Collage of student artwork from the classroom of teacher Lina Khosrovian

Teacher Lina Khosrovian in her classroom

Ms. Khosrovian teaches third grade at Stonehurst Magnet Elementary in Los Angeles County.

Lina Khosrovian is a first-year teacher at Stonehurst Magnet Elementary, a STEAM magnet school in Los Angeles County. She teaches third-grade students subjects including language arts, math, science and social studies. Ms. Khosrovian recently reached out about how she added her own creative spin to the JPL lesson Art and the Cosmic Connection to have it reflect her multidisciplinary classroom.

What inspires you to teach?

I am in my first year of teaching, and I could not be more driven and excited to teach my students about all the wonders of life. I am a learner myself, and I strive to discover new and moving ways to instill knowledge upon my students.

I consider myself extremely lucky to be teaching at Stonehurst, where we have a passion for teaching STEAM to our students. I especially appreciate the students’ enthusiasm for learning science.

What challenges do you face engaging or addressing the needs of your students?

I have found that the key to effectively and successfully teaching students is to teach what they admire, are curious or fascinated about or have an appreciation for. I always ask my students about their interests and what they would like to learn. This inspires my lessons and tends to each students’ individual interest in learning.

How did you incorporate a JPL Education lesson into your classroom?

Art and the Cosmic Connection Lesson from NASA/JPL Edu

Art and the Cosmic Connection

In this lesson for grades K-12, students use art to describe and recognize the geology on planetary surfaces.

Brandon Rodriguez, an educator professional development specialist at NASA’s Jet Propulsion Laboratory, visited our school and presented a lesson called Art and the Cosmic Connection.

After showing us images of planets, Mr. Rodriguez handed out paper, chalk, crayons and markers, and instructed us to draw our own imaginary planet. Listening to his awe-inspiring lecture, I began to think about the beautiful garden at our school and wondered how I could incorporate it into a similar activity with my students. I decided that I would have my students create their own planet inspired by the school garden.

First, my students and I began to learn about different planets together, discussing the possible history of each unique world. We conversed and wrote about our theories. Then each student drew and wrote about their own, imaginary planet. Some students drew icy planets and said that the ice had melted when the planet was close to the Sun. Other students explained that the uniqueness of their planet was due to the presence of life and water.

With our knowledge, ideas and imagination, we grabbed paper bags to collect soil, sticks, hay, leaves, rocks and other natural items from the garden. Back in the classroom, each student began to construct 3-D versions of their drawings with the materials they collected. Their work was beautifully presented, with soil representing land, leaves representing life, blue paint representing water, and mixtures representing unknown and unique creations – plus some silver paint to make it all more “cosmic.”

How did it help you meet your objectives? How did students react to the lesson?

This lesson allowed my students to engage with the world around them and understand that planets have a uniqueness and a history that is quite remarkable. The lesson gave students a chance to discover more about their own planet and express their connection to it.

I sincerely value the JPL Education lessons, activities and resources, as they are quite beneficial to teachers. Each activity and lesson provides the opportunity for students to learn and wonder. And when you’re inspired to wonder, the possibilities are endless – and so is the fun!


Looking for ways to bring NASA STEM into your classroom or already have a great idea? The Education Office at NASA's Jet Propulsion Laboratory serves educators in the greater Los Angeles area. Contact us at education@jpl.nasa.gov.

TAGS: Art, Language Arts, Earth Science, Classroom Activities, NASA in the Classroom

  • Brandon Rodriguez
READ MORE

A model of Explorer 1 is held by (left to right) JPL Director William Pickering, University of Iowa physicist James Van Allen and Wernher von Braun from the Army Ballistic Missile Agency.

In the News

This month marks the 60th anniversary of the launch of America’s first satellite, Explorer 1. The small, pencil-shaped satellite did more than launch the U.S. into the Space Age. With its collection of instruments, or scientific tools, it turned space into not just a new frontier, but also a place of boundless scientific exploration that could eventually unveil secrets of new worlds – as well as the mysteries of our own planet.

Poster highlighting the main characteristics of Explorer 1 and the Jupiter C rocket.

A poster highlights the main characteristics of Explorer 1 and the Jupiter C rocket that launched it into space. Image credit: NASA

How They Did It

At the height of competition for access to space, the U.S. and the Soviet Union were both building satellites that would ride atop rockets in a quest to orbit Earth. The Soviets launched Sputnik 1 on October 4, 1957. Shortly thereafter, on January 31, 1958, the U.S. launched Explorer 1, the satellite that would begin a new age of scientific space exploration.

Using rockets to do science from orbit was a brand-new option in the late 1950s. Before this time, rockets had only been used for military operations and atmospheric research. Still, rockets of that era weren’t very reliable and none had been powerful enough to place an object into Earth orbit.

Rocket Lessons from NASA/JPL Edu

Rocket Activities

Explore our collection of standards-aligned lessons for grades K-9.

In order to lift Explorer 1 to its destination in Earth orbit, an existing U.S. Army rocket, the Jupiter C, was fitted with a fourth stage, provided by the Jet Propulsion Laboratory in Pasadena, California. For this stage, a rocket motor was integrated into the satellite itself. The new, four-stage rocket was called “Juno 1.”

Prior to these first orbiting observatories, everything we knew about space and Earth came from Earth-based observation platforms – sensors and telescopes – and a few atmospheric sounding rockets. With the success of Explorer 1 and the subsequent development of more powerful rockets, we have been able to send satellites beyond Earth orbit to explore planets, moons, asteroids and even our Sun. With a space-based view of Earth, we are able to gain a global perspective and acquire a wide variety and amount of data at a rapid pace.

Why It’s Important

scientific instruments mounted inside Explorer 1

This photograph shows the scientific instruments mounted inside Explorer 1 alongside its outer case. Image Credit: James A. Van Allen Papers (RG 99.0142), University Archives, The University of Iowa Libraries

Graphic showing the components and science instruments aboard Explorer 1.

This graphic shows the various components and science instruments aboard Explorer 1, including its primary science instrument, a cosmic ray detector. Image credit: NASA/JPL-Caltech

Graphic showing the Van Allen Belts and the locations of Earth-orbiting spacecraft

This graphic shows a cutaway diagram of the Van Allen belts along with the locations of a few Earth-orbiting spacecraft, including the Van Allen Probes. Image credit: NASA

The primary science instrument on Explorer 1 was a cosmic ray detector designed to measure the radiation environment in Earth orbit – in part, to understand what hazards future spacecraft (or space-faring humans) might face. Once in space, this experiment, provided by James Van Allen of the University of Iowa, revealed a much lower cosmic ray count than expected. Van Allen theorized that the instrument might have been saturated by very strong radiation from a belt of charged particles trapped in space by Earth's magnetic field. The existence of the radiation belts was confirmed over the next few months by Explorer 3, Pioneer 3 and Explorer 4. The belts became known as the Van Allen radiation belts in honor of their discoverer.

Although we discovered and learned a bit about the Van Allen belts with the Explorer missions, they remain a source of scientific interest. The radiation belts are two (or more) donut-shaped regions encircling Earth, where high-energy particles, mostly electrons and ions, are trapped by Earth's magnetic field. The belts shrink and swell in size in response to incoming radiation from the Sun. They protect Earth from incoming high-energy particles, but this trapped radiation can affect the performance and reliability of our technologies, such as cellphone communication, and pose a threat to astronauts and spacecraft. It’s not safe to spend a lot of time inside the Van Allen radiation belts.

Most spacecraft are not designed to withstand high levels of particle radiation and wouldn’t last a day in the Van Allen belts. As a result, most spacecraft travel quickly through the belts toward their destinations, and non-essential instruments are turned off for protection during this brief time.

To conquer the challenge of extreme radiation in the belts while continuing the science begun by Explorer 1, NASA launched a pair of radiation-shielded satellites, the Van Allen Probes, in 2012. (The rocket that carried the Van Allen Probes into space was more than twice as tall as the rocket that carried Explorer 1 to orbit!)

The Van Allen Probes carry identical instruments and orbit Earth, following one another in highly elliptical, nearly identical orbits. These orbits bring the probes as close as about 300 miles (500 kilometers) above Earth’s surface, and take them as far out as about 19,420 miles (31,250 kilometers), traveling through diverse areas of the belts. By comparing observations from both spacecraft, scientists can distinguish between events that occur simultaneously throughout the belts, those that happen at only a single point in space, and those that move from one point to another over time.

Watch the video above to learn more about the Van Allen Probes and a discovery they made shortly after starting their mission. Credit: NASA Goddard

The Van Allen Probes carry on the work begun by Explorer 1 and, like all successful space missions, are providing answers as well as provoking more questions. NASA continues to explore Earth and space using spacecraft launched aboard a variety of rockets designed to place these observatories in just the right spots to return data that will answer and inspire questions for years to come.

Teach It

Explore More

TAGS: Explorer 1, STEM, NASA in the Classroom, Lessons, Activities, Teachable Moments, Earth Science, Earth, JPL History

  • Ota Lutz
READ MORE

Students plot changes in Earth's gravitational field using data from NASA's GRACE mission.

LoriAnn Pawlik recently shared her NASA-inspired lesson during a professional development workshop hosted by the agency. LoriAnn teaches STEM to grades K-5 at Penn Elementary School in Prince William County, Virginia, which focuses on students learning English, as well as those with learning disorders and autism. When she recently came across a lesson on the NASA/JPL Edu website, she saw an opportunity to bring real-world NASA data to her students.

How do you use NASA in the classroom?

Using the lesson “How to Read a Heat Map” as a jumping-off point, LoriAnn had her students first dive into the practice of reading and interpreting graphs. From here, she extended the lesson with an exploration of NASA satellites and the data they collect, focusing on the Gravity Recovery And Climate Experiment, or GRACE mission, to tie in with a community science night on water science.

GRACE was launched in 2002 to track changes in the distribution of liquid water, ice and land masses on Earth by measuring changes in the planet’s gravity field every 30 days. Circling Earth 16 times each day, GRACE spent more than 15 years collecting data – all of which is available online – before its science mission ended last October. The mission provided students the perfect context to study climate and water through authentic NASA data.

Students plot changes in Earth's gravitational field using data from NASA's GRACE mission.
Students plot changes in Earth's gravitational field using data from NASA's GRACE mission.
Students plot changes in Earth's gravitational field using data from NASA's GRACE mission.

LoriAnn's students plotted changes in Earth's gravitational field using data from NASA's GRACE mission.

How did students react to the lesson?

LoriAnn set the stage for her students by explaining to them that they would be providing their data to NASA scientists.

“I told them that I was working on a project for a scientist from NASA-JPL and that we needed their help,” she said via email. “By the time I gave them the background and showed a brief GRACE video, they were all in – excited, eager enthusiastic! It helped that each table, or ‘engineering group,’ was responsible for a different U.S. state.”

As a result, students were able to plot the changes in gravitational fields for multiple locations over several years.

What are other ways you use NASA lessons or resources?

By extending the lesson, LoriAnn gave her students a sense of authentic ownership of the data and practice in real scientific analysis. But it wasn’t her first time uniting NASA science with her school curriculum:

“I'd been working with our second-graders on field studies of habitats,” LoriAnn explained. “We observed, journaled and tracked the migration of monarch butterflies, discussed what happened to habitats of living things since Hurricane Harvey and Hurricane Irma were just going through, and then I used the [NASA Mars Exploration website] to have students extend the findings to space habitats.”


Looking for ways to bring NASA STEM into your classroom or already have a great idea? The Education Office at NASA's Jet Propulsion Laboratory serves educators in the greater Los Angeles area. Contact us at education@jpl.nasa.gov.

TAGS: Teaching, K-12, NASA in the Classroom, Graphing, Activities, Science, Earth Science, Climate Change, Earth, Sea Level Rise

  • Brandon Rodriguez
READ MORE