Teachable Moments  March 7, 2024
A Prime Year for NASA's Pi Day Challenge
Learn how pi is used by NASA and how many of its infinite digits have been calculated, then explore the science and engineering behind the 2024 Pi Day Challenge.
Update: March 15, 2024 – The answers to the 2024 NASA Pi Day Challenge are here! Take a peek at the illustrated answer key now available under each problem on the NASA Pi Day Challenge page.
This year marks the 11th installment of the NASA Pi Day Challenge. Celebrated on March 14, Pi Day is the annual holiday that pays tribute to the mathematical constant pi – the number that results from dividing any circle's circumference by its diameter.
Every year on March 14, Pi Day gives us a reason to enjoy our favorite sweet and savory pies and celebrate the mathematical wonder that helps NASA explore the universe. Students can join in the fun once again by using pi to explore Earth and space themselves with the NASA Pi Day Challenge.
Read on to learn more about the science behind this year's challenge and get students solving real problems faced by NASA scientists and engineers exploring Earth, the Moon, asteroids, and beyond!
What is Pi
Dividing any circle’s circumference by its diameter gives you an answer of pi, which is usually rounded to 3.14. Because pi is an irrational number, its decimal representation goes on forever and never repeats. In 2022, mathematician Simon Plouffe discovered the formula to calculate any single digit of pi. In the same year, teams around the world used cloud computing technology to calculate pi to 100 trillion digits. But you might be surprised to learn that for space exploration, NASA uses far fewer digits of pi.
Here at NASA, we use pi to map the Moon, measure Earth’s changing surface, receive lasercoded messages from deep space, and calculate asteroid orbits. But pi isn’t just used for exploring the cosmos. Since pi can be used to find the area or circumference of round objects and the volume or surface area of shapes like cylinders, cones, and spheres, it is useful in all sorts of ways. Transportation teams use pi when determining the size of new subway tunnels. Electricians can use pi when calculating the current or voltage passing through circuits. And you might even use pi to figure out how much fencing is needed around a circular school garden bed.
In the United States, March 14 can be written as 3.14, which is why that date was chosen for celebrating all things pi. In 2009, the U.S. House of Representatives passed a resolution officially designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi. And that's precisely what the NASA Pi Day Challenge is all about!
The Science Behind the 2024 NASA Pi Day Challenge
This 11th installment of the NASA Pi Day Challenge includes four illustrated math problems designed to get students thinking like scientists and engineers to calculate how to get a laser message to Earth, the change in an asteroid’s orbit, the amount of data that can be collected by an Earth satellite, and how a team of mini rovers will map portions of the Moon’s surface.
Read on to learn more about the science and engineering behind each problem or click the link below to jump right into the challenge.
› Take the NASA Pi Day Challenge
› Educators, get the lesson here!
Receiver Riddle
In December 2023, NASA tested a new way to communicate with distant spacecraft using technology called Deep Space Optical Communications, or DSOC. From 19,000,000 miles (30,199,000 km) away, the Psyche spacecraft beamed a highdefinition video encoded in a nearinfrared laser to Earth. The video, showing a cat named Taters chasing a laser, traveled at the speed of light, where it was received at Caltech’s Palomar Observatory. Because of the great distance the laser had to travel, the team needed to aim the transmission at where Earth would be when the signal arrived. In Receiver Riddle, use pi to determine where along Earth's orbit the team needed to aim the laser so that it could be received at the Observatory at the correct moment.
Daring Deflection
In 2022, NASA crashed a spacecraft into the asteroid Dimorphos in an attempt to alter its orbit. The mission, known as the Double Asteroid Redirection Test, or DART, took place at an asteroid that posed no threat to our planet. Rather, it was an ideal target for NASA to test an important element of its planetary defense plan. DART was designed as a kinetic impactor, meaning it transferred its momentum and kinetic energy to Dimorphos upon impact, altering the asteroid's orbit. In Daring Deflection, use pi to determine the shape of Dimorphos’ orbit after DART crashed into it.
Orbit Observation
The NISAR mission is an Earth orbiting satellite designed to study our planet's changing ecosystems. It will collect data about Earth's land and icecovered surfaces approximately every 6 days, allowing scientists to study changes at the centimeter scale – an unprecedented level of detail. To achieve this feat, NISAR will collect massive amounts of data. In Orbit Observation, students use pi to calculate how much data the NISAR spacecraft captures during each orbit of Earth.
Moon Mappers
The CADRE project aims to land a team of mini rovers on the Moon in 2025 as a test of new exploration technology. Three suitcasesize rovers, each working mostly autonomously, will communicate with each other and a base station on their lunar lander to simultaneously measure data from different locations. If successful, the project could open the door for future multirobot exploration missions. In Moon Mappers, students explore the Moon with pi by determining how far a CADRE rover drives on the Moon’s surface.
Bring the Challenge Into the Classroom
Celebrate Pi Day by getting students thinking like NASA scientists and engineers to solve realworld problems in the NASA Pi Day Challenge. In addition to solving the 2024 challenge, you can also dig into the 40 puzzlers from previous challenges available in our Pi Day collection. Completing the problem set and reading about other ways NASA uses pi is a great way for students to see the importance of the M in STEM.
 Collection
Educator Guides – NASA Pi Day Challenge
Here's everything you need to bring the NASA Pi Day Challenge into the classroom.
Grades 412
Time Varies
 Student Activity
NASA Pi Day Challenge
The entire NASA Pi Day Challenge collection can be found in one, handy collection for students.
Grades 412
Time Varies

Downloads
Can't get enough pi? Download this year's NASA Pi Day Challenge graphics, including mobile phone and desktop backgrounds:
More Pi Resources
 Article
How Many Decimals of Pi Do We Really Need?
While you may have memorized more than 70,000 digits of pi, world record holders, a JPL engineer explains why you really only need a tiny fraction of that for most calculations.
 Article
18 Ways NASA Uses Pi
Whether it's sending spacecraft to other planets, driving rovers on Mars, finding out what planets are made of or how deep alien oceans are, pi takes us far at NASA. Find out how pi helps us explore space.
 Article
10 Ways to Celebrate Pi Day With NASA on March 14
Find out what makes pi so special, how it’s used to explore space, and how you can join the celebration with resources from NASA.
 Infographic
Planet Pi
This poster shows some of the ways NASA scientists and engineers use the mathematical constant pi (3.14) and includes common pi formulas.
 Article
18 Maneras en Que la NASA Usa Pi
Pi nos lleva lejos en la NASA. Estas son solo algunas de las formas en que pi nos ayuda a explorar el espacio.
Related Lessons for Educators
 Lesson
Collisions in Space
Students predict and observe what happens when two objects collide to model collisions in space.
Grades K4
Time 30 min to 1 hour
 Lesson
Moon Phases
Students learn about the phases of the moon by acting them out.
Grades 16
Time 30 min to 1 hour
 Lesson
Modeling an Asteroid
Lead a discussion about asteroids and their physical properties, then have students mold their own asteroids out of clay.
Grades 35
Time 30 min to 1 hour
 Lesson
Math Rocks: A Lesson in Asteroid Dynamics
Students use math to investigate a reallife asteroid impact.
Grades 812
Time 30 min to 1 hour
 Lesson
Modeling Crustal Folds
Students use playdough to model how Earth’s crust is bent and folded by tectonic plates over geologic time.
Grades 612
Time 30 min to 1 hour
 Lesson
Making Topographic Maps
Students draw and interpret topographic maps while learning about technology used to map Earth's surface, the seafloor, and other worlds.
Grades 612
Time 30 min to 1 hour
 Lesson
Code a Radio Message for Space
Students code microcontrollers to send and receive radio signals, simulating communications between Earth and spacecraft.
Grades 612
Time 30 min to 1 hour
Related Activities for Students
 Student Project
Draw Your Own Psyche Spacecraft
Follow these easy instructions to draw and decorate your own model of the Psyche spacecraft.
Type Project
Subject Engineering
 Slideshow
What's That Space Rock?
Find out how to tell the difference between asteroids, comets, meteors, meteorites and other bodies in our solar system.
Type Slideshow
Subject Science
Facts and Figures
Websites
Articles
 How NASA Studies and Tracks Asteroids Near and Far
 NASA Cat Video Explained
 Article for Kids: Asteroid or Meteor: What's the Difference?
 Article for Kids: What Is an Asteroid?
Videos
 The Video NASA’s Laser Communications Experiment Streamed From Deep Space
 NASA's DART Mission Confirms Crashing Spacecraft into Asteroids Can Deflect Them
Interactives
TAGS: Pi Day, Pi, Math, NASA Pi Day Challenge, moon, earth, asteroid, psyche, DART, CADRE, NISAR DSOC
Teachable Moments  March 9, 2023
10 Years of NASA's Pi Day Challenge
Learn how pi is used by NASA and how many of its infinite digits have been calculated, then explore the science and engineering that makes the Pi Day Challenge possible.
Update: March 15, 2023 – The answers are here! Visit the NASA Pi Day Challenge page to view the illustrated answer keys for each problem.
This year marks the 10th installment of the NASA Pi Day Challenge. Celebrated on March 14, Pi Day is the annual holiday that pays tribute to the mathematical constant pi – the number that results from dividing any circle's circumference by its diameter.
Every year, Pi Day gives us a reason to celebrate the mathematical wonder that helps NASA explore the universe and enjoy our favorite sweet and savory pies. Students can join in the fun once again by using pi to explore Earth and space themselves in the NASA Pi Day Challenge.
Read on to learn more about the science behind this year's challenge and find out how students can put their math mettle to the test to solve real problems faced by NASA scientists and engineers as we explore Earth, Mars, asteroids, and beyond!
How It Works
Dividing any circle’s circumference by its diameter gives you an answer of pi, which is usually rounded to 3.14. Because pi is an irrational number, its decimal representation goes on forever and never repeats. In 2022, mathematician Simon Plouffe discovered the formula to calculate any single digit of pi. In the same year, teams around the world used cloud computing technology to calculate pi to 100 trillion digits. But you might be surprised to learn that for space exploration, NASA uses far fewer digits of pi.
Here at NASA, we use pi to measure the area of telescope mirrors, determine the composition of asteroids, and calculate the volume of rock samples. But pi isn’t just used for exploring the cosmos. Since pi can be used to find the area or circumference of round objects and the volume or surface area of shapes like cylinders, cones, and spheres, it is useful in all sorts of ways. Transportation teams use pi when determining the size of new subway tunnels. Electricians can use pi when calculating the current or voltage passing through circuits. And you might even use pi to figure out how much fencing is needed around a circular school garden bed.
In the United States, March 14 can be written as 3.14, which is why that date was chosen for celebrating all things pi. In 2009, the U.S. House of Representatives passed a resolution officially designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi. And that's precisely what the NASA Pi Day Challenge is all about!
The Science Behind the 2023 NASA Pi Day Challenge
This 10th installment of the NASA Pi Day Challenge includes four noodlenudgers that get students using pi to calculate the amount of rock sampled by the Perseverance Mars rover, the lightcollecting power of the James Webb Space Telescope, the composition of asteroid (16) Psyche, and the type of solar eclipse we can expect in October.
Read on to learn more about the science and engineering behind each problem or click the link below to jump right into the challenge.
› Take the NASA Pi Day Challenge
› Educators, get the lesson here!
Tubular Tally
NASA’s Mars rover, Perseverance, was designed to collect rock samples that will eventually be brought to Earth by a future mission. Sending objects from Mars to Earth is very difficult and something we've never done before. To keep the rock cores pristine on the journey to Earth, the rover hermetically seals them inside a specially designed sample tube. Once the samples are brought to Earth, scientists will be able to study them more closely with equipment that is too large to make the trip to Mars. In Tubular Tally, students use pi to determine the volume of a rock sample collected in a single tube.
Rad Reflection
When NASA launched the Hubble Space Telescope in 1990, scientists hoped that the telescope, with its large mirror and sensitivity to ultraviolet, visible, and nearinfrared light, would unlock secrets of the universe from an orbit high above the atmosphere. Indeed, their hope became reality. Hubble’s discoveries, which are made possible in part by its mirror, rewrote astronomy textbooks. In 2022, the next great observatory, the James Webb Space Telescope, began exploring the infrared universe with an even larger mirror from a location beyond the orbit of the Moon. In Rad Reflection, students use pi to gain a new understanding of our ability to peer deep into the cosmos by comparing the area of Hubble’s primary mirror with the one on Webb.
Metal Math
Orbiting the Sun between Mars and Jupiter, the asteroid (16) Psyche is of particular interest to scientists because its surface may be metallic. Earth and other terrestrial planets have metal cores, but they are buried deep inside the planets, so they are difficult to study. By sending a spacecraft to study Psyche up close, scientists hope to learn more about terrestrial planet cores and our solar system’s history. That's where NASA's Psyche comes in. The mission will use specialized tools to study Psyche's composition from orbit. Determining how much metal exists on the asteroid is one of the key objectives of the mission. In Metal Math, students will do their own investigation of the asteroid's makeup, using pi to calculate the approximate density of Psyche and compare that to the density of known terrestrial materials.
Eclipsing Enigma
On Oct. 14, 2023, a solar eclipse will be visible across North and South America, as the Moon passes between Earth and the Sun, blocking the Sun's light from our perspective. Because Earth’s orbit around the Sun and the Moon’s orbit around Earth are not perfect circles, the distances between them change throughout their orbits. Depending on those distances, the Sun's disk area might be fully or only partially blocked during a solar eclipse. In Eclipsing Enigma, students get a sneak peek at what to expect in October by using pi to determine how much of the Sun’s disk will be eclipsed by the Moon and whether to expect a total or annular eclipse.
Teach It
Celebrate Pi Day by getting students thinking like NASA scientists and engineers to solve realworld problems in the NASA Pi Day Challenge. In addition to solving this year’s challenge, you can also dig into the more than 30 puzzlers from previous challenges available in our Pi Day collection. Completing the problem set and reading about other ways NASA uses pi is a great way for students to see the importance of the M in STEM.
Pi Day Resources

Pi in the Sky Lessons
Here's everything you need to bring the NASA Pi Day Challenge into the classroom.
Grades 412
Time Varies

NASA Pi Day Challenge
The entire NASA Pi Day Challenge collection can be found in one, handy slideshow for students.
Grades 412
Time Varies

How Many Decimals of Pi Do We Really Need?
While you may have memorized more than 70,000 digits of pi, world record holders, a JPL engineer explains why you really only need a tiny fraction of that for most calculations.

18 Ways NASA Uses Pi
Whether it's sending spacecraft to other planets, driving rovers on Mars, finding out what planets are made of or how deep alien oceans are, pi takes us far at NASA. Find out how pi helps us explore space.

10 Ways to Celebrate Pi Day With NASA on March 14
Find out what makes pi so special, how it’s used to explore space, and how you can join the celebration with resources from NASA.

Infographic: Planet Pi
This poster shows some of the ways NASA scientists and engineers use the mathematical constant pi (3.14) and includes common pi formulas.

Downloads
Can't get enough pi? Download this year's NASA Pi Day Challenge graphics, including mobile phone and desktop backgrounds:

National Council of Teachers of Mathematics: Notice and Wonder
Creative brainstorming through noticing and wondering encourages student participation, engagement, and students' understanding of the NASA Pi Day Challenge.
Subject Mathematics

Pi Day: What's Going 'Round
Tell us what you're up to this Pi Day and share your stories and photos on our showcase page.
Plus, join the conversation using the hashtag #NASAPiDayChallenge on Facebook, Twitter, and Instagram.
Related Lessons for Educators

Robotic Arm Challenge
In this challenge, students will create a model robotic arm to move items from one location to another. They will engage in the engineering design process to design, build and operate the arm.
Grades K8
Time 30 min to 1 hour

NASA's Mission to Mars Student Challenge
Take part in the exploration of Mars and bring students along for the ride with NASA's Perseverance rover.
Grades K12
Time Varies

Moon Phases
Students learn about the phases of the moon by acting them out.
Grades 16
Time 30 min to 1 hour

Modeling the EarthMoon System
Students learn about scale models and distance by creating a classroomsize EarthMoon system.
Grades 68
Time 30 min to 1 hour

Math of the Expanding Universe
Students will learn about the expanding universe and the redshift of lightwaves, then perform their own calculations with a distant supernova.
Grades 912
Time 30 min to 1 hour

The Expanded Universe: Playing with Time Activity Guide
In this activity, participants use balloons to model the expansion of the universe and observe how expansion affects wavelengths of light and distance between galaxies

James Webb Space Telescope STEM Toolkit
Find a collection of resources, activities, videos, and more for your students to learn about NASA’s newest space observatory.

Modeling an Asteroid
Lead a discussion about asteroids and their physical properties, then have students mold their own asteroids out of clay.
Grades 35
Time 30 min to 1 hour

Math Rocks: A Lesson in Asteroid Dynamics
Students use math to investigate a reallife asteroid impact.
Grades 812
Time 30 min to 1 hour
Related Activities for Students

How to Make a Pinhole Camera
Learn how to make your very own pinhole camera to safely see a solar eclipse in action!
Type Project
Subject Engineering

Collection: Exploring Mars
Make a cardboard rover, design a Mars exploration video game and explore more STEM projects, slideshows and videos for students.
Type Project
Subject Science

What's That Space Rock?
Find out how to tell the difference between asteroids, comets, meteors, meteorites and other bodies in our solar system.
Type Slideshow
Subject Science

10 Things We Can Learn from Webb's First Images
Take a closer look at how images from NASA's most powerful space telescope yet are helping to answer some of astronomers' most burning questions.
Type Slideshow
Subject Science
Recursos en español
Facts and Figures
Websites
 Webb Space Telescope
 Mars Exploration
 Perseverance Mars Rover
 Mars Sample Return
 Psyche Mission
 MIRI Instrument
 2023 Eclipse
Articles
Videos
Interactives
TAGS: Pi Day, Pi, Math, NASA Pi Day Challenge, sun, moon, earth, eclipse, asteroid, psyche, sample return, mars, perseverance, jwst, webb, hubble, telescope, miri
Teachable Moments  March 10, 2022
Pi Goes to Infinity and Beyond in NASA Challenge
Learn about pi and some of the ways the number is used at NASA. Then, dig into the science behind the Pi Day Challenge.
Update: March 15, 2022 – The answers are here! Visit the NASA Pi Day Challenge slideshow to view the illustrated answer keys for each of the problems in the 2022 challenge.
In the News
No matter what Punxsutawney Phil saw on Groundhog Day, a sure sign that spring approaches is Pi Day. Celebrated on March 14, it’s the annual holiday that pays tribute to the mathematical constant pi – the number that results from dividing any circle's circumference by its diameter.
Every year, Pi Day gives us a reason to not only celebrate the mathematical wonder that helps NASA explore the universe, but also to enjoy our favorite sweet and savory pies. Students can join in the fun by using pi to explore Earth and space themselves in our ninth annual NASA Pi Day Challenge.
Read on to learn more about the science behind this year's challenge and find out how students can put their math mettle to the test to solve real problems faced by NASA scientists and engineers as we explore Earth, the Moon, Mars, and beyond!How It Works
Dividing any circle’s circumference by its diameter gives you an answer of pi, which is usually rounded to 3.14. Because pi is an irrational number, its decimal representation goes on forever and never repeats. In 2021, a supercomputer calculated pi to more than 62 trillion digits. But you might be surprised to learn that for space exploration, NASA uses far fewer digits of pi.
Here at NASA, we use pi to understand how much signal we can receive from a distant spacecraft, to calculate the rotation speed of a Mars helicopter blade, and to collect asteroid samples. But pi isn’t just used for exploring the cosmos. Since pi can be used to find the area or circumference of round objects and the volume or surface area of shapes like cylinders, cones, and spheres, it is useful in all sorts of ways. Architects use pi when designing bridges or buildings with arches; electricians use pi when calculating the conductance of wire; and you might even want to use pi to figure out how much frozen goodness you are getting in your ice cream cone.
In the United States, March 14 can be written as 3.14, which is why that date was chosen for celebrating all things pi. In 2009, the U.S. House of Representatives passed a resolution officially designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi. And that's precisely what the NASA Pi Day Challenge is all about!
The Science Behind the 2022 NASA Pi Day Challenge
This ninth installment of the NASA Pi Day Challenge includes four brainbusters that get students using pi to measure frost deep within craters on the Moon, estimate the density of Mars’ core, calculate the water output from a dam to assess its potential environmental impact, and find how far a planethunting satellite needs to travel to send data back to Earth.
Read on to learn more about the science and engineering behind the problems or click the link below to jump right into the challenge.
› Take the NASA Pi Day Challenge
› Educators, get the lesson here!
Lunar Logic
NASA’s Lunar Flashlight mission is a small satellite that will seek out signs of frost in deep, permanently shadowed craters around the Moon’s south pole. By sending infrared laser pulses to the surface and measuring how much light is reflected back, scientists can determine which areas of the lunar surface contain frost and which are dry. Knowing the locations of waterice on the Moon could be key for future crewed missions to the Moon, when water will be a precious resource. In Lunar Logic, students use pi to find out how much surface area Lunar Flashlight will measure with a single pulse from its laser.
Core Conundrum
Since 2018, the InSight lander has studied the interior of Mars by measuring vibrations from marsquakes and the “wobble” of the planet as it rotates on its axis. Through careful analysis of the data returned from InSight, scientists were able to measure the size of Mars’ liquid core for the first time and estimate its density. In Core Conundrum, students use pi to do some of the same calculations, determining the volume and density of the Red Planet’s core and comparing it to that of Earth’s core.
Dam Deduction
The Surface Water and Ocean Topography, or SWOT mission will conduct NASA's first global survey of Earth's surface water. SWOT’s stateoftheart radar will measure the elevation of water in major lakes, rivers, wetlands, and reservoirs while revealing unprecedented detail on the ocean surface. This data will help scientists track how these bodies of water are changing over time and improve weather and climate models. In Dam Deduction, students learn how data from SWOT can be used to assess the environmental impact of dams. Students then use pi to do their own analysis, finding the powered output of a dam based on the water height of its reservoir and inferring potential impacts of this quickflowing water.
Telescope Tango
The Transiting Exoplanet Survey Satellite, or TESS, is designed to survey the sky in search of planets orbiting bright, nearby stars. TESS does this while circling Earth in a unique, neverbeforeused orbit that brings the spacecraft close to Earth about once every two weeks to transmit its data. This special orbit keeps TESS stable while giving it an unobstructed view of space. In its first two years, TESS identified more than 2,600 possible exoplanets in our galaxy with thousands more discovered during its extended mission. In Telescope Tango, students will use pi to calculate the distance traveled by TESS each time it sends data back to Earth.
Teach It
Celebrate Pi Day by getting students thinking like NASA scientists and engineers to solve realworld problems in NASA Pi Day Challenge. Completing the problem set and reading about other ways NASA uses pi is a great way for students to see the importance of the M in STEM.
Pi Day Resources

Pi in the Sky Lessons
Here's everything you need to bring the NASA Pi Day Challenge into the classroom.
Grades 412
Time Varies

NASA Pi Day Challenge
The entire NASA Pi Day Challenge collection can be found in one, handy slideshow for students.
Grades 412
Time Varies

How Many Decimals of Pi Do We Really Need?
While you may have memorized more than 70,000 digits of pi, world record holders, a JPL engineer explains why you really only need a tiny fraction of that for most calculations.

18 Ways NASA Uses Pi
Whether it's sending spacecraft to other planets, driving rovers on Mars, finding out what planets are made of or how deep alien oceans are, pi takes us far at NASA. Find out how pi helps us explore space.

10 Ways to Celebrate Pi Day With NASA on March 14
Find out what makes pi so special, how it’s used to explore space, and how you can join the celebration with resources from NASA.

Infographic: Planet Pi
This poster shows some of the ways NASA scientists and engineers use the mathematical constant pi (3.14) and includes common pi formulas.

Downloads
Can't get enough pi? Download this year's NASA Pi Day Challenge graphics, including mobile phone and desktop backgrounds:
 Pi in the Sky 9 Poster (PDF, 11.2 MB)
 Lunar Flashlight Background: Phone  Desktop
 Mars InSight Lander Background: Phone  Desktop
 SWOT Mission Background: Phone  Desktop
 TESS Mission  Downlink Background: Phone  Desktop
 TESS Mission  Science Background (not pictured): Phone  Desktop
 Medley Background (not pictured): Phone  Desktop

Pi Day: What's Going 'Round
Tell us what you're up to this Pi Day and share your stories and photos on our showcase page.
Plus, join the conversation using the hashtag #NASAPiDayChallenge on Facebook, Twitter, and Instagram.
Recursos en español
Related Lessons for Educators

Planetary Egg Wobble and Newton's First Law
Students try to determine the interior makeup of an egg (hardboiled or raw) based on their understanding of center of mass and Newton’s first law of motion.
Grades 38
Time 30 min to 1 hour

Whip Up a MoonLike Crater
Whip up a moonlike crater with baking ingredients as a demonstration for students.
Grades 16
Time 30 min to 1 hour

Exploring Exoplanets with Kepler
Students use math concepts related to transits to discover realworld data about Mercury, Venus and planets outside our solar system.
Grades 612
Time 30 min to 1 hour

Tracking Water Using NASA Satellite Data
Using real data from NASA’s GRACE satellites, students will track water mass changes in the U.S.
Grades 48
Time 30 min to 1 hour

Modeling the Water Budget
Students use a spreadsheet model to understand droughts and the movement of water in the water cycle.
Grades 58
Time 30 min to 1 hour
Related Activities for Students

NASA's Earth Minute: Mission to Earth?
NASA doesn't just explore outer space! It studies Earth, too, with a fleet of spacecraft and scientists far and wide.
Type Video
Subject Science

Look at the Moon! Journaling Project
Draw what you see in a Moon Journal and see if you can predict the moon phase that comes next.
Type Project
Subject Science

Mars in a Minute: Are There Quakes on Mars?
Are there earthquakes on Mars – or rather, "marsquakes"? What could they teach us about the Red Planet?
Type Video
Subject Science
Explore More
Infographic
Facts and Figures
Missions and Instruments
Websites
TAGS: Pi Day, Pi, Math, NASA Pi Day Challenge, Moon, Lunar Flashlight, Mars, InSight, Earth, Climate, SWOT, Exoplanets, Universe, TESS, Teachers, Educators, Parents, Students, Lessons, Activities, Resources, K12
Teachable Moments  March 5, 2021
Take Math to Mars and Beyond With NASA's Pi Day Challenge
Update: March 15, 2021 – The answers are here! Visit the NASA Pi Day Challenge slideshow to view the illustrated answer keys (also available as a textonly doc) with each problem.
Learn about pi and the history of Pi Day before exploring some of the ways the number is used at NASA. Then, try the math for yourself in our Pi Day Challenge.
In the News
As March 14 approaches, it’s time to get ready to celebrate Pi Day! It’s the annual holiday that pays tribute to the mathematical constant pi – the number that results from dividing any circle's circumference by its diameter.
Pi Day comes around only once a year, giving us a reason to chow down on our favorite sweet and savory pies while we appreciate the mathematical marvel that helps NASA explore Earth, the solar system, and beyond. There’s no better way to observe this day than by getting students exploring space right along with NASA by doing the math in our Pi Day Challenge. Keep reading to find out how students – and you – can put their math mettle to the test and solve real problems faced by NASA scientists and engineers as they explore the cosmos!
How It Works
Dividing any circle’s circumference by its diameter gives us pi, which is often rounded to 3.14. However, pi is an irrational number, meaning its decimal representation goes on forever and never repeats. Pi has been calculated to 50 trillion digits, but NASA uses far fewer for space exploration.
Some people may think that a circle has no points. In fact, a circle does have points, and knowing what pi is and how to use it is far from pointless. Pi is used for calculating the area and circumference of circular objects and the volume of shapes like spheres and cylinders. So it's useful for everyone from farmers storing crops in silos to manufacturers of water storage tanks to people who want to find the best value when ordering a pizza. At NASA, we use pi to find the best place to touch down on Mars, study the health of Earth's coral reefs, measure the size of a ring of planetary debris light years away, and lots more.
In the United States, one format to write March 14 is 3.14, which is why we celebrate on that date. In 2009, the U.S. House of Representatives passed a resolution officially designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi. And you're in luck, because that's precisely what the NASA Pi Day Challenge is all about.
The Science Behind the 2021 NASA Pi Day Challenge
This year, the NASA Pi Day Challenge offers up four brainticklers that will require students to use pi to collect samples from an asteroid, fly a helicopter on Mars for the first time, find efficient ways to talk with distant spacecraft, and study the forces behind Earth's beautiful auroras. Learn more about the science and engineering behind the problems below or click the link below to jump right into the challenge. Be sure to check back on March 15 for the answers to this year’s challenge.
› Take the NASA Pi Day Challenge
› Educators, get the lesson here!
Sample Science
NASA’s OSIRISREx mission has flown to an asteroid and collected a sample of surface material to bring back to Earth. (It will arrive back at Earth in 2023.) The mission is designed to help scientists understand how planets form and add to what we know about nearEarth asteroids, like the one visited by OSIRISREx, asteroid Bennu. Launched in 2016, OSIRISREx began orbiting Bennu in 2018 and successfully performed its maneuver to retrieve a sample on October 20, 2020. In the Sample Science problem, students use pi to determine how much of the spacecraft's samplecollection device needs to make contact with the surface of Bennu to meet mission requirements for success.
Whirling Wonder
Joining the Perseverance rover on Mars is the first helicopter designed to fly on another planet. Named Ingenuity, the helicopter is a technology demonstration, meaning it's a test to see if a similar device could be used for a future Mars mission. To achieve the first powered flight on another planet, Ingenuity must spin its blades at a rapid rate to generate lift in Mars’ thin atmosphere. In Twirly Whirly, students use pi to compare the spin rate of Ingenuity’s blades to those of a typical helicopter on Earth.
Signal Solution
NASA uses radio signals to communicate with spacecraft across the solar system and in interstellar space. As more and more data flows between Earth and these distant spacecraft, NASA needs new technologies to improve how quickly data can be received. One such technology in development is Deep Space Optical Communications, which will use nearinfrared light instead of radio waves to transmit data. Nearinfrared light, with its higher frequency than radio waves, allows for more data to be transmitted per second. In Signal Solution, students can compare the efficiency of optical communication with radio communication, using pi to crunch the numbers.
Force Field
Earth’s magnetic field extends from within the planet to space, and it serves as a protective shield, blocking charged particles from the Sun. Known as the solar wind, these charged particles of helium and hydrogen race from the Sun at hundreds of miles per second. When they reach Earth, they would bombard our planet and orbiting satellites were it not for the magnetic field. Instead, they are deflected, though some particles become trapped by the field and are directed toward the poles, where they interact with the atmosphere, creating auroras. Knowing how Earth’s magnetic field shifts and how particles interact with the field can help keep satellites in safe orbits. In Force Field, students use pi to calculate how much force a hydrogen atom would experience at different points along Earth’s magnetic field.
Teach It
Pi Day is a fun and engaging way to get students thinking like NASA scientists and engineers. By solving the NASA Pi Day Challenge problems below, reading about other ways NASA uses pi, and doing the related activities, students can see first hand how math is an important part of STEM.
Pi Day Resources

Pi in the Sky Lessons
Here's everything you need to bring the NASA Pi Day Challenge into the classroom.
Grades 412
Time Varies

NASA Pi Day Challenge
The entire NASA Pi Day Challenge collection can be found in one, handy slideshow for students.
Grades 412
Time Varies

How Many Decimals of Pi Do We Really Need?
While you may have memorized more than 70,000 digits of pi, world record holders, a JPL engineer explains why you really only need a tiny fraction of that for most calculations.

18 Ways NASA Uses Pi
Whether it's sending spacecraft to other planets, driving rovers on Mars, finding out what planets are made of or how deep alien oceans are, pi takes us far at NASA. Find out how pi helps us explore space.

10 Ways to Celebrate Pi Day With NASA on March 14
Find out what makes pi so special, how it’s used to explore space, and how you can join the celebration with resources from NASA.

Infographic: Planet Pi
This poster shows some of the ways NASA scientists and engineers use the mathematical constant pi (3.14) and includes common pi formulas.

Pi Day: What's Going 'Round
Tell us what you're up to this Pi Day and share your stories and photos on our showcase page.
Plus, join the conversation using the hashtag #NASAPiDayChallenge on Facebook, Twitter, and Instagram.
Related Lessons for Educators

Robotic Arm Challenge
In this challenge, students will use a model robotic arm to move items from one location to another. They will engage in the engineering design process to design, build and operate the arm.
Grades K8
Time 30 min to 1 hour

Whip Up a MoonLike Crater
Whip up a moonlike crater with baking ingredients as a demonstration for students.
Grades 16
Time 30 min to 1 hour

Make a Paper Mars Helicopter
In this lesson, students build a paper helicopter, then improve the design and compare and measure performance.
Grades 28
Time 30 min to 1 hour

Speaking in Phases
Students learn how waves are used in communication between faraway spacecraft and the Deep Space Network on Earth.
Grades 38
Time 30 min to 1 hour

Catching a Whisper from Space
Students kinesthetically model the mathematics of how NASA communicates with spacecraft.
Grades 412
Time 12 hours

Collecting Light: Inverse Square Law Demo
In this activity, students learn how light and energy are spread throughout space. The rate of change can be expressed mathematically, demonstrating why spacecraft like NASA’s Juno need so many solar panels.
Grades 68
Time under 30 min

Build a Relay Inspired by Space Communications
In this intermediatelevel programming challenge, students use microdevices along with light and mirrors to build a relay that can send information to a distant detector.
Grades 812
Time 12 hours

Math Rocks: A Lesson in Asteroid Dynamics
Students use math to investigate a reallife asteroid impact.
Grades 812
Time 30 min to 1 hour
Related Activities for Students

Code a Mars Helicopter Video Game
Create a video game that lets players explore the Red Planet with a helicopter like the one going to Mars with NASA's Perseverance rover!
Type Project
Subject Technology

Make a Paper Mars Helicopter
Build a paper helicopter, then see if you can improve the design like NASA engineers did when making the first helicopter for Mars.
Type Project
Subject Engineering

How Does NASA Spot a NearEarth Asteroid?
Watch this oneminute video to find out how NASA spots and tracks asteroids that fly close to Earth.
Type Video
Subject Science

What's That Space Rock?
Find out how to tell the difference between asteroids, comets, meteors, meteorites and other bodies in our solar system.
Type Slideshow
Subject Science
Explore More
Infographic
Facts and Figures
Missions and Instruments
Websites
TAGS: Pi, Pi Day, NASA Pi Day Challenge, Math, Mars, Perseverance, Ingenuity, Mars Helicopter, OSIRISREx, Bennu, Asteroid, Auroras, Earth, Magnetic Field, DSOC, Light Waves, DSN, Deep Space Network, Space Communications
Teachable Moments  March 6, 2020
We've Got the Formula for a Stellar Pi Day
Update: March 16, 2020 – The answers to the 2020 NASA Pi Day Challenge are here! View the illustrated answer key (also available as a textonly doc).
In the News
Our annual opportunity to indulge in a shared love of space exploration, mathematics and sweet treats has come around again! Pi Day is the March 14 holiday that celebrates the mathematical constant pi – the number that results from dividing any circle's circumference by its diameter.
Besides providing an excuse to eat all varieties of pie, Pi Day gives us a chance to appreciate some of the ways NASA uses pi to explore the solar system and beyond. You can do the math for yourself – or get students doing it – by taking part in the NASA Pi Day Challenge. Find out below how to test your pi skills with realworld problems faced by NASA space explorers, plus get lessons and resources for educators.
How It Works
The ratio of any circle's circumference to its diameter is equal to pi, which is often rounded to 3.14. But pi is what is known as an irrational number, so its decimal representation never ends, and it never repeats. Though it has been calculated to trillions of digits, we use far fewer at NASA.
Pi is useful for all sorts of things, like calculating the circumference and area of circular objects and the volume of cylinders. That's helpful information for everyone from farmers irrigating crops to tire manufacturers to soupmakers filling their cans. At NASA, we use pi to calculate the densities of planets, point space telescopes at distant stars and galaxies, steer rovers on the Red Planet, put spacecraft into orbit and so much more! With so many practical applications, it's no wonder so many people love pi!
In the U.S., 3.14 is also how we refer to March 14, which is why we celebrate the mathematical marvel that is pi on that date each year. In 2009, the U.S. House of Representatives passed a resolution officially designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi.
The NASA Pi Day Challenge
This year's NASA Pi Day Challenge poses four puzzlers that require pi to compare the sizes of Mars landing areas, calculate the length of a year for one of the most distant objects in the solar system, measure the depth of the ocean from an airplane, and determine the diameter of a distant debris disk. Learn more about the science and engineering behind the problems below or click the link to jump right into the challenge.
› Take the NASA Pi Day Challenge
› Educators, get the lesson here!
Mars Maneuver
Long before a Mars rover touches down on the Red Planet, scientists and engineers must determine where to land. Rather than choosing a specific landing spot, NASA selects an area known as a landing ellipse. A Mars rover could land anywhere within this ellipse. Choosing where the landing ellipse is located requires compromising between getting as close as possible to interesting science targets and avoiding hazards like steep slopes and large boulders, which could quickly bring a mission to its end. In the Mars Maneuver problem, students use pi to see how new technologies have reduced the size of landing ellipses from one Mars rover mission to the next.
Cold Case
In January 2019, NASA's New Horizons spacecraft sped past Arrokoth, a frigid, primitive object that orbits within the Kuiper Belt, a doughnutshaped ring of icy bodies beyond the orbit of Neptune. Arrokoth is the most distant Kuiper Belt object to be visited by a spacecraft and only the second object in the region to have been explored up close. To get New Horizons to Arrokoth, mission navigators needed to know the orbital properties of the object, such as its speed, distance from the Sun, and the tilt and shape of its orbit. This information is also important for scientists studying the object. In the Cold Case problem, students can use pi to determine how long it takes the distant object to make one trip around the Sun.
Coral Calculus
Coral reefs provide food and shelter to many ocean species and protect coastal communities against extreme weather events. Ocean warming, invasive species, pollutants, and acidification caused by climate change can harm the tiny living coral organisms responsible for building coral reefs. To better understand the health of Earth's coral reefs, NASA's COral Reef Airborne Laboratory, or CORAL, mission maps them from the air using spectroscopy, studying how light interacts with the reefs. To make accurate maps, CORAL must be able to differentiate among coral, algae and sand on the ocean floor from an airplane. And to do that, it needs to calculate the depth of the ocean at every point it maps by measuring how much sunlight passes through the ocean and is reflected upward from the ocean floor. In Coral Calculus, students use pi to measure the water depth of an area mapped by the CORAL mission and help scientists better understand the status of Earth's coral reefs.
Planet Pinpointer
Our galaxy contains billions of stars, many of which are likely home to exoplanets – planets outside our solar system. So how do scientists decide where to look for these worlds? Using data gathered by NASA's Spitzer Space Telescope, researchers found that they're more likely to find giant exoplanets around young stars surrounded by debris disks, which are made up of material similar to what's found in the asteroid belt and Kuiper Belt in our solar system. Sure enough, after discovering a debris disk around the star Beta Pictoris, researchers later confirmed that it is home to at least two giant exoplanets. Learning more about Beta Pictoris' debris disk could give scientists insight into the formation of these giant worlds. In Planet Pinpointer, put yourself in the role of a NASA scientist to learn more about Beta Pictoris' debris disk, using pi to calculate the distance across it.
Participate

Pi Day Challenge Lessons
Here's everything you need to bring the NASA Pi Day Challenge into the classroom.
Grades 412
Time Varies

Slideshow: NASA Pi Day Challenge
The entire NASA Pi Day Challenge collection can be found in one, handy slideshow for students.
Grades 412
Time Varies

Pi Day: What’s Going ’Round
Tell us what you’re up to this Pi Day and share your stories and photos with NASA.
Join the conversation and share your Pi Day Challenge answers with @NASAJPL_Edu on social media using the hashtag #NASAPiDayChallenge
Blogs and Features

How Many Decimals of Pi Do We Really Need?
While you may have memorized more than 70,000 digits of pi, world record holders, a JPL engineer explains why you really only need a tiny fraction of that for most calculations.

Slideshow: 18 Ways NASA Uses Pi
Whether it's sending spacecraft to other planets, driving rovers on Mars, finding out what planets are made of or how deep alien oceans are, pi takes us far at NASA. Find out how pi helps us explore space.
Related Lessons for Educators

Rover Lessons
Explore a collection of standardsaligned STEM lessons all about rovers.
Grades K12
Time Varies

Touchdown
Students design and build a shockabsorbing system that will protect two "astronauts" when they land.
Grades 38
Time 30 mins  1 hr

On Target
Students modify a paper cup so it can zip down a line and drop a marble onto a target.
Grades 612
Time 30 mins  1 hr

Solar System Scale Models
Explore a collection of standardsaligned STEM lessons all about the size and scale of our solar system.
Grades 112
Time Varies

Modeling an Asteroid
Lead a discussion about asteroids and their physical properties, then have students mold their own asteroids out of clay.
Grades 35
Time 30 mins  1 hr

Math Rocks: A Lesson in Asteroid Dynamics
Students use math to investigate a reallife asteroid impact.
Grades 812
Time 30 mins  1 hr

Asteroid Ace: A 'Pi in the Sky' Math Challenge
Students use pi to calculate the rotation rate of an asteroid from another solar system in this illustrated math problem.
Grades 1112
Time < 30 mins

Climate Change Lessons
Explore a collection of standardsaligned STEM lessons all about Earth's changing climate.
Grades K12
Time Varies

Using Light to Study Planets
Students build a spectrometer using basic materials as a model for how NASA uses spectroscopy to determine the nature of elements found on Earth and other planets.
Grades 611
Time < 2 hrs

Solar Sleuth: A 'Pi in the Sky' Math Challenge
In this illustrated math problem, students use pi and data from the Kepler space telescope to find the size of a planet outside our solar system.
Grades 69
Time < 30 mins

Exploring Exoplanets with Kepler
Students use math concepts related to transits to discover realworld data about Mercury, Venus and planets outside our solar system.
Grades 612
Time 30 mins  1 hr

Habitable Hunt: A 'Pi in the Sky' Math Challenge
In this illustrated math problem, students use the mathematical constant pi to find the "habitable zone" around a distant star and determine which of its planets are in that zone.
Grades 1112
Time < 30 mins
Related Activities for Students

Make a Moon or Mars Rover Game
Create a Moon or Mars exploration game using Scratch, a visual programming language. Think like NASA spacemission planners to design your game!
Type Project
Subject Technology

Make a Cardboard Rover
Build a rubberbandpowered rover that can scramble across a room.
Type Project
Subject Engineering

Mars in a Minute: How Do You Choose a Landing Site?
So, you want to study Mars with a lander or rover – but where exactly do you send it? Learn how scientists and engineers tackle the question of where to land on Mars in this 60second video.
Type Video
Subject Engineering

Mars in a Minute: How Do You Land on Mars?
Getting a spacecraft to Mars is one thing. Getting it safely to the ground is a whole other challenge! This 60second video from NASA's Jet Propulsion Laboratory explains three ways to land on the surface of the Red Planet.
Type Video
Subject Engineering

What's That Space Rock?
Find out how to tell the difference between asteroids, comets, meteors, meteorites and other bodies in our solar system.
Type Slideshow
Subject Science

Mars in a Minute: How Long is a Year on Mars?
How long is does it take Mars to make one trip around the Sun and why is one Earth year shorter? Find out in one minute!
Type Video
Subject Science

Space Place in a Snap: The Solar System's Formation
Find out how our solar system formed and how it came to be the busy place it is today.
Type Video
Subject Science

What Is the Kuiper Belt?
Learn about the Kuiper Belt and some of its famous members, Kuiper Belt Objects.
Type Article
Subject Science

Coral Bleaching Simulator
Adjust water temperature and pollution levels in this simulator to see what happens to a coral reef depending on the conditions you choose!
Type Interactive
Subject Science

Ocean Worlds
Where might oceans – and living things – exist beyond Earth? Scientists have their eyes on these places in our own solar system.
Type Slideshow
Subject Science

NASA's Earth Minute: Mission to Earth?
NASA doesn't just explore outer space! It studies Earth, too, with a fleet of spacecraft and scientists far and wide.
Type Video
Subject Science

NASA's Earth Minute: Earth Has a Fever
Why is Earth getting hotter and what does that mean for us?
Type Video
Subject Science
NOAA Video Series: Coral Comeback
 Article: Giant Exoplanet Hunters: Look for Debris Disks
 Video: The Evolution of a PlanetForming Disk
 Video: Birth of "Phoenix" Planets?
Multimedia

Infographic: Planet Pi
This poster shows some of the ways NASA scientists and engineers use the mathematical constant pi (3.14) and includes common pi formulas.
 Posters: Exoplanet Travel Bureau
Facts and Figures
Missions and Instruments
Websites
TAGS: K12 Education, Math, Pi Day, Pi, NASA Pi Day Challenge, Events, Space, Educators, Teachers, Parents, Students, STEM, Lessons, Problem Set, Mars 2020, Perseverance, Curiosity, Mars rovers, Mars landing, MU69, Arrokoth, New Horizons, Earth science, Climate change, CORAL, NASA Expeditions, coral reefs, oceans, Spitzer, exoplanets, Beta Pictoris, stars, universe, space telescope, Climate TM
Teachable Moments  March 9, 2018
Pi Goes the Distance at NASA
Update: March 15, 2018 – The answers to the 2018 NASA Pi Day Challenge are here! View the illustrated answer key
In the News
The 2018 NASA Pi Day Challenge
Can you solve these stellar mysteries with pi? Click to get started.
Pi Day, the annual celebration of one of mathematics’ most popular numbers, is back! Representing the ratio of a circle’s circumference to its diameter, pi has many practical applications, including the development and operation of space missions at NASA’s Jet Propulsion Laboratory.
The March 14 holiday is celebrated around the world by math enthusiasts and casual fans alike – from memorizing digits of pi (the current Pi World Ranking record is 70,030 digits) to baking and eating pies.
JPL is inviting people to participate in its 2018 NASA Pi Day Challenge – four illustrated math puzzlers involving pi and real problems scientists and engineers solve to explore space, also available as a free poster! Answers will be released on March 15.
Why March 14?
Pi is what’s known as an irrational number, meaning its decimal representation never ends and it never repeats. It has been calculated to more than one trillion digits, but NASA scientists and engineers actually use far fewer digits in their calculations (see “How Many Decimals of Pi Do We Really Need?”). The approximation 3.14 is often precise enough, hence the celebration occurring on March 14, or 3/14 (when written in U.S. month/day format). The first known celebration occurred in 1988, and in 2009, the U.S. House of Representatives passed a resolution designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi.
NASA’s Pi Day Challenge
Lessons: Pi in the Sky
Explore the entire NASA Pi Day Challenge lesson collection, including free posters and handouts!
To show students how pi is used at NASA and give them a chance to do the very same math, the JPL Education Office has once again put together a Pi Day challenge featuring realworld math problems used for space exploration. This year’s challenge includes exploring the interior of Mars, finding missing helium in the clouds of Jupiter, searching for Earthsize exoplanets and uncovering the mysteries of an asteroid from outside our solar system.
Here’s some of the science behind this year’s challenge:
Scheduled to launch May 5, 2018, the InSight Mars lander will be equipped with several scientific instruments, including a heat flow probe and a seismometer. Together, these instruments will help scientists understand the interior structure of the Red Planet. It’s the first time we’ll get an indepth look at what’s happening inside Mars. On Earth, seismometers are used to measure the strength and location of earthquakes. Similarly, the seismometer on Insight will allow us to measure marsquakes! The way seismic waves travel through the interior of Mars can tell us a lot about what lies beneath the surface. This year’s Quake Quandary problem challenges students to determine the distance from InSight to a hypothetical marsquake using pi!
Also launching in spring is NASA’s Transiting Exoplanet Survey Satellite, or TESS, mission. TESS is designed to build upon the discoveries made by NASA’s Kepler Space Telescope by searching for exoplanets – planets that orbit stars other than our Sun. Like Kepler, TESS will monitor hundreds of thousands of stars across the sky, looking for the temporary dips in brightness that occur when an exoplanet passes in front of its star from the perspective of TESS. The amount that the star dims helps scientists determine the radius of the exoplanet. Like those exoplanethunting scientists, students will have to use pi along with data from Kepler to find the size of an exoplanet in the Solar Sleuth challenge.
Jupiter is our solar system’s largest planet. Shrouded in clouds, the planet’s interior holds clues to the formation of our solar system. In 1995, NASA’s Galileo spacecraft dropped a probe into Jupiter’s atmosphere. The probe detected unusually low levels of helium in the upper atmosphere. It has been hypothesized that the helium was depleted out of the upper atmosphere and transported deeper inside the planet. The extreme pressure inside Jupiter condenses helium into droplets that form inside a liquid metallic hydrogen layer below. Because the helium is denser than the surrounding hydrogen, the helium droplets fall like rain through the liquid metallic hydrogen. In 2016, the Juno spacecraft, which is designed to study Jupiter’s interior, entered orbit around the planet. Juno’s initial gravity measurements have helped scientists better understand the inner layers of Jupiter and how they interact, giving them a clearer window into what goes on inside the planet. In the Helium Heist problem, students can use pi to find out just how much helium has been depleted from Jupiter’s upper atmosphere over the planet’s lifetime.
In October 2017, astronomers spotted a uniquelyshaped object traveling in our solar system. Its path and high velocity led scientists to believe ‘Oumuamua, as it has been dubbed, is actually an object from outside of our solar system – the first ever interstellar visitor to be detected – that made its way to our neighborhood thanks to the Sun’s gravity. In addition to its high speed, ‘Oumuamua is reflecting the Sun’s light with great variation as the asteroid rotates on its axis, causing scientists to conclude it has an elongated shape. In the Asteroid Ace problem, students can use pi to find the rate of rotation for ‘Oumuamua and compare it with Earth’s rotation rate.
Explore More
Join the Conversation
 Join the conversation and share your Pi Day Challenge answers with @NASAJPL_Edu on social media using the hashtag #NASAPiDayChallenge
 Pi Day: What’s Going ‘Round – Tell us what you’re up to this Pi Day and share your stories and photos with NASA.
StandardsAligned Lessons
 Pi in the Sky 5
 Pi in the Sky 4
 Pi in the Sky 3
 Pi in the Sky 2
 Pi in the Sky
 Pi in the Sky Challenge (slideshow for students)
Multimedia
 18 Ways NASA Uses Pi – Whether it's sending spacecraft to other planets, driving rovers on Mars, finding out what planets are made of or how deep alien oceans are, pi takes us far at NASA. Find out how pi helps us explore space.
 Kepler186f Travel Poster
 Video: First Interstellar Asteroid Wows Scientists
 Planet Pi
Facts and Figures
Missions
Websites
TAGS: Pi Day, Math, Science, Engineering, NASA Pi Day Challenge, K12, Lesson, Activity, Slideshow, Mars, Jupiter, Exoplanets, Kepler, Kepler186f, Juno, InSight, TESS, ‘Oumuamua, asteroid, asteroids, NEO, Nearth Earth Object
Teachable Moments  March 10, 2017
Celebrate Pi Day Like a NASA Rocket Scientist
UPDATE: March 16, 2017 – An illustrated answer key for the 2017 NASA Pi Day Challenge is now available here.
Were you able to solve these stellar mysteries using pi? Check your answers on our illustrated answer key and download the free "Pi in the Sky^{4}" poster set.
NASA is giving space fans a reason to celebrate Pi Day, the March 14 holiday created in honor of the mathematical constant pi. For the fourth year in a row, the agency’s Jet Propulsion Laboratory has created an illustrated Pi Day Challenge featuring four math problems NASA scientists and engineers must solve to explore space. The challenge is designed to get students excited about pi and its applications beyond the classroom. This year’s problem set, designed for students in grade six through high school – but fun for all – features Mars craters, a total solar eclipse, a close encounter with Saturn, and the search for habitable worlds.
› Take the NASA Pi Day Challenge!
› Educators, get the standardsaligned Pi Day Challenge lesson and download the free poster and handouts. The answers to all four problems will be released in a companion infographic on March 16.
Read on for more about Pi Day, the science behind the 2017 problem set and to learn how NASA scientists and engineers use pi.
Take the NASA Pi Day Challenge
Solve a Martian crater mystery, measure the size of the moon’s shadow during a total solar eclipse, get into a daring orbit around Saturn, and discover potentially habitable worlds beyond our solar system. You don’t have to be a NASA rocket scientist to do stellar math with pi.
Why March 14?
Pi is what’s known as an irrational number, meaning its decimal representation never ends and it never repeats. It has been calculated to more than one trillion digits, but NASA scientists and engineers actually use far fewer digits in their calculations (see “How Many Decimals of Pi Do We Really Need?”). The approximation 3.14 is often precise enough, hence the celebration occurring on March 14, or 3/14 (when written in US month/day format). The first known celebration occurred in 1988, and in 2009, the US House of Representatives passed a resolution designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi.
Why It’s Important
While many of us celebrate by eating pithemed pie and trying to memorize as many digits of pi as possible (the record is 70,030 digits), scientists and engineers at NASA take pi even further, using it in their daytoday work exploring space!
“Finding the volume of a sphere, area of a circle (and thus volume of a cylinder) are well known applications of pi,” said Charles Dandino, a JPL engineer who designs robots for extreme environments. “But those relationships also form the basis for how stiff a structure is, how it will vibrate, and understanding how a design might fail.”
Rachel Weinberg works on the Orbiting Carbon Observatory 3, or OCO3, instrument, which will track the distribution of carbon dioxide across Earth. She says pi came in handy during her studies at MIT and still does today for her work at JPL. “Just the other day during a meeting, the team went to the whiteboard and used pi to discuss the angles and dimensions of optical components on OCO3,” she said.
Pi allows us to calculate the size and area of two and threedimensional shapes, says Anita Sengupta, a JPL engineer, who has worked on a variety of planetary missions. “In my career, pi has allowed me to calculate the size of a shield needed to enter the atmosphere of Venus and the size of a parachute that could safely land the Curiosity rover on the surface of Mars. Most recently we used pi in our calculations of the expanding atom cloud we will create for an experiment called the Cold Atom Laboratory, which will fly aboard the International Space Station.”
The Science Behind the Challenge
The Pi Day Challenge gives students a chance to take part in recent discoveries and upcoming celestial events, all while using math and pi just like NASA scientists and engineers.
“Students always want to know how math is used in the real world,” said Ota Lutz, a senior education specialist at JPL who helped create the Pi Day Challenge. “This problem set demonstrates the interconnectedness of science, math and engineering, providing teachers with excellent examples of crosscutting concepts in action and students with the opportunity to solve realworld problems.”
NASA's Pi Day Challenge in the Classroom!
The NASA Pi Day Challenge is available as a standardsaligned lesson for grades 612. In the illustrated math problem set, students use pi to solve realworld science and engineering problems related to craters on Mars, a total solar eclipse, a daring orbit about Saturn, and the search for habitable worlds.
Here’s some of the science behind this year’s problem set.
The craters that cover Mars can tell us a lot about the Red Planet. Studying ejecta – the material blasted out during an impact – can tell us even more. Information about ejecta patterns even came up during a recent workshop to discuss and select the final candidates for the Mars 2020 rover landing site. For the first problem in our Pi Day Challenge, students use pi and the area and perimeter of two craters to identify which was made by an impactor that struck Mars at a low angle. Researchers found that lowangle impactors create an unusual ejecta pattern around craters on Mars. As part of the research, scientists are currently working to identify and catalog these craters.
The year 2017 brings a unique astronomical event to the United States for the first time in nearly 40 years! On August 21, 2017, a total solar eclipse will cross the continental United States. Starting in Oregon, the shadow of the moon will cross the country at more than 1,000 miles per hour, making its way to the Atlantic Ocean off the coast of South Carolina. Everyone inside the moon’s shadow will witness one of the most impressive sights nature has to offer. So how big is the shadow? In the second part of NASA’s Pi Day Challenge, students will use pi to calculate the area of the moon’s shadow on Earth during the total solar eclipse.
This year also marks the final chapter in the exciting story of NASA’s Cassini mission at Saturn. Since 2004, Cassini has been orbiting the ringed giant, vastly improving our understanding of the second largest planet in the solar system. After more than 12 years around Saturn, Cassini’s fuel is running low, so mission operators have devised a grand finale that will take the spacecraft closer to Saturn than ever before – inside the gap between the planet and its rings – and finally into Saturn’s cloud tops, where it will burn up. The finale is designed to prevent the spacecraft from crashing into and possibly contaminating any of Saturn’s scientifically intriguing moons. In the Pi Day Challenge, students will use pi to safely navigate the spacecraft on its final orbits and dive into Saturn.
Finally, students will investigate a relatively new and very exciting realm in astronomy, the search for habitable worlds. The discovery of exoplanets – worlds orbiting stars outside of our solar system – has changed our understanding of the universe. Until 1995, exoplanets hadn’t even been detected. Now, using the transit method – where planets are detected by measuring the light they block as they pass in front of a star – more than 2,300 exoplanets have been discovered. Recently, astronomers discovered a record seven Earthsize planets orbiting a single star called Trappist1. Students will use pi to identify which of Trappist1’s planets orbit in the star’s habitable zone – the area where liquid water could exist.
Explore More
Join the Conversation
 Join the conversation and share your Pi Day Challenge answers with @NASA/JPL_Edu on social media using the hashtag #NASAPiDayChallenge
 Pi Day: What’s Going ‘Round – Tell us what you’re up to this Pi Day and share your stories and photos with NASA.
StandardsAligned Lessons
Multimedia
Facts and Figures
Missions
Websites
TAGS: Pi Day, Math, Science, Engineering, NASA Pi Day Challenge, K12, Lesson, Activity, Slideshow