASA is making plans to send astronauts back to the Moon for the first time since 1972 – this time to establish a sustainable presence and prepare for future human missions to Mars. The first major step is Artemis I, which is testing three key components required to send astronauts beyond the Moon: the Orion spacecraft, the Space Launch System, or SLS, rocket and the ground systems at Kennedy Space Center in Florida. The uncrewed Artemis I mission marks the first test of all three components at once.
Get your K-12 students following along with lessons in rocketry and what it takes to live in space. Plus, register to follow along with the mission with resources and updates from NASA's Office of STEM Engagement.
Lessons & Resources:
- Collection
Artemis Lessons for Educators
Get students engaged in NASA's Artemis Program with STEM lessons all about the Moon, rockets, space habitats, and more
- Collection
Artemis Activities for Students
These STEM projects and activities for students will get them exploring the Moon, rockets, space flight and other facets of NASA's Artemis Program.
- Public Event
Join NASA Online for Artemis I
Register to receive updates and resources related to Artemis I – the first in a series of Artemis Program missions designed to establish a sustainable human presence on the Moon and prepare for future human missions to Mars.
- Educator Resources
Artemis Toolkit
Explore Artemis resources for educators and students from NASA's Office of STEM Engagement.
- Teachable Moments
Celebrate the 50th Anniversary of NASA's Apollo Moon Landing
Explore the incredible history of the Apollo missions and find out what's in store for NASA's next mission to the Moon.
December
Satellite Launches on a Mission to Follow the Water
As crucial as water is to human life, did you know that no one has ever completed a global survey of Earth’s surface water? That is about to change with the launch of the SWOT mission. SWOT, which stands for Surface Water Ocean Topography, will use a state-of-the-art radar to measure the elevation of water in major lakes, rivers, wetlands, and reservoirs. It will also provide an unprecedented level of detail on the ocean surface. This data will help scientists track how these bodies of water are changing over time and improve weather and climate models.
Engage your students in learning about Earth’s water budget and how we monitor Earth from space with these lessons. And be sure to check out our Teachable Moments article for more about the SWOT mission and the science of our changing climate.
- Teachable Moments
NASA Mission Takes a Deep Dive Into Earth's Surface Water
Explore how and why the SWOT mission will take stock of Earth's water budget, what it could mean for assessing climate change, and how to bring it all to students.
- Collection
SWOT Lessons for Educators
Explore the science and engineering behind the SWOT mission with this collection of standards-aligned lessons all about water.
- Collection
SWOT Actvities for Students
Explore projects, videos, slideshows, and games for students all about the water cycle and sea level rise.
Prepare for the Science Fair
Before you know it, it'll be science fair time. Avoid the stress of science fair prep by getting students organized and thinking about their projects before the winter recess. Start by watching our video series How to Do a Science Fair Project. A scientist and an engineer from JPL walk your students through all the steps they will need to create an original science fair project by observing the world around them and asking questions. You can also explore our science fair starter pack of lessons and projects to get students generating ideas and thinking like scientists and engineers.
Lessons & Resources:
- Video Series
How to Do a Science Fair Project
Learn all the ins and outs of crafting your very own science fair project.
- Collection
Science Fair Lessons for Educators
Teach students how to craft their own science and engineering fair project with these video tutorials and lessons featuring NASA missions and science.
- Collection
Science Fair Activities for Students
Learn how to design a science and engineering fair project and get inspired with our catalog of student projects featuring NASA missions and science.
January
Explore STEM Careers
January is the time when many of us set goals for the year ahead, so it's the perfect month to get students exploring their career goals and opportunities in STEM. Students can learn more about careers in STEM and hear directly from scientists and engineers working on NASA missions in our Teaching Space video series. Meanwhile, our news page has more on what it takes to be a NASA astronaut and what it's like to be a JPL intern.
For students already in college and pursuing STEM degrees, now is the time to start exploring internship opportunities for the summer. The deadline for JPL summer internships is in March, so it's a good idea to refresh your resume and get your application started now. Learn how to stand out with this article on how to get an internship at JPL – which also includes advice for pre-college students.
Resources:
- Expert Talks
Teaching Space With NASA
Hear from experts and education specialists about the latest missions and science happening at NASA and get your questions answered.
- Articles
Career Guidance
Get advice from scientists, engineers and educators about what it takes to work in science, technology, engineering and mathematics fields and how to get a foot in the door.
- Articles
Meet JPL Interns
These interns are pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.
- Opportunities
JPL Internships and Fellowships
Discover exciting internships and research opportunities at the leading center for robotic exploration of the solar system.
- Opportunities
JPL Jobs: Opportunities for Students
Start here to learn more about internship, fellowship, and postdoc opportunities at JPL and how to apply.
- Opportunities
NASA Internships
Learn about internship opportunities at NASA centers across the U.S., and apply today!
February
Mars Rover Celebrates 2-Year 'Landiversary'
NASA's Perseverance Mars rover celebrates its "landiversary" on February 18, which marks two years since the rover made its nail-biting descent on the Red Planet. The rover continues to explore Jezero Crater using science tools to analyze rocks and soil in search of signs of ancient microbial life. As of this writing, the rover has collected twelve rock core samples that will be sent to Earth by a future mission. Perseverance even witnessed a solar eclipse! Meanwhile, the Ingenuity Mars helicopter, which the rover deployed shortly after landing, has gone on to achieve feats of its own.
The Mission to Mars Student Challenge is a great way to get students of all ages exploring STEM and the Red Planet right along with the Perseverance rover. The challenge includes seven weeks of education content that can be customized for your classroom as well as education plans, expert talks, and resources from NASA.
Lessons & Resources:
- Collection
Mission to Mars Student Challenge
Get K-12 students exploring Mars with NASA scientists, engineers, and the Perseverance rover as they learn all about STEM and design their very own mission to the Red Planet!
- Teachable Moments
NASA's Perseverance Rover Lands on Mars
Learn how, why, and what Perseverance will explore on Mars, plus find out about an exciting opportunity for you and your students to join in the adventure!
March
Take On the Pi Day Challenge
Math teachers, pie-lovers, and pun-aficionados rejoice! March 14 is Pi Day, the annual celebration of the mathematical constant used throughout the STEM world – and especially for space exploration. This year's celebration brings the 10th installment of the NASA Pi Day Challenge, featuring four new illustrated math problems involving pi along with NASA missions and science.
Explore the full collection of pi math lessons, get students learning about how we use pi at NASA, and hear from a JPL engineer on how many decimals of pi we use for space exploration at the links below.
Lessons & Resources:
- Teachable Moments
10 Years of NASA's Pi Day Challenge
Learn more about pi, the history of Pi Day before, and the science behind the 2023 NASA Pi Day Challenge.
- Collection
Pi in the Sky Lessons
Find everything you need to bring the NASA Pi Day Challenge into the classroom, including printable handouts of each illustrated math problem.
- Student Project
NASA Pi Day Challenge
This collection of illustrated math problems gets students using pi like NASA scientists and engineers exploring Earth and space.
- Article
How Many Decimals of Pi Do We Really Need?
While you may have memorized more than 70,000 digits of pi, world record holders, a JPL engineer explains why you really only need a tiny fraction of that for most calculations.
- Article
18 Ways NASA Uses Pi
Whether it's sending spacecraft to other planets, driving rovers on Mars, finding out what planets are made of or how deep alien oceans are, pi takes us far at NASA. Find out how pi helps us explore space.
April
Celebrate Earth Day With NASA
You may not immediately think of Earth science when you think of NASA, but it's a big part of what we do. Earth Day on April 22 is a great time to explore Earth science with NASA, especially as new missions are taking to the skies to study the movements of dust, measure surface water across the planet, and track tiny land movements to better predict natural disasters.
Whether you want to focus on Earth’s surface and geology, climate change, extreme weather, or the water budget, we have an abundance of lessons, student projects and Teachable Moments to guide your way.
Lessons & Resources:
- Collection
Earth Lessons for Educators
Discover a collection of standards-aligned STEM lessons all about Earth and climate change.
- Collection
Earth Activities for Students
Try these science and engineering projects, watch videos, and explore images all about the planet that we call home.
- Teachable Moments
Climate Change Collection
Explore this collection of Teachable Moments articles to get a primer on the latest NASA Earth science missions, plus find related education resources you can deploy right away!
May
Summer Learning Adventures
As the school year comes to a close, send your students off on an adventure of summer learning with our do-it-yourself STEM projects. Additionally, our Learning Space With NASA at Home page and video series is a great resource for parents and families to help direct students' learning during out-of-school time.
Lessons & Resources:
- Student Resources
Summer Activities for Students
Explore Earth and space with these hands-on projects, slideshows, videos, and more for K-12 students.
- Student Resources
Learning Space With NASA
Explore space and science activities you can do with NASA at home. Find video tutorials, DIY projects, slideshows, games and more!
TAGS: K-12 Education, Teachers, Students, Lessons, Resources, Projects, Events, Artemis, Voyager, DART, Asteroids, Europa, Ocean Worlds, Halloween, History, Earth, Climate, SWOT, Lunar Eclipse, Science Fair, Career Advice, Mars, Perseverance, Pi Day, Earth Day, Summer STEM
Teachable Moments | May 29, 2019
Celebrate the 50th Anniversary of NASA's Apollo Moon Landing with Educational Resources and Projects for Kids
In the News
This year marks the 50th anniversary of humans landing on the Moon. Now NASA is headed to the Moon once again, using it as a proving ground for a future human mission to Mars. Use this opportunity to get students excited about Earth's natural satellite, the amazing feats accomplished 50 years ago and plans for future exploration.
How They Did It
When NASA was founded in 1958, scientists were unsure whether the human body could even survive orbiting Earth. Space is a demanding environment. Depending on where in space you are, it can lack adequate air for breathing, be very cold or hot, and have dangerous levels of radiation. Additionally, the physics of space travel make everything inside a space capsule feel weightless even while it's hurtling through space. Floating around inside a protective spacecraft may sound fun, and it is, but it also can have detrimental effects on the human body. Plus, it can be dangerous with the hostile environment of space lurking on the other side of a thin metal shell.
In 1959, NASA's Jet Propulsion Laboratory began the Ranger project, a mission designed to impact the Moon – in other words, make a planned crash landing. During its descent, the spacecraft would take pictures that could be sent back to Earth and studied in detail. These days, aiming to merely impact a large solar system body sounds rudimentary. But back then, engineering capabilities and course-of-travel, or trajectory, mathematics were being developed for the first time. A successful impact would be a major scientific and mathematical accomplishment. In fact, it took until July 1964 to achieve the monumental task, with Ranger 7 becoming the first U.S. spacecraft to impact the near side of the Moon, capturing and returning images during its descent.
After the successful Ranger 7 mission, two more Ranger missions were sent to the Moon. Then, it was time to land softly. For this task, JPL partnered with Hughes Aircraft Corporation to design and operate the Surveyor missions between 1966 and 1968. Each of the seven Surveyor landers were equipped with a television camera – with later landers carried scientific instruments, too – aimed at obtaining up-close lunar surface data to assess the Moon's suitability for a human landing. The Surveyors also demonstrated in-flight maneuvers and in-flight and surface-communications capabilities.
In 1958, at the same time JPL was developing the technological capabilities to get to the Moon, NASA began the Mercury program to see if it was possible for humans to function in space. The success of the single-passenger Mercury missions, with six successful flights that placed two astronauts into suborbital flight and four astronauts into Earth orbit, kicked off the era of U.S. human spaceflight.
In 1963, NASA's Gemini program proved that a larger capsule containing two humans could orbit Earth, allowing astronauts to work together to accomplish science in orbit for long-duration missions (up to two weeks in space) and laying the groundwork for a human mission to the Moon. With the Gemini program, scientists and engineers learned how spacecraft could rendezvous and dock while in orbit around Earth. They were also able to perfect re-entry and landing methods and began to better understand the effects of longer space flights on astronauts. After the successful Gemini missions, it was time to send humans to the Moon.
The Apollo program officially began in 1963 after President John F. Kennedy directed NASA in September of 1962 to place humans on the Moon by the end of the decade. This was a formidable task as no hardware existed at the time that would accomplish the feat. NASA needed to build a giant rocket, a crew capsule and a lunar lander. And each component needed to function flawlessly.
Rapid progress was made, involving numerous NASA and contractor facilities and hundreds of thousands of workers. A crew capsule was designed, built and tested for spaceflight and landing in water by the NASA contractor North American Aviation, which eventually became part of Boeing. A lunar lander was developed by the Grumman Corporation. Though much of the astronaut training took place at or near the Manned Spacecraft Center, now known as NASA’s Johnson Space Center, in Texas, astronauts practiced lunar landings here on Earth using simulators at NASA's Dryden (now Armstrong) Flight Research Center in California and at NASA's Langley Research Center in Virginia. The enormous Saturn V rocket was a marvel of complexity. Its first stage was developed by NASA's Marshall Space Flight Center in Alabama. The upper-stage development was managed by the Lewis Flight Propulsion Center, now known as NASA's Glenn Research Center, in Ohio in partnership with North American Aviation and Douglas Aircraft Corporation, while Boeing integrated the whole vehicle. The engines were tested at what is now NASA's Stennis Space Center in Mississippi, and the rocket was transported in pieces by water for assembly at Cape Kennedy, now NASA's Kennedy Space Center, in Florida. As the Saturn V was being developed and tested, NASA also developed a smaller, interim vehicle known as the Saturn I and started using it to test Apollo hardware. A Saturn I first flew the Apollo command module design in 1964.
Unfortunately, one crewed test of the Apollo command module turned tragic in February 1967, when a fire erupted in the capsule and killed all three astronauts who had been designated as the prime crew for what became known as Apollo 1. The command module design was altered in response, delaying the first crewed Apollo launch by 21 months. In the meantime, NASA flew several uncrewed Apollo missions to test the Saturn V. The first crewed Apollo launch became Apollo 7, flown on a Saturn IB, and proved that the redesigned command module would support its crew while remaining in Earth orbit. Next, Earth-Moon trajectories were calculated for this large capsule, and the Saturn V powered Apollo 8 set off for the Moon, proving that the calculations were accurate, orbiting the Moon was feasible and a safe return to Earth was possible. Apollo 8 also provided the first TV broadcast from lunar orbit. The next few Apollo missions further proved the technology and allowed humans to practice procedures that would be needed for an eventual Moon landing.
On July 16, 1969, a Saturn V rocket launched three astronauts to the Moon on Apollo 11 from Cape Kennedy. The Apollo 11 spacecraft had three parts: a command module, called "Columbia," with a cabin for the three astronauts; a service module that provided propulsion, electricity, oxygen and water; and a lunar module, "Eagle," that provided descent to the lunar surface and ascent back to the command and service modules.
On July 20, while astronaut and command module pilot Michael Collins orbited the Moon, Neil Armstrong and Buzz Aldrin landed Eagle on the Moon and set foot on the surface, accomplishing a first for humankind. They collected regolith (surface "dirt") and rock samples, set up experiments, planted an American flag and left behind medallions honoring the Apollo 1 crew and a plaque that read, "We came in peace for all mankind."
After 21.5 hours on the lunar surface, Armstrong and Aldrin rejoined Collins in the Columbia command module and, on July 21, headed back to Earth. On July 24, after jettisoning the service module, Columbia entered Earth's atmosphere. With its heat shield facing forward to protect the astronauts from the extreme friction heating outside the capsule, the craft slowed and a series of parachutes deployed. The module splashed down in the South Pacific Ocean, 380 kilometers (210 nautical miles) south of Johnston Atoll. Because scientists were uncertain about contamination from the Moon, the astronauts donned biological-isolation garments delivered by divers from the recovery ship, the aircraft carrier the USS Hornet. The astronauts boarded a life raft and then the USS Hornet, where the outside of their biological-isolation suits were washed down with disinfectant. To be sure no contamination was brought back to Earth from the Moon, the astronauts were quarantined until Aug. 10, at which point scientists determined the risk was low that biological contaminants or microbes had returned with the astronauts. Columbia was also disinfected and is now part of the National Air and Space Museum in Washington, D.C.
The Apollo program continued with six more missions to the Moon over the next three years. Astronauts placed seismometers to measure "moonquakes" and other science instruments on the lunar surface, performed science experiments, drove a carlike moon buggy on the surface, planted additional flags and returned more lunar samples to Earth for study.
Why It's Important
Apollo started out as a demonstration of America's technological, economic and political prowess, which it accomplished with the first Moon landing. But the Apollo missions accomplished even more in the realm of science and engineering.
Some of the earliest beneficiaries of Apollo research were Earth scientists. The Apollo 7 and 9 missions, which stayed in Earth orbit, took photographs of Earth in different wavelengths of light, highlighting things that might not be seen on the ground, like diseased trees and crops. This research led directly to the joint NASA-U.S. Geological Survey Landsat program, which has been studying Earth's resources from space for more than 45 years.
Samples returned from the Moon continue to be studied by scientists around the world. As new tools and techniques are developed, scientists can learn even more about our Moon, discovering clues to our planet's origins and the formation of the solar system. Additionally, educators can be certified to borrow lunar samples for use in their classrooms.
Perhaps the most important scientific finding came from comparing similarities in the composition of lunar and terrestrial rocks and then noting differences in the amount of specific substances. This suggested a new theory of the Moon's formation: that it accreted from debris ejected from Earth by a collision with a Mars-size object early in our planet's 4.5-billion-year history.
The 12 astronauts who walked on the Moon are the best-known faces of the Apollo program, but in numbers, they were also the smallest part of the program. About 400,000 men and women worked on Apollo, building the vehicles, calculating trajectories, even making and packing food for the crews. Many of them worked on solving a deceptively simple question: "How do we guide astronauts to the Moon and back safely?" Some built the spacecraft to carry humans to the Moon, enable surface operations and safely return astronauts to Earth. Others built the rockets that would launch these advanced spacecraft. In doing all this, NASA engineers and scientists helped lead the computing revolution from transistors to integrated circuits, the forebears to the microchip. An integrated circuit – a miniaturized electronic circuit that is used in nearly all electronic equipment today – is lighter weight, smaller and able to function on less power than the older transistors and capacitors. To suit the needs of the space capsule, NASA developed integrated circuits for use in the capsule's onboard computers. Additionally, computing advancements provided NASA with software that worked exactly as it was supposed to every time. That software lead to the development of the systems used today in retail credit-card swipe devices.
Some lesser-known benefits of the Apollo program include the technologies that commercial industries would then further advance to benefit humans right here on Earth. These "spinoffs" include technology that improved kidney dialysis, modernized athletic shoes, improved home insulation, advanced commercial and residential water filtration, and developed the freeze-drying technique for preserving foods.
Apollo was succeeded by missions that have continued to build a human presence in space and advance technologies on Earth. Hardware developed for Apollo was used to build America's first Earth-orbiting space station, Skylab. After Skylab, during the Apollo-Soyuz test project, American and Soviet spacecraft docked together, laying the groundwork for international cooperation in human spaceflight. American astronauts and Soviet cosmonauts worked together aboard the Soviet space station Mir, performing science experiments and learning about long-term space travel's effects on the human body. Eventually, the U.S. and Russia, along with 13 other nations, partnered to build and operate the International Space Station, a world-class science laboratory orbiting 400 kilometers (250 miles) above Earth, making a complete orbit every 90 minutes.
And the innovations continue today. NASA is planning the Artemis mission to put humans on the Moon again in 2024 with innovative new technologies and the intent of establishing a permanent human presence. Working in tandem with commercial and international partners, NASA will develop the Space Launch System launch vehicle, Orion crew capsule, a new lunar lander and other operations hardware. The lunar Gateway – a small spaceship that will orbit the Moon and include living quarters for astronauts, a lab for science, and research and ports for visiting spacecraft – will provide access to more of the lunar surface than ever before. While at the Moon, astronauts will research ways to use lunar resources for survival and further technological development. The lessons and discoveries from Artemis will eventually pave a path for a future human mission to Mars.
Teach It
Use these standards-aligned lessons to help students learn more about Earth's only natural satellite:
-
Observing the Moon
Students identify the Moon’s location in the sky and record their observations over the course of the moon-phase cycle in a journal.
Grades K-6
Time 30 mins - 1 hr
-
Moon Phases
Students learn about the phases of the moon by acting them out.
Grades 1-6
Time 30 mins - 1 hr
-
Whip Up a Moon-Like Crater
Whip up a moon-like crater with baking ingredients as a demonstration for students.
Grades 1-6
Time 30 mins - 1 hr
-
Modeling the Earth-Moon System
Students learn about scale models and distance by creating a classroom-size Earth-Moon system.
Grades 6-8
Time 30 mins - 1 hr
As students head out for the summer, get them excited to learn more about the Moon and human exploration using these student projects:
-
Make a Moon Phases Calendar and Calculator
Like a decoder wheel for the Moon, this calendar will show you where and when to see the Moon and every moon phase throughout the year!
Type Project
Subject Science
-
Make a Straw Rocket
Create a paper rocket that can be launched from a soda straw – then, modify the design to make the rocket fly farther!
Type Project
Subject Engineering
-
Make an Astronaut Lander
Design and build a lander that will protect two "astronauts" when they touch down.
Type Project
Subject Engineering
-
Make a Cardboard Rover
Build a rubber-band-powered rover that can scramble across a room.
Type Project
Subject Engineering
Explore More
- NASA Apollo 50th Photos, Video and Audio Recordings
- NASA Moon to Mars website
- NASA Moon to Mars poster
- Blog: So You Want to Be an Astronaut
- Explore Apollo 50th Anniversary events near you
TAGS: K-12 Education, Teachers, Educators, Classroom, Engineering, Science, Students, Projects, Moon, Apollo, Summer
Edu News | December 21, 2017
Make Your Own 2018 NASA Moon Phases Calendar
Looking for a stellar 2018 calendar? Try this new Moon Phases Calendar and Calculator DIY from the Education Office at NASA’s Jet Propulsion Laboratory!
Download the free, decoder-ring style calendar and assemble it to see when and where to view the Moon every day of the year. The calendar features daily moon phases, moonrise, moonset and overhead viewing times, a listing of Moon events including supermoons and lunar eclipses, plus graphics depicting the relative positions of Earth and the Moon during various moon phases. Use it to teach students about the phases of the Moon, for sky-gazing or simply as a unique wall calendar.
In the classroom, it makes a great addition to this Teachable Moment and related lessons about supermoons – two of which will ring in the new year in January 2018.
Explore these and more Moon-related lessons and activities from NASA/JPL Edu at the links below: