Collage of images from the events and lessons featured in this article.

With 180 lessons in our online catalog, you can explore Earth and space with us all year long. We show you how with this handy NASA-JPL school year calendar.


We just added the 180th lesson to our online catalog of standards-aligned STEM lessons, which means JPL Education now has a lesson for every day of the school year. To celebrate and help you make the year ahead stellar, we've put together this monthly calendar of upcoming NASA events along with links to our related lessons, Teachable Moments articles, and student projects you can use to engage students in STEM while they explore Earth and space with us all year long.


August

The Voyagers Turn 45

The twin Voyager spacecraft launched in 1977 on a journey to explore the outer planets and beyond – and they're still going. Now more than 12 billion miles (19 billion kilometers) from Earth in a region known as interstellar space, they're the most distant human-made objects in space.

Get a primer on these fascinating spacecraft from Teachable Moments, then use it as a jumping off point for lessons on the scale, size, and structure of our solar system and how we communicate with distant spacecraft.

Lessons & Resources:


September

Rendezvous with an Asteroid

A distant asteroid system 6.8 million miles (11 million kilometers) from Earth was the site of NASA's first attempt at redirecting an asteroid. On September 26, the Double Asteroid Redirection Test, or DART, mission impacted the asteroid Dimorphos in an attempt to alter its speed and path around a larger asteroid known as Didymos. Dimorphos and Didymos do not pose a threat to Earth, which makes them a good proving ground for testing whether a similar technique could be used to defend Earth against potential impacts by hazardous asteroids in the future.

Get a primer on the DART mission and find related resources for the classroom in this article from our Teachable Moments series. Plus, explore our collection of standards-aligned lessons and activities all about asteroids to get students learning about different kinds of space rocks, geology, and meteoroid math.

Lessons & Resources:

A Closer Look at Europa

Just a few days later, on September 29, the Juno spacecraft that had been orbiting Jupiter since 2016 captured the closest views of Jupiter’s moon Europa in more than 20 years. The ice-covered moon is thought to contain a subsurface liquid-water ocean, making it an exciting new frontier in our search for life beyond Earth. NASA's Europa Clipper mission, which is scheduled to launch in 2024 is designed to study the moon in more detail. But until Europa Clipper arrives at the Jovian system in 2030, these observations from Juno are our best chance to get a closer look at this fascinating moon.

Learn more about Europa and why it is interesting to scientists in this talk from our Teaching Space With NASA series featuring a Europa Clipper mission scientist. Then, explore our Ocean Worlds Lesson Collection for ideas on making classroom connections.

Lessons & Resources:


October

Celebrate Halloween Like a Space Explorer

The month of October is the perfect time to get students exploring our STEM activities with a Halloween twist. Students can learn how to carve a pumpkin like a JPL engineer, take a tour of mysterious locations throughout the solar system, and dig into the geology inside their Halloween candy.

October 31 is also JPL's 86th birthday, which makes October a great time to learn more about JPL history, including the team of female mathematicians known as "human computers" who performed some of the earliest spacecraft-tracking calculations and the Laboratory's role in launching the first U.S. space satellite.

Lessons & Resources:


November

Watch a Total Lunar Eclipse

Look up in the early morning hours of November 8 to watch one of the most stunning spectacles visible from Earth: a total lunar eclipse. This one will be viewable in North and South America, as well as Asia and Australia.

Learn more about lunar eclipses and how to watch them from our Teachable Moments series. Then, get students of all ages outside and observing the Moon with lessons on moon phases and the hows and whys of eclipses. Students can even build a Moon calendar so they always know when and where to look for the next eclipse.

Lessons & Resources:

Artemis Takes a Giant Leap

NASA is making plans to send astronauts back to the Moon for the first time since 1972 – this time to establish a sustainable presence and prepare for future human missions to Mars. The first major step is Artemis I, which is testing three key components required to send astronauts beyond the Moon: the Orion spacecraft, the Space Launch System, or SLS, rocket and the ground systems at Kennedy Space Center in Florida. The uncrewed Artemis I mission marks the first test of all three components at once.

Get your K-12 students following along with lessons in rocketry and what it takes to live in space. Plus, register to follow along with the mission with resources and updates from NASA's Office of STEM Engagement.

Lessons & Resources:


December

Satellite Launches on a Mission to Follow the Water

As crucial as water is to human life, did you know that no one has ever completed a global survey of Earth’s surface water? That is about to change with the launch of the SWOT mission. SWOT, which stands for Surface Water Ocean Topography, will use a state-of-the-art radar to measure the elevation of water in major lakes, rivers, wetlands, and reservoirs. It will also provide an unprecedented level of detail on the ocean surface. This data will help scientists track how these bodies of water are changing over time and improve weather and climate models.

Engage your students in learning about Earth’s water budget and how we monitor Earth from space with these lessons. And be sure to check out our Teachable Moments article for more about the SWOT mission and the science of our changing climate.

Prepare for the Science Fair

Before you know it, it'll be science fair time. Avoid the stress of science fair prep by getting students organized and thinking about their projects before the winter recess. Start by watching our video series How to Do a Science Fair Project. A scientist and an engineer from JPL walk your students through all the steps they will need to create an original science fair project by observing the world around them and asking questions. You can also explore our science fair starter pack of lessons and projects to get students generating ideas and thinking like scientists and engineers.

Lessons & Resources:


January

Explore STEM Careers

January is the time when many of us set goals for the year ahead, so it's the perfect month to get students exploring their career goals and opportunities in STEM. Students can learn more about careers in STEM and hear directly from scientists and engineers working on NASA missions in our Teaching Space video series. Meanwhile, our news page has more on what it takes to be a NASA astronaut and what it's like to be a JPL intern.

For students already in college and pursuing STEM degrees, now is the time to start exploring internship opportunities for the summer. The deadline for JPL summer internships is in March, so it's a good idea to refresh your resume and get your application started now. Learn how to stand out with this article on how to get an internship at JPL – which also includes advice for pre-college students.

Resources:


February

Mars Rover Celebrates 2-Year 'Landiversary'

NASA's Perseverance Mars rover celebrates its "landiversary" on February 18, which marks two years since the rover made its nail-biting descent on the Red Planet. The rover continues to explore Jezero Crater using science tools to analyze rocks and soil in search of signs of ancient microbial life. As of this writing, the rover has collected twelve rock core samples that will be sent to Earth by a future mission. Perseverance even witnessed a solar eclipse! Meanwhile, the Ingenuity Mars helicopter, which the rover deployed shortly after landing, has gone on to achieve feats of its own.

The Mission to Mars Student Challenge is a great way to get students of all ages exploring STEM and the Red Planet right along with the Perseverance rover. The challenge includes seven weeks of education content that can be customized for your classroom as well as education plans, expert talks, and resources from NASA.

Lessons & Resources:


March

Take On the Pi Day Challenge

Math teachers, pie-lovers, and pun-aficionados rejoice! March 14 is Pi Day, the annual celebration of the mathematical constant used throughout the STEM world – and especially for space exploration. This year's celebration brings the 10th installment of the NASA Pi Day Challenge, featuring four new illustrated math problems involving pi along with NASA missions and science.

Explore the full collection of pi math lessons, get students learning about how we use pi at NASA, and hear from a JPL engineer on how many decimals of pi we use for space exploration at the links below.

Lessons & Resources:


April

Celebrate Earth Day With NASA

You may not immediately think of Earth science when you think of NASA, but it's a big part of what we do. Earth Day on April 22 is a great time to explore Earth science with NASA, especially as new missions are taking to the skies to study the movements of dust, measure surface water across the planet, and track tiny land movements to better predict natural disasters.

Whether you want to focus on Earth’s surface and geology, climate change, extreme weather, or the water budget, we have an abundance of lessons, student projects and Teachable Moments to guide your way.

Lessons & Resources:


May

Summer Learning Adventures

As the school year comes to a close, send your students off on an adventure of summer learning with our do-it-yourself STEM projects. Additionally, our Learning Space With NASA at Home page and video series is a great resource for parents and families to help direct students' learning during out-of-school time.

Lessons & Resources:

TAGS: K-12 Education, Teachers, Students, Lessons, Resources, Projects, Events, Artemis, Voyager, DART, Asteroids, Europa, Ocean Worlds, Halloween, History, Earth, Climate, SWOT, Lunar Eclipse, Science Fair, Career Advice, Mars, Perseverance, Pi Day, Earth Day, Summer STEM

  • Kim Orr
READ MORE

We talked to a few JPL interns about what they've been working on, how they're taking NASA into the future, and what it all means to them.


Despite the challenges of the past two years, it’s been a busy time for NASA’s Jet Propulsion Laboratory. Among the Lab’s activities have been the launch and landing of a new Mars rover, preparations for sending a spacecraft to explore an ocean world beyond Earth, first light for missions studying our changing climate and the universe beyond, and the development of technology to help address the COVID pandemic.

All the while, JPL interns have continued supporting scientists, engineers, and technologists behind the scenes to make those missions and projects happen.

More than 600 summer interns are taking part in that crucial work – both in-person at the laboratory in Southern California as well as from their homes and dorms across the country. In May, JPL welcomed summer interns back on site for the first time since 2019 while continuing to offer remote internships as projects allow.

We wanted to hear what interns have been up to, how they're contributing to NASA missions and science, and what the experience has meant to them. So we caught up with three students who have helped see the lab through the last year or two – and in one case, seven years. Watch their stories in the video above.

Explore More



The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Interns, Internships, College Students, Science, Engineering, InSight, Mars, Europa, Ocean Worlds, Enceladus, Saturn, Cassini, Ceres

  • NASA/JPL Edu
READ MORE

Collage of images and illustrations of planets, spacecraft and space objects

Whether discovering something about our own planet or phenomena billions of miles away, NASA missions and scientists unveiled a vast universe of mysteries this past decade. And with each daring landing, visit to a new world and journey into the unknown came new opportunities to inspire the next generation of explorers. Read on for a look at some of NASA's most teachable moments of the decade from missions studying Earth, the solar system and beyond. Plus, find out what's next in space exploration and how to continue engaging students into the 2020s with related lessons, activities and resources.

1. Earth's Changing Climate

Flat map of Earth with an animation of co2 data overlayed

Rising sea levels, shrinking ice caps, higher temperatures and extreme weather continued to impact our lives this past decade, making studying Earth’s changing climate more important than ever. During the 2010s, NASA and National Oceanic and Atmospheric Administration, or NOAA, led the way by adding new Earth-monitoring satellites to their fleets to measure soil moisture and study carbon dioxide levels. Meanwhile, satellites such as Terra and Aqua continued their work monitoring various aspects of the Earth system such as land cover, the atmosphere, wildfires, water, clouds and ice. NASA's airborne missions, such as Operation IceBridge, Airborne Snow Observatory and Oceans Melting Greenland, returned data on water movement, providing decision makers with more accurate data than ever before. But there's still more to be done in the future to understand the complex systems that make up Earth's climate and improve the scientific models that will help the world prepare for a warmer future. Using these missions and the science they're gathering as a jumping-off point, students can learn about the water cycle, build data-based scientific models and develop an understanding of Earth's energy systems.

Explore More

2. Teachable Moments in the Sky

Animated image of the Moon during a lunar eclipse

Astronomical events are a sure-fire way to engage students, and this past decade delivered with exciting solar and lunar eclipses that provided real-world lessons about the Sun, the Moon and lunar exploration. The total solar eclipse that crossed the U.S. in 2017 gave students a chance to learn about the dynamic interactions between the Sun and Moon, while brilliant lunar eclipses year after year provided students with lessons in lunar science. There's more to look forward to in the decade ahead as another solar eclipse comes to the U.S. in 2024 – one of nine total solar eclipses around the world in the 2020s. There will be 10 total lunar eclipses in the 2020s, but observing the Moon at any time provides a great opportunity to study celestial patterns and inspire future explorers. Using the lessons below, students can develop and study models to understand the size and scale of the Earth-Moon system, predict future Moon phases and engage in engineering challenges to solve problems that will be faced by future explorers on the Moon!

Explore More

3. Missions to Mars

Animation of Curiosity driving on Mars

The past decade showed us the Red Planet in a whole new light. We discovered evidence that suggests Mars could have once supported ancient life, and we developed a better understanding of how the planet lost much of its atmosphere and surface water. The Opportunity rover continued exploring long past its expected lifespan of 90 days as NASA sent a larger, more technologically advanced rover, Curiosity, to take the next steps in understanding the planet's ability to support life. (Opportunity's nearly 15-year mission succumbed to the elements in 2019 after a global dust storm engulfed Mars, blocking the critical sunlight the rover needed to stay powered.) The InSight lander touched down in 2018 to begin exploring interior features of the Red Planet, including marsquakes, while high above, long-lived spacecraft like the Mars Reconnaissance Orbiter and Mars Odyssey were joined by NASA's MAVEN Orbiter, and missions from the European Space Agency and the Indian Space Research Organization. The next decade on Mars will get a kick-start with the July launch of the souped-up Mars 2020 rover, which will look for signs of ancient life and begin collecting samples designed to one day be returned to Earth. Mars provides students with countless opportunities to do some of the same engineering as the folks at NASA and design ideas for future Mars exploration. They can also use Mars as a basis for coding activities, real-world math, and lessons in biology and geology.

Explore More

4. Ocean Worlds and the Search for Life

Image of Saturn's moon Enceladus covered in ice with giant cracks scarring its surface

This decade marked the final half of the Cassini spacecraft's 13-year mission at Saturn, during which it made countless discoveries about the planet, its rings and its fascinating moons. Some of the most exciting findings highlighted new frontiers in our search for life beyond Earth. Cassini spotted geysers erupting from cracks in the icy shell of Saturn's moon Enceladus, suggesting the presence of an ocean below. At the moon Titan, the spacecraft peered through the hazy atmosphere to discover an Earth-like hydrologic cycle in which liquid methane and ethane take the place of water. Meanwhile, evidence for another ocean world came to light when the Hubble Space Telescope spotted what appear to be geysers erupting from the icy shell surrounding Jupiter's moon Europa. NASA is currently developing Europa Clipper, a mission that will explore the icy moon of Jupiter to reveal even more about the fascinating world. For students, these discoveries and the moons themselves provide opportunities to build scientific models and improve them as they learn more information. Students can also use math to calculate physical properties of moons throughout the solar system and identify the characteristics that define life as we know it.

Explore More

5. Asteroids, Comets and Dwarf Planets, Oh My!

Animated image series of comet 67P/Churyumov-Gerasimenko in which the comet tail can be seen shooting out from the comet as it rotates slightly from the perspective of the Rosetta spacecraft

The past decade was a big deal for small objects in space. NASA's Dawn mission started 2010 as a new arrival in the main asteroid belt. The next eight years saw Dawn explore the two largest objects in the asteroid belt, the giant asteroid Vesta and the dwarf planet Ceres. On its way to comet 67P/Churyumov-Gerasimenko, ESA's Rosetta mission (with contributions from NASA) flew by the asteroid Luticia in 2010. After more than two years at its destination – during which time it measured comet properties, captured breathtaking photos and deposited a lander on the comet – Rosetta's mission ended in dramatic fashion in 2016 when it touched down on 67P/Churyumov-Gerasimenko. In 2013, as scientists around the world eagerly anticipated the near-Earth flyby of asteroid Duende, residents of Chelyabinsk, Russia, got a surprising mid-morning wake-up call when a small, previously undetected asteroid entered the atmosphere, burned as a bright fireball and disintegrated. The team from NASA's OSIRIS-Rex mission wrapped up the decade and set the stage for discoveries in 2020 by selecting the site that the spacecraft will visit in the new year to collect a sample of asteroid Bennu for eventual return to Earth. And in 2022, NASA's Psyche mission will launch for a rendezvous with a type of object never before explored up close: a metal asteroid. The small objects in our solar system present students with chances to explore the composition of comets, use math to calculate properties such as volume, density and kinetic energy of asteroids, and use Newton's Laws in real-world applications, such as spacecraft acceleration.

Explore More

6. Uncovering Pluto's Mysteries

Image of Pluto in false color from NASA's New Horizons mission

In 2015, after nearly a decade of travel, NASA's New Horizons spacecraft arrived at Pluto for its planned flyby and became the first spacecraft to visit the dwarf planet and its moons. The images and scientific data the spacecraft returned brought into focus a complex and dynamic world, including seas of ice and mountain ranges. And there's still more left to explore. But New Horizons' journey is far from over. After its flyby of Pluto, the spacecraft continued deep into the Kuiper Belt, the band of icy bodies beyond the orbit of Neptune. In 2019, the spacecraft flew by a snowman-shaped object later named Arrokoth. In the 2020s, New Horizons will continue studying distant Kuiper Belt objects to better understand their physical properties and the region they call home. The new information gathered from the Pluto and Arrokoth flybys provides students with real-life examples of the ways in which scientific understanding changes as additional data is collected and gives them a chance to engage with the data themselves. At the same time, New Horizons' long-distance voyage through the Solar System serves as a good launchpad for discussions of solar system size and scale.

Explore More

7. The Voyagers' Journey Into Interstellar Space

Animation of Voyager entering interstellar space

In 1977, two spacecraft left Earth on a journey to explore the outer planets. In the 2010s, decades after their prime mission ended, Voyager 1 and Voyager 2 made history by becoming the first spacecraft to enter interstellar space – the region beyond the influence of solar wind from our Sun. The Voyager spacecraft are expected to continue operating into the 2020s, until their fuel and power run out. In the meantime, they will continue sending data back to Earth, shaping our understanding of the structure of the solar system and interstellar space. The Voyagers can help engage students as they learn about and model the structure of the solar system and use math to understand the challenges of communicating with spacecraft so far away.

Explore More

8. The Search for Planets Beyond Our Solar System

Illustration of the TRAPPIST-1 star and its system of planets

It was only a few decades ago that the first planets outside our solar system, or exoplanets, were discovered. The 2010s saw the number of known exoplanets skyrocket in large part thanks to the Kepler mission. A space telescope designed to seek out Earth-sized planets orbiting in the habitable zone – the region around a star where liquid water could exist – Kepler was used to discover more than 2,600 exoplanets. Discoveries from other observatories and amateur astronomers added to the count, now at more than 4,100. In one of the most momentous exoplanet findings of the decade, the Spitzer telescope discovered that the TRAPPIST-1 system, first thought to have three exoplanets, actually had seven – three of which were in the star’s habitable zone. With thousands of candidates discovered by Kepler waiting to be confirmed as exoplanets and NASA's latest space telescope, the Transiting Exoplanet Survey Satellite, or TESS, surveying the entire sky, the 2020s promise to be a decade filled with exoplanet science. And we may not have to wait long for exciting new discoveries from the James Webb Space Telescope, set to launch in 2021. Exoplanets are a great way to get students exploring concepts in science and mathematics. In the lessons linked to below, students use math to find the size and orbital period of planets, learn how scientists are using spectrometry to determine what makes up exoplanet atmospheres and more.

Explore More

9. Shining a Light on Black Holes

In this historic first image of a black hole, an orange glowing donut-shaped light can be seen against the black backdrop of space. At the center of the light is a black hole.

Even from millions and billions of light-years away, black holes made big news in the 2010s. First, a collision of two black holes 1.3 billion light-years away sent gravitational waves across the universe that finally reached Earth in 2015, where the waves were detected by the Laser Interferometer Gravitational-Wave Observatory, or LIGO. This was the first detection of gravitational waves in history and confirmed a prediction Einstein made 100 years earlier in his Theory of General Relativity. Then, in 2019, a team of researchers working on the Event Horizon Telescope project announced they had taken the first image capturing the silhouette of a black hole. To take the historic image of the supermassive black hole (named M87* after its location at the center of the M87 galaxy), the team had to create a virtual telescope as large as Earth itself. In addition to capturing the world's attention, the image gave scientists new information about scientific concepts and measurements they had only been able to theorize about in the past. The innovations that led to these discoveries are changing the way scientists can study black holes and how they interact with the space around them. More revelations are likely in the years ahead as scientists continue to analyze the data from these projects. For students, black holes and gravitational waves provide a basis for developing and modifying scientific models. Since they are a topic of immense interest to students, they can also be used to encourage independent research.

Explore More

TAGS: Teachable Moments, K-12 Education, Educators, Students, STEM, Lessons, Activities, Moon, Mars, Ocean Worlds, Small Objects, Pluto, Voyager, Exoplanets, Black Holes, Earth Science, Earth, Climate Change

  • Lyle Tavernier
READ MORE

JPL intern Maya Yanez stands in front of the Jupiter display in the lab's museum

There’s no telling what the first spacecraft to land on Jupiter’s ice-covered moon Europa could encounter – but this summer, JPL intern Maya Yanez is trying to find out. As part of a team designing the potential Europa Lander, a mission concept that would explore the Jovian moon to search for biosignatures of past or present life, Yanez is combing through images, models, analogs, anything she can find to characterize a spot that’s “less than a quarter of a pixel on the highest-resolution image we have of Europa.” We caught up with Yanez, an undergraduate student at the University of Colorado at Boulder, to find out what inspired her to get involved in space exploration and ask about her career ambition to discover alien life.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

What are you working on at JPL?

I'm working on what may be a robot that we would land on Europa's icy surface. Europa is a moon of Jupiter that has this thick ice shell that we estimate is 25 kilometers [15.5 miles] thick, and there’s evidence that underneath that is a huge global ocean. If we're going to find life beyond Earth, it's probably going to be wherever there's water. So this mission concept would be to put a lander on Europa to try to figure out if there are signs of life there. I’m looking at an area on Europa about two square meters [about 7 feet] and about a meter [3 feet] deep. For perspective, we've only explored a few kilometers into our own Earth's surface. What I'm doing is trying to figure out what we might expect is going on in that little tiny area on Europa. What light is interacting with it, what processes might be going on, what little micrometeorites are hitting the surface, what's the ice block distribution? I'm looking at places like Mars, the Moon and Earth to try to put constraints and understanding around what types of variation we might see on Europa and what might be going on underneath the surface.

What's an average day like for you?

A lot of it is looking up papers and trying to get an idea of what information exists about Europa. My first couple of weeks here, I read this thing that we call the "Big Europa Book.” It's a 700-page textbook that covers basically all of our knowledge of Europa.

One of the other things that I've been working on is a geologic map, trying to look at what geologic variation exists in a couple of meters on Europa because we don't know. It's kind of crazy to think that when Viking [the first Mars lander] landed, we had no clue what another surface would look like except for the Moon. We had no idea. And then we got those first amazing images and it looked kind of like Earth, except Europa probably won't look like Earth because it's not rock; it's all ice. So even though we're trying, we still have nothing to compare it to.

If it gets selected as an official mission, a Europa lander would come after NASA’s Europa Clipper spacecraft. How might data from Europa Clipper contribute to what you're working on now?

Image of Europa acquired by Voyager 2 on July 9, 1979.

This image of Jupiter's moon Europa was acquired by NASA's Voyager 2 spacecraft on July 9, 1979, from a distance of about 240,000 kilometers (150,600 miles). Credit: NASA/JPL-Caltech | › Full image and caption

Highest resolution image of Europa

This image is the most detailed view of Europa, obtained by NASA's Galileo mission on Dec. 16, 1997, at a distance of 560 kilometers (335 miles) from the surface. Credit: NASA/JPL-Caltech | › Full image and caption

Europa Clipper could be really beneficial in that it's going to do more than 40 flybys where it goes around Europa in a bunch of different ways and at different proximities. It’s going to curve into the moon’s atmosphere and get really close to the surface, about 25 kilometers [15.5 miles] close to the surface. Right now, some of the best data we have is from hundreds of kilometers away, so the images Europa Clipper will take will be pretty nicely resolved. If you look at the current highest resolution image of Europa as compared to one from Voyager [which flew by Jupiter and its moons in 1979], the amount of detail that changes, the amount of cracks and complexity you can see on the surface is huge. So having more images like that can be really beneficial to figure out where we can land and where we should land.

Before this project, you spent a summer at JPL studying the chemistry of icy worlds, such as Pluto. What’s it been like working on such different projects and getting experience in fields outside your major, like chemistry and geology?

[Laughs] Yeah, one day I'll get back to astronomy. That's one of the things I love about JPL. Overall, I'd say what I want to do is astrobiology because I want to find life in the solar system. I mean, everyone does. It would be really cool to find out that there are aliens. But one of the great things about astrobiology is it takes chemistry, physics, geology, astronomy and all of these different sciences that you don't always mix together. And that's kind of why I like JPL. So much of the work involves an interdisciplinary approach.

What's the most JPL- or NASA-unique experience you've had so far?

I have one from last summer and one from this summer.

I really want to find life out in space. I'm curious about bacteria and microbes and how they react in space, but it's not something I've ever really done work in. A couple of weeks ago, I got to see astronaut Kathleen Rubins give a talk, meet her afterward and take a picture with her. She was the first person to sequence DNA in space. I would have never met someone like that if it weren’t for my internship at JPL. I wouldn't have been able to go up to her and say, “This is really cool! I'd love to talk to you more and get your email” – and get an astronaut's email! Who would ever expect that?

And then last year, I had something happen that was completely unexpected. I was sitting alone in the lab, running an experiment and, throughout the summer, we had a couple of different tours come through. A scientist asked if he could bring in a tour. It was two high-school-age kids and, presumably, their moms. I showed them around and explained what my experiment was doing. It was great. It was a really good time. They left and a couple hours later, Mike Malaska, the scientist who was leading the tour, came back and said, “Thank you so much for doing that tour. Do you know the story of that one? I said no. He said, “Well the boy, he has cancer. This is his Make-a-Wish.” His Make-a-Wish was to tour JPL. I had never felt so grateful to be given the opportunity that I was given, to realize that someone’s wish before they may or may not die is to visit the place that I'm lucky enough to intern at. It was a very touching moment. It really made me happy to be at JPL.

What was your own personal inspiration for going into astronomy?

I was the nerdy kid. I had a telescope, but I also had a microscope. So it was destined. But in middle school, I started to get this emphasis on life sciences. I'd always really liked biology so I sort of clung to it. We never really talked about space, so I just kind of forgot about it. But my senior year, I took this really cool class in astrobiology taught by an amazing teacher, who I still talk to. After the first week in her class, I was like, I have to do this. At the end of the academic year, that same teacher took me to JPL and gave me a private tour with some of the other scientists. I actually met Morgan Cable, the mentor I worked with last summer and this summer, on that tour. It was definitely a combination of being in this really great class and having that perspective change, realizing that we’ve learned a lot about life on our own planet, but there's so much to learn about finding it elsewhere.

Did you know about JPL before that?

No. I'm the first generation in my family to go to college, so I'm the one who teaches science to everyone else. I didn't even think science was a career because, when you're a kid, you don't often interact with a lot with scientists. So I didn't realize what JPL was or how cool it was until that tour put everything into perspective. I wasn't a space kid, but I found my own path, and it worked.

JPL intern Maya Yanez live tweets from the JPL Watch Party for NASA's Internships Town Hall with Administrator Jim Bridenstine

Yanez hosted a takeover of the @NASAJPL_Edu Twitter account during the NASA Internships Town Hall with Administrator Jim Bridenstine. Credit: NASA/JPL-Caltech/Kim Orr | + Expand image

For National Intern Day on July 26, NASA held a special town hall for interns with Administrator Jim Bridenstine. Your question about how the agency prioritizes the search for extraterrestrial life was selected as a finalist to appear during the broadcast. What made you want to ask that particular question?

So it was a little self-serving [laughs]. Part of it is that it’s central to my career path, but I also want to run for office one day at some level, and I think it's important that there's this collaboration between science and politics. Without it, science doesn't get funded and politicians aren’t as well informed.

How do you feel you're contributing to NASA/JPL missions and science?

What I'm doing requires a lot of reading and putting things together and knowing rocks and putting scales into perspective, so it's not particularly specialized work. But the end goal of my project will be a table that says here's what processes are happening on Europa, here's what depth they govern and here's what it means if biosignatures are caught in these processes. I'm also going to be remaking an old graphic, including more information and trying to better synthesize everything that we know about Europa. Those two products will continue to be used by anyone who’s thinking about landing on Europa, for anyone who’s thinking about what surface processes govern Europa. Those two products that I'm producing are going to be the best summaries that we have of what's going on there.

OK, so now for the fun question: If you could travel to any place in space, where would you go and what would you do there?

Europa. Obviously [laughs]. Or [Saturn’s moon] Titan. Titan is pretty cool, but it scares me a little bit because there's definitely no oxygen. There's not a lot of oxygen on Europa, but what's there is oxygen. I would probably go to Europa and find some way to get through those 25 kilometers of ice, hit that ocean and see what's going on.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Women in STEM, Internships, Interns, College, Students, STEM, Science, Engineering, Europa, Europa Clipper, Europa Lander, Ocean Worlds, Hispanic Heritage Month

  • Kim Orr
READ MORE

JPL intern Zachary Luppen stands in an anechoic chamber

A radar on NASA’s Europa Clipper spacecraft will be key to finding out if Jupiter's moon Europa is indeed an ocean world, so JPL intern Zachary Luppen is creating ways to test it to perfection. We caught up with Luppen, an astronomy and physics major from the University of Iowa, to find out how he’s helping the team peer below the icy moon’s surface and to hear about his recent brushes with space stardom.

What are you working on at JPL?

I'm working on the integration, testing and automation of the REASON instrument for the Europa Clipper mission. REASON is a radar instrument that will look within the icy crust of Jupiter’s moon Europa to look for water pockets, characterize the moon’s surface and see if we can confirm that there’s an ocean below its surface.

How does the radar work and why is it important for the mission?

The radar performs what’s called interferometry by sending out and receiving signals that create measurable interference patterns. Based on what signal bounces back, we can figure out the composition of the crust.

The radar probably first and foremost is trying to answer whether the moon has an ocean, and will probably help with determining a landing site for a potential future lander. So the Europa Clipper orbiter is sort of this preliminary study for eventually putting something on the surface. The REASON instrument is going to study a large portion of the moon’s surface and look for a landing spot, possibly where the ice is thinnest so we will not have to drill too deep to find water.

Why is NASA especially interested in Europa as a destination to explore?

Europa is a very interesting moon because it's way out at Jupiter, so it's far away from the Sun, and yet, scientists have data to support the notion that it might have liquid water. What allows it to have this water below its icy crust and how deep is that water? How thick is the icy crust? And if we were to drill into the crust, is there the potential to find life below it? Europa very quickly becomes a moon that can transform society on Earth, if we happened to find extraterrestrial life there.

| Watch on YouTube

What’s an average day like for you?

A lot of the work that I do involves programming in a language called Python. The transmitter boards, which are used to generate the signals that would propagate downwards toward Europa, are currently being built at the University of Iowa, and once we get them here at JPL, we're going to have to test them nonstop, see how we can break them, see how we can improve them. Whatever we need to do to make sure we operate perfectly during the mission. A lot of my work involves writing the software that's going to be doing this testing. Other than that, I've been writing programs called GUIs, graphical user interfaces, to interact with the instruments without having to actually touch them. So if you’re not able to go into the cleanroom during testing, then you can just use your computer to type commands.

How did you get involved in the project?

I’m a student at the University of Iowa and our team has been working on the transmitter boards for the past couple of years. I was dying to get involved in spacecraft and by the end of my sophomore year, I finally had the opportunity to do so because I got a grant from the university to pay for research. I started off simply cleaning rooms and putting away parts, which was pretty menial, however, I did learn what the parts were and how to quickly blow them up if you don't use them properly. Then I worked my way up to kitting parts, which is organizing them for our soldering technician. This doesn't sound like a rigorous job, but it's the first task that needs to be done to make a circuit board, and if it's not done properly, nothing else matters because the circuit boards won’t work. So I just kept working on that throughout my junior year and now I'm out here interning.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

Your question was chosen to be broadcast as part of a downlink for NASA interns with astronauts on the International Space Station. What does it mean to know that your question is going to space?

Words that I spoke are going to be shown to astronauts. Pixels showing me and audio from my mouth will be appearing on the International Space Station, so I'm almost riding on the station. In a sense, my dream of going to space is another step toward coming true

Have you had any other JPL or NASA unique experience of note?

I got to meet astronaut Kate Rubins when she visited JPL recently. That was the first time that I'd ever met an astronaut. And I was just like, oh my gosh, I was shaking. Someone told me I could go up and shake her hand and I was like, really, I'm allowed to do that?! And I did. And then I got her autograph afterward.

How do you feel you're contributing to NASA/JPL missions and science?

The programming work I’m doing is contributing directly to the testing phase of the Europa mission, which is cool in itself. But also just trying to make as many people aware as possible that the science is going on, that it's worth doing and worth finding out, especially if we were to find life on Europa. That changes humanity forever!

If you could travel to any place in space, where would you go and what would you do there?

Oh my god. The planetary system around the star TRAPPIST-1 is fascinating. The ISS is fascinating. Mars is Mars. Europa is Europa. This is a hard question. I guess, in order to further science, I’d go to Europa. If I could just go to Europa and see if there's life, well then, we’d answer one of the biggest questions ever asked.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Interns, Internships, Higher Education, College, Opportunities, STEM, engineering, Europa Clipper, Europa, Ocean Worlds

  • Kim Orr
READ MORE

JPL intern Kathy Vega poses with a model of Jupiter's moon Europa

Kathy Vega went from teaching STEM to doing it first-hand. Now, as an intern at NASA’s Jet Propulsion Laboratory, she's building an experiment to simulate ocean worlds. We recently caught up with Vega, a University of Colorado at Boulder engineering physics major, to find out what inspired her to switch careers and how her project is furthering the search for life beyond Earth.

What are you working on at JPL?

In our solar system, there are these icy worlds. Most of them are moons around large gas planets. For example, Europa is an icy moon that orbits Jupiter. There's also Titan and Enceladus orbiting Saturn. From prior missions, such as Galileo and Cassini, we've been able to see that these moons are covered with ice and most likely harbor oceans below that ice, which makes us wonder if these places are habitable for life. My project is supporting the setup of an experiment to simulate possible ocean compositions that would exist on these worlds under different temperatures and different pressures. Working in collaboration with J. Michael Brown’s group at the University of Washington in Seattle, this experiment is helping create a library of measurements that have not been collected before. Eventually, it may help us prepare for the development of landers to go to Europa, Enceladus and Titan and collect seismic measurements that we can compare to our simulated ones.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

What's a typical day like for you?

Right now, I'm in experiment-design mode. I've been ordering parts for the experiment and speaking with engineering companies. This experiment is already being run at UW in Seattle, but we're attempting to run it at colder temperatures to do a wider range of simulations, which haven’t been done before and will be particularly relevant to Jupiter’s moon Ganymede and Saturn’s moon Titan. I've been working with another intern, and we've been meeting with cryogenic specialists and experiment-design specialists at JPL to design a way to make our current experiment reach colder temperatures.

I also run a lot of simulations with Matlab software. There's a model that my principal investigator developed called Planet Profile that allows the user to input different temperature ranges and composition profiles for a planetary body. It then outputs the density and sound-velocity measurements that we would expect in that environment.

What's the most JPL- or NASA-unique experience you've had so far?

The Europa Clipper mission, [which will orbit Jupiter’s moon Europa to learn more about it and prepare for a future lander], is in development right now. A major planning meeting for the mission was held at JPL, and I got to sit in and watch these world-renowned scientists, who I think are like rock stars, talk science. There were all of these people having an open-forum discussion and, gosh, it was so cool. I felt like I was there with the people who are planning the future.

You already have a degree in political science. What made you want to go back to school for STEM?

When I was in high school, I was in Mathletes, but I was also in Mock Trial. I took AP physics, AP chemistry, AP calculus, but also AP civics and AP history. I remember in my junior year, I thought, I love math. Maybe I could be an astronaut one day. Space is so cool. Then AP physics happened. I didn't fail or anything, but after that, I just felt like maybe it's not for me.

JPL intern Kathy Vega inspects the experiment she's helping create

Credit: NASA/JPL-Caltech/Kim Orr | + Expand image

There were also a lot of critical things happening with politics around that time. Immigration was a really hot topic and walkouts were happening at L.A high schools. My family is from El Salvador, and I'm a first-generation college student, so I felt very motivated to study political science and be involved in issues that were happening first-hand in the world and affected my family and people I knew. So I went to Berkeley and got a degree in political science.

After that, I really wanted to get involved with service and just make a difference in the world, so I joined Teach for America. I taught math and I started a robotics club. It was through the robotics club and teaching my students about space and engineering that I really got excited again. I started pressing my siblings and my cousins to go into science. And one day, one of my cousins said, "If space is so cool, Kathy, why aren't you studying it?" I realized, yeah, what happened to that? I really loved that. So I decided to take classes at a local community college and did well. And now I’m at the University of Colorado at Boulder getting a second degree in engineering physics.

Do you ever feel pulled back in the direction of politics?

No [laughs]. Politics is a messy ordeal. I do my part as a citizen, but I like to think that thinking toward the future in science is where my efforts are best used right now.

How do you feel your background in political science has served you in engineering?

Going into engineering and science, I was very conscious of the fact that women and especially women of color are underrepresented in these fields. I think that having the background in political science, having the experiences working with communities gives me the ability to have thoughtful conversations with people about diversity.

How do you think you're contributing to NASA/JPL missions and science?

With this experiment, I've been able to leverage my creative side. I feel like I'm laying the foundation for these missions to explore other moons and worlds.

If you could travel to any place in space, where would you go and what would you do there?

There’s a star called Vega, and it might have its own planetary system. It's so far that we have no idea what's in that potential system or if there could be terrestrial planets. I'd want to explore that.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Women in STEM, Interns, Internships, College, Higher Education, STEM, Europa, Europa Clipper, Europa Lander, Science, Ocean Worlds, Hispanic Heritage Month, Women at NASA

  • Kim Orr
READ MORE

Update – Sept. 11, 2017: This feature (originally published on April 25, 2017) has been updated to reflect Cassini's current mission status, as well as new lessons and activities.


In the News

After almost 20 years in space, NASA's Cassini spacecraft has begun the final chapter of its remarkable story of exploration. This last phase of the mission has delivered unprecedented views of Saturn and taken Cassini where no spacecraft has been before – all the way between the planet and its rings. On Friday, Sept. 15 Cassini will perform its Grand Finale: a farewell dive into Saturn’s atmosphere to protect the environments of Saturn’s moons, including the potentially habitable Enceladus.

Animation of Cassini Pi in the Sky 4 math problem

Lessons All About Saturn

Explore our collection of standards-aligned lessons about NASA's Cassini mission.

How It Works

On April 22, Cassini flew within 608 miles (979 km) of Saturn’s giant moon Titan, using the moon’s gravity to place the spacecraft on its path for the ring-gap orbits. Without this gravity assist from Titan, the daring, science-rich mission ending would not be possible.

Cassini is almost out of the propellant that fuels its main engine, which is used to make large course adjustments. A course adjustment requires energy. Because the spacecraft does not have enough rocket fuel on board, Cassini engineers have used an external energy source to set the spacecraft on its new trajectory: the gravity of Saturn’s moon Titan. (The engineers have often used Titan to make major shifts in Cassini’s flight plan.)

Titan is a massive moon and thus has a significant amount of gravity. As Cassini comes near Titan, the spacecraft is affected by this gravity – and can use it to its advantage. Often referred to as a “slingshot maneuver,” a gravity assist is a powerful tool, which uses the gravity of another body to speed up, slow down or otherwise alter the orbital path of a spacecraft.

In this installment of the "Crazy Engineering" video series from NASA's Jet Propulsion Laboratory, host Mike Meacham talks to a Cassini engineer about astrodynamics and how it was used to design the Saturn mission's Grand Finale.

When Cassini passed close by Titan on April 22, the moon’s gravity pulled strongly on the spacecraft. The flyby gave Cassini a change in velocity of about 1,800 mph (800 meters per second) that sent the spacecraft into its first of the ring-gap orbits on April 23. On April 26, Cassini made its first of 22 daring plunges between the planet and its mighty rings.

Cassini final orbits petal plot

This graphic illustrates Cassini's trajectory, or flight path, during the final two phases of its mission. The 20 Ring-Grazing Orbits that Cassini made between November and April 2017 are shown in gray; the 22 Grand Finale Orbits are shown in blue. The final partial orbit is colored orange. + Enlarge image

Up-close image of Saturn's clouds from Cassini

Clouds on Saturn take on the appearance of strokes from a cosmic brush thanks to the wavy way that fluids interact in Saturn's atmosphere. This images used in this false-color view were taken with the Cassini spacecraft narrow-angle camera on May 18, 2017. Image credit: NASA-JPL/Caltech/SSI | › Full image and caption

Animated image of Saturn's moon Enceladus from Cassini

This animated image of Saturn's moon Enceladus is a composite of six images taken by the Cassini spacecraft on Aug. 1, 2017. Image credit: NASA-JPL/Caltech/SSI | › Full image and caption

Up-close image of Saturn's rings from Cassini

These are the highest-resolution color images of any part of Saturn's rings, to date, showing a portion of the inner-central part of the planet's B Ring. The view is a mosaic of two images that show a region that lies between 61,300 and 65,600 miles (98,600 and 105,500 kilometers) from Saturn's center. Image credit: NASA-JPL/Caltech/SSI | › Full image and caption

As Kepler’s third law indicates, Cassini traveled faster than ever before during these final smaller orbits. Cassini's orbit continued to cross the orbit of Titan during these ring-gap orbits. And every couple of orbits, Titan passed near enough to give the spacecraft a nudge. One last nudge occured on September 11, placing the spacecraft on its final, half-orbit, impact trajectory toward Saturn.

Because a few hardy microbes from Earth might have survived onboard Cassini all these years, NASA has chosen to safely dispose of the spacecraft in the atmosphere of Saturn to avoid the possibility of Cassini someday colliding with and contaminating moons such as Enceladus and Titan that may hold the potential for life. Cassini will continue to send back science measurements as long as it is able to transmit during its final dive into Saturn.

Why It’s Important

Flying closer than ever before to Saturn and its rings has provided an unprecedented opportunity for science. During these orbits, Cassini’s cameras have captured ultra-close images of the planet’s clouds and the mysterious north polar hexagon, helping us to learn more about Saturn’s atmosphere and turbulent storms.

The cameras have been taking high-resolution images of the rings, and to improve our knowledge of how much material is in the rings, Cassini has also been conducting gravitational measurements. Cassini's particle detectors have sampled icy ring particles being funneled into the atmosphere by Saturn's magnetic field. Data and images from these observations are helping bring us closer to understanding the origins of Saturn’s massive ring system.

Cassini has also been making detailed maps of Saturn's gravity and magnetic fields to reveal how the planet is structured internally, which could help solve the great mystery of just how fast Saturn is rotating.

On its first pass through the unexplored 1,500-mile-wide (2,400-kilometer) space between the rings and the planet, Cassini was oriented so that its high-gain antenna faced forward, shielding the delicate scientific instruments from potential impacts by ring particles. After this first ring crossing informed scientists about the low number of particles at that particular point in the gap, the spacecraft was oriented differently for the next four orbits, providing the science instruments unique observing angles. For ring crossings 6, 7 and 12, the spacecraft was again oriented so that its high-gain antenna faced forward.

Fittingly, Cassini's final moments will be spent doing what it does best, returning data on never-before-observed regions of the Saturnian system. On September 15, just hours before Cassini enters Saturn's atmosphere for its Grand Finale dive, it will collect and transmit its final images back to Earth. During its fateful dive, Cassini will be sending home new data in real time informing us about Saturn’s atmospheric composition. It's our last chance to gather intimate data about Saturn and its rings – until another spacecraft journeys to this distant planet.

Explore the many discoveries made by Cassini and the story of the mission on the Cassini website.

Teach It

Use these standards-aligned lessons to get your students excited about the science we have learned and have yet to learn about the Saturnian system.

Explore More

TAGS: Saturn, Titan, Cassini, Grand Finale, Teachable Moments, Kepler's Laws, K-12, Lessons, Ocean Worlds

  • Ota Lutz
READ MORE

Saturn's moon Enceladus

In the News

Saturn’s icy moon Enceladus has been making news lately, and it could make even bigger news soon! In September, scientists confirmed that there was a global ocean underneath Enceladus’ thick icy shell. That was just the latest in a long history of exciting finds dating back to the beginning of NASA’s Cassini-Huygens Mission to Saturn in 2004 that have helped scientists to better understand this fascinating world!

Even while Cassini was still on its way to Saturn, its Cosmic Dust Analyzer detected microscopic grains of silica (tiny grains of sand). On Earth, grains of silica similar in size to those detected near Saturn form when hydrothermal activity -- the processes involving heated water beneath Earth’s surface or ocean -- causes salty water to chemically interact with rocky material to form silica. But where were these grains coming from in the space around Saturn?

In 2005, scientists were surprised to find out that Enceladus’ south pole is both warmer than expected and warmer than the surrounding areas, suggesting there is a heat source inside Enceladus. Not only that, but they also discovered long parallel cracks in the ice on Enceladus’ south pole. The young age of these cracks, nicknamed Tiger Stripes, meant that Saturn’s icy moon is a geologically active place.


Color image of the cracks, or Tiger Stripes, on the South Pole of Saturn's moon Enceladus
This enhanced color view of Saturn's moon Enceladus shows the south polar terrain, where jets of material spray out form long cracks called Tiger Stripes. Image credit: NASA/JPL-Caltech/Space Science Institute | Full image and caption


Heat map of Saturn's moon Enceladus
This image shows the infrared (heat) radiation at the south pole of Saturn's moon Enceladus, including the dramatic warm spot centered on the pole near the moon's Tiger Stripes feature. The data were taken during the spacecraft's third flyby of Enceladus on July 14, 2005. Image credit: NASA/JPL-Caltech/Space Science Institute | Full image and caption

Another piece of this puzzle was put in place with the discovery of jets of material spraying out of the Tiger Stripes. Studies have shown these jets are composed of mostly of water vapor, tiny ice particles and small amounts of other material (for example, microscopic silica grains). Together, over 100 jets make up a feature called a plume. Investigating further, scientists have hypothesized that these silica grains are the result of hydrothermal activity on the ocean floor below Enceladus’ icy crust.


Movie of the Plume on Saturn's moon Enceladus
Jets of icy particles burst from Saturn’s moon Enceladus in this brief movie sequence of four images taken on Nov. 27, 2005. Credit: NASA/JPL-Caltech/Space Science Institute | Full image and caption

On October 28, Cassini will fly right through the plume jetting out of Enceladus’ south pole at an altitude of only 49 kilometers (30 miles) – closer than any previous passes directly through the plume! This is an exciting moment in the mission -- one that allows science teams to use a combination of tools on board the spacecraft to strengthen previous findings and potentially make new discoveries.

Why It's Important

Cassini will use its Cosmic Dust Analyzer to study the solid plume particles and an instrument called the Ion and Neutral Mass Spectrometer to “sniff” the gas vapor in order to determine the composition of the jets. Specifically, the latter instrument is looking for H2, or molecular hydrogen. Finding H2 in the plume will strengthen the evidence that hydrothermal activity is occurring on Enceladus’ ocean floor. And the amount of H2 in the plume, will tell scientists just how much activity is happening.

In addition to indicating that hydrothermal activity is taking place, figuring out the amount of hydrothermal activity will give scientists a good indication of how much internal energy there is deep inside Enceladus.

That Cassini is making a pass through the plume at such a low, 49-kilometer-high altitude is also important. Organic compounds -- substances formed when carbon bonds with hydrogen, nitrogen, oxygen, phosphorus or sulfur -- tend to be heavy and would fall out of the plume before reaching the heights of Cassini’s previous, higher altitude flybys and be undetected. Organic compounds are the building blocks of life on Earth. Without them, life as we know it wouldn’t exist. If they are present in Enceladus’ oceans, they could be detected when Cassini passes through the plume on this encounter.

Perhaps more important, though, are the implications of finding hydrothermal activity somewhere other than Earth. It was once believed that all forms of life needed sunlight as a source of energy, but in 1977, the first hydrothermal vent -- essentially an underwater geyser of hot, mineral-rich water -- was discovered and it was teeming with life. The organisms were using the heat and minerals as a source of energy! Some scientists have hypothesized that hydrothermal vents could be where life on our planet first took hold and could represent environments in the solar system with the necessary ingredients to support life.

Teach It

Here are a handful of lessons and resources you can use to teach key concepts related to the October 28 Enceladus flyby and help your students feel connected to this exciting moment in science at Saturn.

Modeling

Standard(s):

  • NGSS 5-ESS2-1 - Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Activity:

Because scientists can’t dig beneath the ice and see what’s below, they rely on creating models that show what is happening beneath the surface. A model helps us imagine what can’t be seen and explains the things that we can see and measure. A model could be a drawing, a diagram or a computer simulation. For this model, students will draw a cut away model of Enceladus and iterate, or improve, their model as you provide more description, just as scientists improved their models as they learned more about Enceladus.

  1. Tell students there is a moon around Saturn. They should draw a moon (likely a circle, half-circle, or arc, depending on how big you want the drawing to be).

  2. Explain to students that the moon is covered in a shell of ice (students will need to modify their model by drawing a layer of ice). Thus far, everything students are modeling is observable by looking at the moon.

  3. Share with students that temperature measurements of the south pole revealed spots that are warmer than the rest of the moon’s surface. Ask students to brainstorm possible sources of heat at the south pole and explain what might happen to ice near a heat source. Based on this new information, and what they think might be causing the heat, allow them to modify their drawing. (Depending on what students brainstorm, their drawing might now include volcanoes, hot spots, magma, hydrothermal vents and a pool of liquid water beneath the ice).

  4. The next piece of information the students will need to incorporate into their drawing is that there are large cracks in the ice over the warmer south-pole region.

  5. Explain that students have now received images that show jets expelling material from the cracks. They will need to incorporate this new data and add it to their drawing.

  6. Tell students that by studying the gravity of the moon, scientists now believe there is an ocean covering the whole surface of the moon beneath the ice. Ask students to share how they would represent that in the model. Allow them to modify their drawing.

  7. Show students the following image depicting a model of Enceladus:

    Saturn's moon Enceladus global ocean model

    This model shows what scientists believe the interior of Enceladus may look like. Have students compare it to what they drew and note similarities and differences.

Particle Travel Rate

Standard(s):

  • CCSS.MATH 6.RP.A.3.B - - Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?

Problem:

Based on the size of the silica grains (6 to 9 nanometers), scientists think they spend anywhere from several months to a few years (a longer time than that means the grains would be larger) traveling from hydrothermal vents to space, a distance of 40 to 50 km.

  1. What rate (in km/day) are the particles traveling if it takes them 6 months to travel 50 km (assume 182 days)?

    50 km ÷ 182 days = 0.27 km/day

  2. What rate are they traveling if it takes two years to travel 40 km?

    40 km ÷ 730 days = 0.05 km/day

  3. Do you think the particles in each example traveled at the same speed the entire time they moved?

  4. Why might the particle rate vary?

  5. At what point in their journey might particles have been traveling at the highest rate?

Plume Data

Standard(s):

  • CCSS.MATH 6.RP.A.3.B - Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?
  • CCSS.MATH 8.G.B.7 - Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.

Problem:

Cassini will be flying past Enceladus at a staggering 8.5 km per second (19,014 mph). At an altitude of 49 km, the plume is estimated to be approximately 130 km across.

  • How long will Cassini have to capture particles and record data while within the plume?

    130 km ÷ 8.5 km/sec ≈ 15 seconds

  • If Cassini is 49 km above the surface of Enceladus at the center of the plume, what is its altitude as it enters and exits the plume (the radius of Enceladus is 252.1 km)?

    252.1 km + 49 km = 301.1 km
    (301.1 km)2 + (65 km)2 ≈ 95,000 km2
    √(95,000 km2) ≈ 308 km
    ≈ 308 km – 252.1 km ≈ 56 km

  • This information can help scientists determine where in the plume heavy particles may fall out if they are not detected on the edge of the plume but are detected closer to the middle of the plume. It is also important because the Cosmic Dust Analyzer uses a high-rate detector that can count impacting particles at over 10,000 parts per second to tell us how much material is being sprayed out.

Volume of Enceladus’ Ocean

Standard(s):

  • CCSS.MATH 8.G.C.9 - Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.
  • CCSS.MATH HSG.GMD.A.3 - Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.

Problem:

Gravity field measurements of Enceladus and the wobble in its orbital motion show a 10 km deep ocean beneath a layer of ice estimated to be between 30 km and 40 km thick. If the mean radius of Enceladus is 252.1 km, what is the minimum and maximum volume of water contained within its ocean?

Volume of a sphere = 43πr3

Minimum volume with a 40 km thick crust
43 π212.1 km3 - 43π202.1 km3 ≈ 40,000,000 km3 – 35,000,000 km3 ≈ 5,000,000 km3

Maximum volume with a 30 km thick crust
43 π222.1 km343 π212.1 km3 ≈ 46,000,000 km3 – 40,000,000 km3 ≈ 6,000,000 km3

This is important because if scientists know how much water is in the ocean and how much vapor is escaping through the plume, they can make estimates about how long the plume has existed -- or could continue to exist.

Download the Full Problem Set

Explore More!

TAGS: Enceladus, moon, Saturn, Cassini, flyby, spacecraft, plume, jets, geysers, science, math, Ocean Worlds

  • Lyle Tavernier
READ MORE