Meet JPL Interns | May 6, 2024
Meet the JPL Interns Preparing a Team of Rovers for the Moon
For these six students, an internship at NASA's Jet Propulsion Laboratory meant playing a key hands-on role in developing a trio of small rovers destined for the Moon and designed to show the promise of multirobot missions.
Watch their story in the video below, and explore related links.
Explore More
- Opportunities
JPL Internships and Fellowships
Discover exciting internships and research opportunities at the leading center for robotic exploration of the solar system.
- Article
How to Get an Internship at JPL
Here's everything you need to know about the world of JPL internships, the skills that will help you stand out, and how to get on the right trajectory even before college.
- Articles
Meet JPL Interns
Hear stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.
- Math Problem
Moon Mappers: A ‘Pi in the Sky’ Math Challenge
In this illustrated math problem, students use the mathematical constant pi to determine how far a team of rovers drive on the Moon.
Subject Math
Grades 9-12
Time Less than 30 mins
TAGS: Internships, Higher Education, CADRE, Moon, Rovers, Engineering
Teachable Moments | March 7, 2024
A Prime Year for NASA's Pi Day Challenge
Learn how pi is used by NASA and how many of its infinite digits have been calculated, then explore the science and engineering behind the 2024 Pi Day Challenge.
Update: March 15, 2024 – The answers to the 2024 NASA Pi Day Challenge are here! Take a peek at the illustrated answer key now available under each problem on the NASA Pi Day Challenge page.
This year marks the 11th installment of the NASA Pi Day Challenge. Celebrated on March 14, Pi Day is the annual holiday that pays tribute to the mathematical constant pi – the number that results from dividing any circle's circumference by its diameter.
Every year on March 14, Pi Day gives us a reason to enjoy our favorite sweet and savory pies and celebrate the mathematical wonder that helps NASA explore the universe. Students can join in the fun once again by using pi to explore Earth and space themselves with the NASA Pi Day Challenge.
Read on to learn more about the science behind this year's challenge and get students solving real problems faced by NASA scientists and engineers exploring Earth, the Moon, asteroids, and beyond!
What is Pi
Dividing any circle’s circumference by its diameter gives you an answer of pi, which is usually rounded to 3.14. Because pi is an irrational number, its decimal representation goes on forever and never repeats. In 2022, mathematician Simon Plouffe discovered the formula to calculate any single digit of pi. In the same year, teams around the world used cloud computing technology to calculate pi to 100 trillion digits. But you might be surprised to learn that for space exploration, NASA uses far fewer digits of pi.
Here at NASA, we use pi to map the Moon, measure Earth’s changing surface, receive laser-coded messages from deep space, and calculate asteroid orbits. But pi isn’t just used for exploring the cosmos. Since pi can be used to find the area or circumference of round objects and the volume or surface area of shapes like cylinders, cones, and spheres, it is useful in all sorts of ways. Transportation teams use pi when determining the size of new subway tunnels. Electricians can use pi when calculating the current or voltage passing through circuits. And you might even use pi to figure out how much fencing is needed around a circular school garden bed.
In the United States, March 14 can be written as 3.14, which is why that date was chosen for celebrating all things pi. In 2009, the U.S. House of Representatives passed a resolution officially designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi. And that's precisely what the NASA Pi Day Challenge is all about!
The Science Behind the 2024 NASA Pi Day Challenge
This 11th installment of the NASA Pi Day Challenge includes four illustrated math problems designed to get students thinking like scientists and engineers to calculate how to get a laser message to Earth, the change in an asteroid’s orbit, the amount of data that can be collected by an Earth satellite, and how a team of mini rovers will map portions of the Moon’s surface.
Read on to learn more about the science and engineering behind each problem or click the link below to jump right into the challenge.
› Take the NASA Pi Day Challenge
› Educators, get the lesson here!
Receiver Riddle
In December 2023, NASA tested a new way to communicate with distant spacecraft using technology called Deep Space Optical Communications, or DSOC. From 19,000,000 miles (30,199,000 km) away, the Psyche spacecraft beamed a high-definition video encoded in a near-infrared laser to Earth. The video, showing a cat named Taters chasing a laser, traveled at the speed of light, where it was received at Caltech’s Palomar Observatory. Because of the great distance the laser had to travel, the team needed to aim the transmission at where Earth would be when the signal arrived. In Receiver Riddle, use pi to determine where along Earth's orbit the team needed to aim the laser so that it could be received at the Observatory at the correct moment.
Daring Deflection
In 2022, NASA crashed a spacecraft into the asteroid Dimorphos in an attempt to alter its orbit. The mission, known as the Double Asteroid Redirection Test, or DART, took place at an asteroid that posed no threat to our planet. Rather, it was an ideal target for NASA to test an important element of its planetary defense plan. DART was designed as a kinetic impactor, meaning it transferred its momentum and kinetic energy to Dimorphos upon impact, altering the asteroid's orbit. In Daring Deflection, use pi to determine the shape of Dimorphos’ orbit after DART crashed into it.
Orbit Observation
The NISAR mission is an Earth orbiting satellite designed to study our planet's changing ecosystems. It will collect data about Earth's land- and ice-covered surfaces approximately every 6 days, allowing scientists to study changes at the centimeter scale – an unprecedented level of detail. To achieve this feat, NISAR will collect massive amounts of data. In Orbit Observation, students use pi to calculate how much data the NISAR spacecraft captures during each orbit of Earth.
Moon Mappers
The CADRE project aims to land a team of mini rovers on the Moon in 2025 as a test of new exploration technology. Three suitcase-size rovers, each working mostly autonomously, will communicate with each other and a base station on their lunar lander to simultaneously measure data from different locations. If successful, the project could open the door for future multi-robot exploration missions. In Moon Mappers, students explore the Moon with pi by determining how far a CADRE rover drives on the Moon’s surface.
Bring the Challenge Into the Classroom
Celebrate Pi Day by getting students thinking like NASA scientists and engineers to solve real-world problems in the NASA Pi Day Challenge. In addition to solving the 2024 challenge, you can also dig into the 40 puzzlers from previous challenges available in our Pi Day collection. Completing the problem set and reading about other ways NASA uses pi is a great way for students to see the importance of the M in STEM.
- Collection
Educator Guides – NASA Pi Day Challenge
Here's everything you need to bring the NASA Pi Day Challenge into the classroom.
Grades 4-12
Time Varies
- Student Activity
NASA Pi Day Challenge
The entire NASA Pi Day Challenge collection can be found in one, handy collection for students.
Grades 4-12
Time Varies
-
Downloads
Can't get enough pi? Download this year's NASA Pi Day Challenge graphics, including mobile phone and desktop backgrounds:
More Pi Resources
- Article
How Many Decimals of Pi Do We Really Need?
While you may have memorized more than 70,000 digits of pi, world record holders, a JPL engineer explains why you really only need a tiny fraction of that for most calculations.
- Article
18 Ways NASA Uses Pi
Whether it's sending spacecraft to other planets, driving rovers on Mars, finding out what planets are made of or how deep alien oceans are, pi takes us far at NASA. Find out how pi helps us explore space.
- Article
10 Ways to Celebrate Pi Day With NASA on March 14
Find out what makes pi so special, how it’s used to explore space, and how you can join the celebration with resources from NASA.
- Infographic
Planet Pi
This poster shows some of the ways NASA scientists and engineers use the mathematical constant pi (3.14) and includes common pi formulas.
- Article
18 Maneras en Que la NASA Usa Pi
Pi nos lleva lejos en la NASA. Estas son solo algunas de las formas en que pi nos ayuda a explorar el espacio.
Related Lessons for Educators
- Lesson
Collisions in Space
Students predict and observe what happens when two objects collide to model collisions in space.
Grades K-4
Time 30 min to 1 hour
- Lesson
Moon Phases
Students learn about the phases of the moon by acting them out.
Grades 1-6
Time 30 min to 1 hour
- Lesson
Modeling an Asteroid
Lead a discussion about asteroids and their physical properties, then have students mold their own asteroids out of clay.
Grades 3-5
Time 30 min to 1 hour
- Lesson
Math Rocks: A Lesson in Asteroid Dynamics
Students use math to investigate a real-life asteroid impact.
Grades 8-12
Time 30 min to 1 hour
- Lesson
Modeling Crustal Folds
Students use playdough to model how Earth’s crust is bent and folded by tectonic plates over geologic time.
Grades 6-12
Time 30 min to 1 hour
- Lesson
Making Topographic Maps
Students draw and interpret topographic maps while learning about technology used to map Earth's surface, the seafloor, and other worlds.
Grades 6-12
Time 30 min to 1 hour
- Lesson
Code a Radio Message for Space
Students code microcontrollers to send and receive radio signals, simulating communications between Earth and spacecraft.
Grades 6-12
Time 30 min to 1 hour
Related Activities for Students
- Student Project
Draw Your Own Psyche Spacecraft
Follow these easy instructions to draw and decorate your own model of the Psyche spacecraft.
Type Project
Subject Engineering
- Slideshow
What's That Space Rock?
Find out how to tell the difference between asteroids, comets, meteors, meteorites and other bodies in our solar system.
Type Slideshow
Subject Science
Facts and Figures
Websites
Articles
- How NASA Studies and Tracks Asteroids Near and Far
- NASA Cat Video Explained
- Article for Kids: Asteroid or Meteor: What's the Difference?
- Article for Kids: What Is an Asteroid?
Videos
- The Video NASA’s Laser Communications Experiment Streamed From Deep Space
- NASA's DART Mission Confirms Crashing Spacecraft into Asteroids Can Deflect Them
Interactives
TAGS: Pi Day, Pi, Math, NASA Pi Day Challenge, moon, earth, asteroid, psyche, DART, CADRE, NISAR DSOC
Teachable Moments | March 9, 2023
10 Years of NASA's Pi Day Challenge
Learn how pi is used by NASA and how many of its infinite digits have been calculated, then explore the science and engineering that makes the Pi Day Challenge possible.
Update: March 15, 2023 – The answers are here! Visit the NASA Pi Day Challenge page to view the illustrated answer keys for each problem.
This year marks the 10th installment of the NASA Pi Day Challenge. Celebrated on March 14, Pi Day is the annual holiday that pays tribute to the mathematical constant pi – the number that results from dividing any circle's circumference by its diameter.
Every year, Pi Day gives us a reason to celebrate the mathematical wonder that helps NASA explore the universe and enjoy our favorite sweet and savory pies. Students can join in the fun once again by using pi to explore Earth and space themselves in the NASA Pi Day Challenge.
Read on to learn more about the science behind this year's challenge and find out how students can put their math mettle to the test to solve real problems faced by NASA scientists and engineers as we explore Earth, Mars, asteroids, and beyond!
How It Works
Dividing any circle’s circumference by its diameter gives you an answer of pi, which is usually rounded to 3.14. Because pi is an irrational number, its decimal representation goes on forever and never repeats. In 2022, mathematician Simon Plouffe discovered the formula to calculate any single digit of pi. In the same year, teams around the world used cloud computing technology to calculate pi to 100 trillion digits. But you might be surprised to learn that for space exploration, NASA uses far fewer digits of pi.
Here at NASA, we use pi to measure the area of telescope mirrors, determine the composition of asteroids, and calculate the volume of rock samples. But pi isn’t just used for exploring the cosmos. Since pi can be used to find the area or circumference of round objects and the volume or surface area of shapes like cylinders, cones, and spheres, it is useful in all sorts of ways. Transportation teams use pi when determining the size of new subway tunnels. Electricians can use pi when calculating the current or voltage passing through circuits. And you might even use pi to figure out how much fencing is needed around a circular school garden bed.
In the United States, March 14 can be written as 3.14, which is why that date was chosen for celebrating all things pi. In 2009, the U.S. House of Representatives passed a resolution officially designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi. And that's precisely what the NASA Pi Day Challenge is all about!
The Science Behind the 2023 NASA Pi Day Challenge
This 10th installment of the NASA Pi Day Challenge includes four noodle-nudgers that get students using pi to calculate the amount of rock sampled by the Perseverance Mars rover, the light-collecting power of the James Webb Space Telescope, the composition of asteroid (16) Psyche, and the type of solar eclipse we can expect in October.
Read on to learn more about the science and engineering behind each problem or click the link below to jump right into the challenge.
› Take the NASA Pi Day Challenge
› Educators, get the lesson here!
Tubular Tally
NASA’s Mars rover, Perseverance, was designed to collect rock samples that will eventually be brought to Earth by a future mission. Sending objects from Mars to Earth is very difficult and something we've never done before. To keep the rock cores pristine on the journey to Earth, the rover hermetically seals them inside a specially designed sample tube. Once the samples are brought to Earth, scientists will be able to study them more closely with equipment that is too large to make the trip to Mars. In Tubular Tally, students use pi to determine the volume of a rock sample collected in a single tube.
Rad Reflection
When NASA launched the Hubble Space Telescope in 1990, scientists hoped that the telescope, with its large mirror and sensitivity to ultraviolet, visible, and near-infrared light, would unlock secrets of the universe from an orbit high above the atmosphere. Indeed, their hope became reality. Hubble’s discoveries, which are made possible in part by its mirror, rewrote astronomy textbooks. In 2022, the next great observatory, the James Webb Space Telescope, began exploring the infrared universe with an even larger mirror from a location beyond the orbit of the Moon. In Rad Reflection, students use pi to gain a new understanding of our ability to peer deep into the cosmos by comparing the area of Hubble’s primary mirror with the one on Webb.
Metal Math
Orbiting the Sun between Mars and Jupiter, the asteroid (16) Psyche is of particular interest to scientists because its surface may be metallic. Earth and other terrestrial planets have metal cores, but they are buried deep inside the planets, so they are difficult to study. By sending a spacecraft to study Psyche up close, scientists hope to learn more about terrestrial planet cores and our solar system’s history. That's where NASA's Psyche comes in. The mission will use specialized tools to study Psyche's composition from orbit. Determining how much metal exists on the asteroid is one of the key objectives of the mission. In Metal Math, students will do their own investigation of the asteroid's makeup, using pi to calculate the approximate density of Psyche and compare that to the density of known terrestrial materials.
Eclipsing Enigma
On Oct. 14, 2023, a solar eclipse will be visible across North and South America, as the Moon passes between Earth and the Sun, blocking the Sun's light from our perspective. Because Earth’s orbit around the Sun and the Moon’s orbit around Earth are not perfect circles, the distances between them change throughout their orbits. Depending on those distances, the Sun's disk area might be fully or only partially blocked during a solar eclipse. In Eclipsing Enigma, students get a sneak peek at what to expect in October by using pi to determine how much of the Sun’s disk will be eclipsed by the Moon and whether to expect a total or annular eclipse.
Teach It
Celebrate Pi Day by getting students thinking like NASA scientists and engineers to solve real-world problems in the NASA Pi Day Challenge. In addition to solving this year’s challenge, you can also dig into the more than 30 puzzlers from previous challenges available in our Pi Day collection. Completing the problem set and reading about other ways NASA uses pi is a great way for students to see the importance of the M in STEM.
Pi Day Resources
-
Pi in the Sky Lessons
Here's everything you need to bring the NASA Pi Day Challenge into the classroom.
Grades 4-12
Time Varies
-
NASA Pi Day Challenge
The entire NASA Pi Day Challenge collection can be found in one, handy slideshow for students.
Grades 4-12
Time Varies
-
How Many Decimals of Pi Do We Really Need?
While you may have memorized more than 70,000 digits of pi, world record holders, a JPL engineer explains why you really only need a tiny fraction of that for most calculations.
-
18 Ways NASA Uses Pi
Whether it's sending spacecraft to other planets, driving rovers on Mars, finding out what planets are made of or how deep alien oceans are, pi takes us far at NASA. Find out how pi helps us explore space.
-
10 Ways to Celebrate Pi Day With NASA on March 14
Find out what makes pi so special, how it’s used to explore space, and how you can join the celebration with resources from NASA.
-
Infographic: Planet Pi
This poster shows some of the ways NASA scientists and engineers use the mathematical constant pi (3.14) and includes common pi formulas.
-
Downloads
Can't get enough pi? Download this year's NASA Pi Day Challenge graphics, including mobile phone and desktop backgrounds:
-
National Council of Teachers of Mathematics: Notice and Wonder
Creative brainstorming through noticing and wondering encourages student participation, engagement, and students' understanding of the NASA Pi Day Challenge.
Subject Mathematics
-
Pi Day: What's Going 'Round
Tell us what you're up to this Pi Day and share your stories and photos on our showcase page.
Plus, join the conversation using the hashtag #NASAPiDayChallenge on Facebook, Twitter, and Instagram.
Related Lessons for Educators
-
Robotic Arm Challenge
In this challenge, students will create a model robotic arm to move items from one location to another. They will engage in the engineering design process to design, build and operate the arm.
Grades K-8
Time 30 min to 1 hour
-
NASA's Mission to Mars Student Challenge
Take part in the exploration of Mars and bring students along for the ride with NASA's Perseverance rover.
Grades K-12
Time Varies
-
Moon Phases
Students learn about the phases of the moon by acting them out.
Grades 1-6
Time 30 min to 1 hour
-
Modeling the Earth-Moon System
Students learn about scale models and distance by creating a classroom-size Earth-Moon system.
Grades 6-8
Time 30 min to 1 hour
-
Math of the Expanding Universe
Students will learn about the expanding universe and the redshift of lightwaves, then perform their own calculations with a distant supernova.
Grades 9-12
Time 30 min to 1 hour
-
The Expanded Universe: Playing with Time Activity Guide
In this activity, participants use balloons to model the expansion of the universe and observe how expansion affects wavelengths of light and distance between galaxies
-
James Webb Space Telescope STEM Toolkit
Find a collection of resources, activities, videos, and more for your students to learn about NASA’s newest space observatory.
-
Modeling an Asteroid
Lead a discussion about asteroids and their physical properties, then have students mold their own asteroids out of clay.
Grades 3-5
Time 30 min to 1 hour
-
Math Rocks: A Lesson in Asteroid Dynamics
Students use math to investigate a real-life asteroid impact.
Grades 8-12
Time 30 min to 1 hour
Related Activities for Students
-
How to Make a Pinhole Camera
Learn how to make your very own pinhole camera to safely see a solar eclipse in action!
Type Project
Subject Engineering
-
Collection: Exploring Mars
Make a cardboard rover, design a Mars exploration video game and explore more STEM projects, slideshows and videos for students.
Type Project
Subject Science
-
What's That Space Rock?
Find out how to tell the difference between asteroids, comets, meteors, meteorites and other bodies in our solar system.
Type Slideshow
Subject Science
-
10 Things We Can Learn from Webb's First Images
Take a closer look at how images from NASA's most powerful space telescope yet are helping to answer some of astronomers' most burning questions.
Type Slideshow
Subject Science
Recursos en español
Facts and Figures
Websites
- Webb Space Telescope
- Mars Exploration
- Perseverance Mars Rover
- Mars Sample Return
- Psyche Mission
- MIRI Instrument
- 2023 Eclipse
Articles
Videos
Interactives
TAGS: Pi Day, Pi, Math, NASA Pi Day Challenge, sun, moon, earth, eclipse, asteroid, psyche, sample return, mars, perseverance, jwst, webb, hubble, telescope, miri
Teachable Moments | October 4, 2022
How to Watch a Total Lunar Eclipse and Get Students Observing the Moon
There’s no better time to learn about the Moon than during a lunar eclipse. Here’s how eclipses work, what to expect, and how to get students engaged.
This article has been updated to include information about the visibility and timing of the total lunar eclipse on Nov. 8, 2022. See What to Expect for details.
A full moon is always a good reason to go outside and look up, but a total or partial lunar eclipse is an awe-inspiring site that gives students a great opportunity to engage in practical sky watching. Whether it’s the Moon's reddish hue during a total lunar eclipse or the "bite" taken out of the Moon during a partial lunar eclipse, there's always something exciting to observe during these celestial events.
Read on to see what to expect during the next lunar eclipse. Plus, explore resources you can use at home or in the classroom to teach students about moon phases, craters, and more!
How It Works
Eclipses can occur when the Sun, the Moon and Earth align. Lunar eclipses can only happen during the full moon phase, when the Moon and the Sun are on opposite sides of Earth. At that point, the Moon could move into the shadow cast by Earth, resulting in a lunar eclipse. However, most of the time, the Moon’s slightly tilted orbit brings it above or below the shadow of Earth.
The time period when the Moon, Earth and the Sun are lined up and on the same plane – allowing for the Moon to pass through Earth’s shadow – is called an eclipse season. Eclipse seasons last about 34 days and occur just shy of every six months. When a full moon occurs during an eclipse season, the Moon travels through Earth’s shadow, creating a lunar eclipse.
Unlike solar eclipses, which require special glasses to view and can only be seen for a few short minutes in a very limited area, a total lunar eclipse can last over an hour and be seen by anyone on the nighttime side of Earth – as long as skies are clear!
Why It’s Important
Lunar eclipses have long played an important role in understanding Earth and its motions in space.
In ancient Greece, Aristotle noted that the shadows on the Moon during lunar eclipses were round, regardless of where an observer saw them. He realized that only if Earth were a spheroid would its shadows be round – a revelation that he and others had many centuries before the first ships sailed around the world.
Earth wobbles on its axis like a spinning top that’s about to fall over, a phenomenon called precession. Earth completes one wobble, or precession cycle, over the course of 26,000 years. Greek astronomer Hipparchus made this discovery by comparing the position of stars relative to the Sun during a lunar eclipse to those recorded hundreds of years earlier. A lunar eclipse allowed him to see the stars and know exactly where the Sun was for comparison – directly opposite the Moon. If Earth didn’t wobble, the stars would appear to be in the same place they were hundreds of years earlier. When Hipparchus saw that the stars’ positions had indeed moved, he knew that Earth must wobble on its axis!
Additionally, modern-day astronomers have used ancient eclipse records and compared them with computer simulations. These comparisons helped scientists determine the rate at which Earth’s rotation is slowing.
What to Expect
The Moon passes through two distinct parts of Earth’s shadow during a lunar eclipse. The outer part of the cone-shaped shadow is called the penumbra. The penumbra is less dark than the inner part of the shadow because it’s penetrated by some sunlight. (You have probably noticed that some shadows on the ground are darker than others, depending on how much outside light enters the shadow; the same is true for the outer part of Earth’s shadow). The inner part of the shadow, known as the umbra, is much darker because Earth blocks additional sunlight from entering the umbra.
Here's what to expect during the total lunar eclipse on Nov. 8, 2022, which will be visible in North and South America, as well as Asia and Australia. Viewers in the most eastern parts of the continental U.S. will see the Moon set below the horizon as it exits Earth’s shadow in the second half of the eclipse.
At 12:02 a.m. PST (3:02 a.m. EST), the edge of the Moon will begin entering the penumbra. The Moon will dim very slightly for the next 67 minutes as it moves deeper into the penumbra. Because this part of Earth’s shadow is not fully dark, you may only notice some dim shading (if anything at all) on the Moon near the end of this part of the eclipse. Should you decide to skip this part of the eclipse, you won’t miss much.
At 1:09 a.m. PST (4:09 a.m. EST), the edge of the Moon will begin entering the umbra. As the Moon moves into the darker shadow, significant darkening will be noticeable. Some say that during this part of the eclipse, the Moon looks as if it has had a bite taken out of it. That “bite” gets bigger and bigger as the Moon moves deeper into the shadow.
At 2:16 a.m. PST (5:16 a.m. EST), the Moon will be completely inside the umbra, marking the beginning of the total lunar eclipse, also known as totality.
The moment of greatest eclipse, when the Moon is halfway through its path across the umbra, occurs at 2:59 a.m. PST (5:59 a.m. EST). As the Moon moves completely into the umbra – the part of the eclipse known as totality – something interesting happens: The Moon begins to turn reddish-orange. The reason for this phenomenon? Earth’s atmosphere. As sunlight passes through it, the small molecules that make up our atmosphere scatter blue light, which is why the sky appears blue. This leaves behind mostly red light that bends, or refracts, into Earth’s shadow. We can see the red light during an eclipse as it falls onto the Moon in Earth’s shadow. This same effect is what gives sunrises and sunsets a reddish-orange color.
A variety of factors affect the appearance of the Moon during a total lunar eclipse. Clouds, dust, ash, photochemical droplets and organic material in the atmosphere can change how much light is refracted into the umbra. The potential for variation provides a great opportunity for students to observe and classify the lunar eclipse based on its brightness. Details can be found below in the Teach It section.
At 3:41 a.m. PST (6:41 a.m. EST), the edge of the Moon will begin exiting the umbra and moving into the opposite side of the penumbra, reversing the “bite” pattern seen earlier. At this point, the Moon will have just set in the most northeastern portions of the continental United States. More and more eastern states will see the Moon set over the next hour as the eclipse progresses.
At 4:49 a.m. PST, the Moon will be completely outside of the umbra and no longer visible in the eastern United States. Those in the central United States will see the Moon begin setting around this time (6:49 a.m. CST). The Moon will continue exiting the penumbra until the eclipse officially ends at 5:56 a.m. PST, remaining visible only to viewers in the western United States, including many in the Mountain Time Zone one hour ahead.
Teach It
Ask students to observe the lunar eclipse and evaluate the Moon’s brightness using the Danjon Scale of Lunar Eclipse Brightness. The Danjon scale illustrates the range of colors and brightness the Moon can take on during a total lunar eclipse and is a tool observers can use to characterize the appearance of an eclipse. View the lesson guide here. After the eclipse, have students compare and justify their evaluations of the eclipse.
Use these standards-aligned lessons and related activities to get your students excited about the eclipse, moon phases, and Moon observations.
Educator Guides & Resources
-
Evaluating a Lunar Eclipse
Students use the Danjon Scale of Lunar Eclipse Brightness to illustrate the range of colors and brightness the Moon can take on during a total lunar eclipse.
Grades 3-12
Time 30 mins - 1 hr
-
When Do Lunar Eclipses Happen?
Students use a paper plate to make a model that explains why lunar eclipses don’t occur during every full moon.
Grades 4-8
Time Less than 30 mins
-
Observing the Moon
Students identify the Moon’s location in the sky and record their observations over the course of the moon-phase cycle in a journal.
Grades K-6
Time 30 mins - 1 hr
-
Moon Phases
Students learn about the phases of the moon by acting them out.
Grades 1-6
Time 30 mins - 1 hr
-
Whip Up a Moon-Like Crater
Whip up a moon-like crater with baking ingredients as a demonstration for students.
Grades 1-6
Time 30 mins - 1 hr
-
Modeling the Earth-Moon System
Students learn about scale models and distance by creating a classroom-size Earth-Moon system.
Grades 6-8
Time 30 mins - 1 hr
-
All Moon Lessons for Educators
Teach students all about the Moon with these standards-aligned STEM lessons for educators.
Grades K-12
Time Varies
Student Activities
-
When Do Lunar Eclipses Happen?
Use a paper plate to make a model that explains why lunar eclipses don’t happen as often as you might expect.
-
Make a Moon Phases Calendar and Calculator
Like a decoder wheel for the Moon, this calendar will show you where and when to see the Moon and every moon phase throughout the year!
-
Look at the Moon! Journaling Project
Draw what you see in a Moon Journal and see if you can predict the moon phase that comes next.
-
Make a Moon Crater
Make craters like the ones you can see on the Moon using simple baking ingredients!
-
All Moon Activities for Students
Make a moon phases calendar, moon crater, lunar rover and more with these activities all about Earth's moon.
Subjects Varies
Type Varies
Explore More
- Try these related resources for students from NASA's Space Place:
- Article for Kids: Lunar Eclipses and Solar Eclipses
- Article for Kids: Why Does the Moon Have Craters?
- Article for Kids: All About the Moon
- NASA Moon Website – Find out more about the Moon and the NASA robots and humans who have visited it.
TAGS: Lunar Eclipse, Moon, Super Blue Blood Moon, Observe the Moon, Eclipse, K-12, Classroom Activities, Teaching
Teachable Moments | March 10, 2022
Pi Goes to Infinity and Beyond in NASA Challenge
Learn about pi and some of the ways the number is used at NASA. Then, dig into the science behind the Pi Day Challenge.
Update: March 15, 2022 – The answers are here! Visit the NASA Pi Day Challenge slideshow to view the illustrated answer keys for each of the problems in the 2022 challenge.
In the News
No matter what Punxsutawney Phil saw on Groundhog Day, a sure sign that spring approaches is Pi Day. Celebrated on March 14, it’s the annual holiday that pays tribute to the mathematical constant pi – the number that results from dividing any circle's circumference by its diameter.
Every year, Pi Day gives us a reason to not only celebrate the mathematical wonder that helps NASA explore the universe, but also to enjoy our favorite sweet and savory pies. Students can join in the fun by using pi to explore Earth and space themselves in our ninth annual NASA Pi Day Challenge.
Read on to learn more about the science behind this year's challenge and find out how students can put their math mettle to the test to solve real problems faced by NASA scientists and engineers as we explore Earth, the Moon, Mars, and beyond!How It Works
Dividing any circle’s circumference by its diameter gives you an answer of pi, which is usually rounded to 3.14. Because pi is an irrational number, its decimal representation goes on forever and never repeats. In 2021, a supercomputer calculated pi to more than 62 trillion digits. But you might be surprised to learn that for space exploration, NASA uses far fewer digits of pi.
Here at NASA, we use pi to understand how much signal we can receive from a distant spacecraft, to calculate the rotation speed of a Mars helicopter blade, and to collect asteroid samples. But pi isn’t just used for exploring the cosmos. Since pi can be used to find the area or circumference of round objects and the volume or surface area of shapes like cylinders, cones, and spheres, it is useful in all sorts of ways. Architects use pi when designing bridges or buildings with arches; electricians use pi when calculating the conductance of wire; and you might even want to use pi to figure out how much frozen goodness you are getting in your ice cream cone.
In the United States, March 14 can be written as 3.14, which is why that date was chosen for celebrating all things pi. In 2009, the U.S. House of Representatives passed a resolution officially designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi. And that's precisely what the NASA Pi Day Challenge is all about!
The Science Behind the 2022 NASA Pi Day Challenge
This ninth installment of the NASA Pi Day Challenge includes four brain-busters that get students using pi to measure frost deep within craters on the Moon, estimate the density of Mars’ core, calculate the water output from a dam to assess its potential environmental impact, and find how far a planet-hunting satellite needs to travel to send data back to Earth.
Read on to learn more about the science and engineering behind the problems or click the link below to jump right into the challenge.
› Take the NASA Pi Day Challenge
› Educators, get the lesson here!
Lunar Logic
NASA’s Lunar Flashlight mission is a small satellite that will seek out signs of frost in deep, permanently shadowed craters around the Moon’s south pole. By sending infrared laser pulses to the surface and measuring how much light is reflected back, scientists can determine which areas of the lunar surface contain frost and which are dry. Knowing the locations of water-ice on the Moon could be key for future crewed missions to the Moon, when water will be a precious resource. In Lunar Logic, students use pi to find out how much surface area Lunar Flashlight will measure with a single pulse from its laser.
Core Conundrum
Since 2018, the InSight lander has studied the interior of Mars by measuring vibrations from marsquakes and the “wobble” of the planet as it rotates on its axis. Through careful analysis of the data returned from InSight, scientists were able to measure the size of Mars’ liquid core for the first time and estimate its density. In Core Conundrum, students use pi to do some of the same calculations, determining the volume and density of the Red Planet’s core and comparing it to that of Earth’s core.
Dam Deduction
The Surface Water and Ocean Topography, or SWOT mission will conduct NASA's first global survey of Earth's surface water. SWOT’s state-of-the-art radar will measure the elevation of water in major lakes, rivers, wetlands, and reservoirs while revealing unprecedented detail on the ocean surface. This data will help scientists track how these bodies of water are changing over time and improve weather and climate models. In Dam Deduction, students learn how data from SWOT can be used to assess the environmental impact of dams. Students then use pi to do their own analysis, finding the powered output of a dam based on the water height of its reservoir and inferring potential impacts of this quick-flowing water.
Telescope Tango
The Transiting Exoplanet Survey Satellite, or TESS, is designed to survey the sky in search of planets orbiting bright, nearby stars. TESS does this while circling Earth in a unique, never-before-used orbit that brings the spacecraft close to Earth about once every two weeks to transmit its data. This special orbit keeps TESS stable while giving it an unobstructed view of space. In its first two years, TESS identified more than 2,600 possible exoplanets in our galaxy with thousands more discovered during its extended mission. In Telescope Tango, students will use pi to calculate the distance traveled by TESS each time it sends data back to Earth.
Teach It
Celebrate Pi Day by getting students thinking like NASA scientists and engineers to solve real-world problems in NASA Pi Day Challenge. Completing the problem set and reading about other ways NASA uses pi is a great way for students to see the importance of the M in STEM.
Pi Day Resources
-
Pi in the Sky Lessons
Here's everything you need to bring the NASA Pi Day Challenge into the classroom.
Grades 4-12
Time Varies
-
NASA Pi Day Challenge
The entire NASA Pi Day Challenge collection can be found in one, handy slideshow for students.
Grades 4-12
Time Varies
-
How Many Decimals of Pi Do We Really Need?
While you may have memorized more than 70,000 digits of pi, world record holders, a JPL engineer explains why you really only need a tiny fraction of that for most calculations.
-
18 Ways NASA Uses Pi
Whether it's sending spacecraft to other planets, driving rovers on Mars, finding out what planets are made of or how deep alien oceans are, pi takes us far at NASA. Find out how pi helps us explore space.
-
10 Ways to Celebrate Pi Day With NASA on March 14
Find out what makes pi so special, how it’s used to explore space, and how you can join the celebration with resources from NASA.
-
Infographic: Planet Pi
This poster shows some of the ways NASA scientists and engineers use the mathematical constant pi (3.14) and includes common pi formulas.
-
Downloads
Can't get enough pi? Download this year's NASA Pi Day Challenge graphics, including mobile phone and desktop backgrounds:
- Pi in the Sky 9 Poster (PDF, 11.2 MB)
- Lunar Flashlight Background: Phone | Desktop
- Mars InSight Lander Background: Phone | Desktop
- SWOT Mission Background: Phone | Desktop
- TESS Mission - Downlink Background: Phone | Desktop
- TESS Mission - Science Background (not pictured): Phone | Desktop
- Medley Background (not pictured): Phone | Desktop
-
Pi Day: What's Going 'Round
Tell us what you're up to this Pi Day and share your stories and photos on our showcase page.
Plus, join the conversation using the hashtag #NASAPiDayChallenge on Facebook, Twitter, and Instagram.
Recursos en español
Related Lessons for Educators
-
Planetary Egg Wobble and Newton's First Law
Students try to determine the interior makeup of an egg (hard-boiled or raw) based on their understanding of center of mass and Newton’s first law of motion.
Grades 3-8
Time 30 min to 1 hour
-
Whip Up a Moon-Like Crater
Whip up a moon-like crater with baking ingredients as a demonstration for students.
Grades 1-6
Time 30 min to 1 hour
-
Exploring Exoplanets with Kepler
Students use math concepts related to transits to discover real-world data about Mercury, Venus and planets outside our solar system.
Grades 6-12
Time 30 min to 1 hour
-
Tracking Water Using NASA Satellite Data
Using real data from NASA’s GRACE satellites, students will track water mass changes in the U.S.
Grades 4-8
Time 30 min to 1 hour
-
Modeling the Water Budget
Students use a spreadsheet model to understand droughts and the movement of water in the water cycle.
Grades 5-8
Time 30 min to 1 hour
Related Activities for Students
-
NASA's Earth Minute: Mission to Earth?
NASA doesn't just explore outer space! It studies Earth, too, with a fleet of spacecraft and scientists far and wide.
Type Video
Subject Science
-
Look at the Moon! Journaling Project
Draw what you see in a Moon Journal and see if you can predict the moon phase that comes next.
Type Project
Subject Science
-
Mars in a Minute: Are There Quakes on Mars?
Are there earthquakes on Mars – or rather, "marsquakes"? What could they teach us about the Red Planet?
Type Video
Subject Science
Explore More
Infographic
Facts and Figures
Missions and Instruments
Websites
TAGS: Pi Day, Pi, Math, NASA Pi Day Challenge, Moon, Lunar Flashlight, Mars, InSight, Earth, Climate, SWOT, Exoplanets, Universe, TESS, Teachers, Educators, Parents, Students, Lessons, Activities, Resources, K-12
Edu News | December 6, 2021
The Best New STEM Education Resources from NASA-JPL in 2021
In 2021, we added nearly 80 STEM education resources to our online catalog of lessons, activities, articles, and videos for educators, students, and families. The resources feature NASA's latest missions exploring Earth, the Moon, Mars, asteroids, the Solar System and the universe beyond. Here are the 10 resources our audiences visited most this year.
NASA's Mission to Mars Student Challenge
To kick off the year, we invited students, educators, and families from around the world to create their own mission to Mars as we counted down to the Perseverance rover's epic landing on the Red Planet in February. More than one million students participated in the Mission to Mars Student Challenge, which features seven weeks of guided education plans, student projects, and expert talks and interviews highlighting each phase of a real Mars mission.
It's no surprise that this was our most popular product of the year. And good news: It's still available and timely! With Perseverance actively exploring Mars and making new discoveries all the time, the challenge offers ongoing opportunities to get students engaged in real-world STEM.
Need a primer on the Perseverance Mars rover mission, first? This article from our Teachable Moments series has you covered.
Solar System Size and Distance
This video offers a short and simple answer to two of students' most enduring questions: How do the sizes of planets compare and how far is it between them? Plus, it gets at why we don't often (or ever) see images that show all the planets' sizes and distances to scale. Spoiler alert: It's pretty much impossible to do.
Get students exploring solar system size and distance in more detail and even making their own scale models with this student project.
Code a Mars Helicopter Video Game
As you'll soon see from the rest of this list, coding projects were a big draw this year. This one took off along with Ingenuity, the first helicopter designed to fly on Mars, which made its historic first flight in April. Designed as a test of technology that could be used on future missions, Ingenuity was only slated for a few flights, but it has far exceeded even that lofty goal.
In this project, students use the free visual programming language Scratch to create a game inspired by the helicopter-that-could.
Make a Moon Phases Calendar and Calculator
Just updated for 2022, this project is part educational activity and part art for your walls. Students learn about moon phases to complete this interactive calendar, which shows when and where to see moon phases throughout the year, plus lists moon events such as lunar eclipses and supermoons. The art-deco inspired design might just have you wanting to make one for yourself, too.
The NASA Pi Day Challenge
This year marked the eighth installment of our annual Pi Day Challenge, a set of illustrated math problems featuring pi (of course) and NASA missions and science. Don't let the name fool you – these problems are fun to solve year round.
Students can choose from 32 different problems that will develop their math skills while they take on some of the same challenges faced by NASA scientists and engineers. New this year are puzzlers featuring the OSIRIS-REx asteroid mission, Mars helicopter, Deep Space Network, and aurora science.
Educator guides for each problem and problem set are also available here. And don't miss the downloadable posters and virtual meeting backgrounds.
Code a Mars Sample Collection Video Game
Another coding challenge using the visual programming language Scratch, this project is inspired by the Perseverance Mars rover mission, which is collecting samples that could be brought back to Earth by a potential future mission.
While developing a gamified version of the process, students are introduced to some of the considerations scientists and engineers have to make when collecting samples on Mars.
Code a Mars Landing
As if launching a rover to Mars wasn't hard enough, you still have to land when you get there. And that means using a complex series of devices – from parachutes to jet packs to bungee cords – and maneuvers that have to be performed remotely using instructions programmed into the spacecraft's computer.
Students who are ready to take their programming skills to the next level can get an idea of what it takes in this project, which has them use Python and microcontrollers to simulate the process of landing a rover on Mars.
How Far Away is Space?
Without giving the answer away: It's not as far as you might think.
In this activity, students stack coins (or other objects) on a map of their local area as a scale model of the distance to space. The stacking continues to the International Space Station, the Moon, and finally to the future orbit of the James Webb Space Telescope, which is slated to launch on Dec. 22.
Build a Rover and More With Shapes
You don't have to be a big kid to start learning about space exploration. This activity, which is designed for kids in kindergarten through second grade, has learners use geometric shapes called tangrams to fill in a Mars rover design. It provides an introduction to geometry and thinking spatially.
Once kids become experts at building rovers, have them try building rockets.
Space Voyagers: The Game
Technically a classroom activity (it is standards-aligned, after all), this game will appeal to students and strategy card game enthusiasts alike. Download and print out a set for your classroom (or your next game night).
Players work collaboratively to explore destinations including the Moon, Mars, Jupiter and Jupiter's Moon Europa with actual NASA spacecraft and science instruments while working to overcome realistic challenges at their destination including dust storms and instrument failures.
TAGS: K-12, Lessons, Activities, Education Resources, Teachers, Students, Families, Kids, Learning, STEM, Science, Engineering, Technology, Math, Coding, Programming, Mars, Solar System, Moon
Meet JPL Interns | September 24, 2020
This Summer Intern Built a Spacecraft in Her Apartment
It sounds like a reality show: A team of six interns working remotely from their homes across the country given 10 weeks to build a prototype lunar spacecraft that can launch on a balloon over the California desert. But for Christine Yuan, a senior at Cornell University, it was just another engineering challenge.
This summer marked Yuan's second time interning with the Innovation to Flight group at NASA's Jet Propulsion Laboratory. The group brings in a collaborative team of a dozen or more interns each year. Their task is to create and test prototypes of far-flung ideas for spacecraft and space technology over the course of their internship. But this summer, with most of JPL's employees still on mandatory telework and interns required to complete their projects remotely, the team had an even bigger challenge to overcome: How could they build a spacecraft together while hundreds of miles apart?
Yuan flashed back to her days using materials from around the house to build props and costumes from her favorite TV shows and games. It was what made her want to become a mechanical engineer in the first place. She had a 3D printer and tools in the apartment she shares with a friend from school. So it was decided. She would build the spacecraft in her apartment and mail it in parts to the other interns working on electronics and software from their respective homes.
We caught up with Yuan to learn how she and the team took on the challenge of building a spacecraft from home, how her childhood hobby served as inspiration, and to find out whether the test flight was a success.
What are you working on at JPL?
I'm an intern with the Innovation to Flight group, which is a team of interns that works with JPL engineers and scientists to take ideas for new kinds of technology or spacecraft from ideation to flight in one summer. The goal is to quickly develop prototypes to see whether an idea is feasible and increase the technical readiness level of various hardware. I was part of the group last summer, too. This summer, we've been split into two groups. The group I'm working with is exploring whether we might be able to use a constellation of CubeSats [small, low-cost satellites] to support robots and astronauts on the Moon. So we're building prototypes of the CubeSats and the communications and navigation technology.
How might CubeSats support astronauts and robots on the Moon?
The goal is to have a couple of these CubeSats orbiting the Moon that can assist with various surface operations, whether it's a rover or a small robot or an astronaut trying to communicate. There are a couple parts to it. One is localization, the ability to figure out where you are on the Moon – sort of like our GPS on Earth – so different assets know where they are relative to each other. The other part is communication. If you're collecting data, the data could be sent from the surface assets to the CubeSats to another surface asset or ground station. The CubeSats could take away a lot of the onboard processing that needs to happen so assets on the Moon could use less processing power.
You're interning remotely this summer. Are you actually building the CubeSat?
Yeah. On the CubeSat team, there are six of us, so we have a couple of people working on the software and then a few of us are working on building the CubeSat itself. I have a lot of tools and a 3D printer, so I'm working on designing the structure and then prototyping it using the stuff I have at home. The team has been getting materials out to me, and I've been printing stuff on my 3D printer and building it out. Then I've been mailing out parts to our avionics people so they can load it up with all the electronics.
Wow. That's so cool. Are you building all of this at home or in your dorm room? Are the people living with you wondering what you're up to?
I spent the first half of the summer in my parents' house, so I was operating out of their garage. Now that I'm back at school, I work from my apartment. I'm living with one of my friends right now. She's also in the aerospace field so she has an idea of what I'm doing. Most of the time we're just working in our rooms, but I normally have a bit more of a "dynamic" going on in my room.
How has the team adjusted to working remotely?
Half the team is returning from last summer, so we've worked together before. But when we were at JPL, it was easier because we could walk back and forth with parts and hand things off.
When we were planning for the summer, we were talking about the different options that we had. I like to build things in my free time, so I have a bunch of different tools. I'm a mechanical engineer, so I was going to be working on the structure anyway. So I said, "I'll build the structure, ship it in pieces to the rest of the team, and give them a detailed explanation or a CAD model so they can assemble it." Our software and electronics guys are coding everything and sharing their files. Two of the team members are roommates this summer, which is really convenient. They're working on the electronics and avionics out of the basement at one of their family's homes. Then, we're just constantly messaging with each other. We talk at least once a day. It helps that we're a small team.
What's your average day like?
I'm on the East Coast, so the time difference hasn't affected me too badly. I wake up, work out, and then I start work. In the morning, I'll check in with different members of the team. I like to have a to-do list, so I normally have one for the week. Depending on what I need to do, my day ranges anywhere from trying to figure out what I need to prototype next to 3D printing something or drilling holes in this or that. I use any downtime to talk to other team members, figure out what they're doing.
How has the remote experience compared with last summer, when you were at JPL in person?
The most disappointing thing was not being able to be at JPL in person with everyone. Last summer, there were about 15 of us all working in the same room together. We'd have big brainstorming meetings, all getting together and working on the white board. It was kind of a chaotic, loud mess, but it was a lot of fun, and we got a lot of work done. I was always moving around, always talking to somebody, always building something or testing something. I really enjoyed working on a team like that. It was very fast-paced.
This summer, it's a little more difficult, because I haven't met half the team members in person, and it's just slower. We're shipping things to one another and some of us are in different time zones. It's just been a little more difficult to get things done as fast. Another big change is that at the end of last summer, we had two flight tests. We launched one of our prototypes on a tethered balloon, and then we tested some of our other projects on a high-altitude balloon. We're not going to get to do that in person this summer.
Do you feel like you still have that team comradery even though you're apart this summer?
Definitely. Half the people are returning from last summer, so we're still pretty tight, and we're all in this together. It may not be as dynamic and as fast-paced as last summer, but we're building something together pretty well and pretty quickly.
What are you studying in school, and what got you interested in that field?
I'm studying mechanical engineering. I got into mechanical engineering for a variety of reasons. When I was younger, I was a huge nerd – I still am. I would spend my summers in my parents' basement, making costumes and props from my favorite movies and TV shows. I realized that I really liked making things. I liked putting things together and seeing them work. I also think space is really cool. I want to be able to tell my future kids and grandkids, "I worked on projects that helped us discover all these things about the universe." There's so much we don't know, and I know I can't learn everything, but I want to be a part of the discovery process. So I took those two things that I'm pretty hyped about, put them together, and decided that I want to be an engineer. I want to build spaceships. I want to help advance science and make new discoveries.
What were some of the props or costumes that you designed as a kid?
I was a big fan of the "Final Fantasy" video game series, so with the little bit of money that I made from tutoring kids, I would go out and buy different materials to recreate some of the props from that game. Lightning's gunblade was one of the things I made that I thought was pretty cool. I'm also a big fan of the "Fire Emblem" series, so I recreated a couple of things from that. I also like making costumes for my friends.
I'm starting to get back into it, because I have a little bit of free time this summer. Me and my friends have plans to make our own lightsabers and just play around with what we can make and what we can do with the budget and tools we have. That's where the challenge is. As a kid, I was so limited by the materials I had available. I thought it was fun figuring out how to make stuff anyway. How can I hammer this out with what I have in my house?
What brought you to JPL for your internships?
I heard great things from friends who had interned at JPL before. It's one of the best places to be if you want to work on space missions. I'd never been to the West Coast before last summer. I'm from Maryland. I grew up in a town about 20 minutes outside of Baltimore. It was kind of scary [to travel so far from home], but I feel like life's about experiences, so I might as well just do it.
How do you feel you're contributing to NASA missions and science as an intern?
I feel like it's impossible for any one person to make an impact alone. I'm part of a team that's helping assist future lunar missions. In the grand scheme of things, it's a small piece of what humanity is going to achieve in the future, but it's rewarding to know that I'm part of it. I know I'm a small piece in the big machine, but it still feels like a lot, because if you take one piece out of the machine, it can break.
That's a great way of putting it.
When you're not in school or interning, how do you like to spend your time? What are some of your hobbies?
At school, I'm involved with a bunch of different organizations on campus. One of my main extracurriculars is that I build UAVs [unmanned aerial vehicles]. I'm also involved with a lot of the outdoorsy groups on campus.
When the weather's nice, which in Upstate New York is not always the case, I like to run. I've run some pretty crazy races – Ragnar races, If you ever heard of those – and a couple of relays around the Finger Lakes. I like to run. I like to hike. There's a lot of beautiful mountains and lakes in the Upstate New York area. I've been trying to explore them. And I like to rock climb. I have a couple of friends at school who are super involved in the rock-climbing community, so they got me into it.
When the weather's not so nice, I like to read. I also started to get back into building props and making costumes, because I finally feel like I have time again to sit down and do that. It's a pretty time-consuming hobby.
Now for a fun question: If you could build a spacecraft to go anywhere and study anything, what would it be?
Theoretically, if you had all the technology to do it, I think it would be cool to see inside a black hole. Send a spacecraft in there, and send data out.
----
Since we last talked, your team finished the CubeSat and tested it in the desert! Tell us more about that and how it went?
The tests went pretty well given the circumstances. The team performed a lot of our tests remotely. We ran simulations to test some of the software. Our mock lunar surface asset was able to drive autonomously. Some aspects of the tests were successful and others could use more work, but we laid down a good foundation for future Innovation to Flight interns to build on. Hopefully our work helped the researchers we worked with from JPL and the University of Colorado Boulder.
A novel approach to developing rapid prototypes for space exploration, the Innovation to Flight program was created in 2014 by JPL Fellow Leon Alkalai, who continues to oversee and guide activities. Coordinated by Senior Research Scientist Adrian Stoica with support over the years from Chrishma Derewa, David Atkinson, and Miles Pellazar at JPL, the program has brought in more than 50 student interns from across the country. Offering students a uniquely collaborative experience developing technology for the Moon, Mars, and beyond, Innovation to Flight has also served as a career pathway to numerous program alumni now working at JPL.
Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern
Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
TAGS: Higher Education, Internships, STEM, College Students, Careers, Jobs, Engineering, Mechanical Engineering, Innovation to Flight, Technology Demonstration, Moon, Women at NASA, Asian Pacific American Heritage Month
Career Guidance | June 16, 2020
Scientist on a Mission
Catherine Elder's office is a small, cavernous space decorated with pictures of the Moon and other distant worlds she studies as a research scientist at NASA's Jet Propulsion Laboratory. Elder has been interested in space science since she was young, but she didn't always imagine she'd be working at one of the few places that builds robotic spacecraft designed to venture to mysterious worlds. A doctorate in planetary science – the study of the evolution of planets and other bodies in space – first brought her to JPL five years ago for research into the geologic history of the Moon. She planned to eventually become a professor, but a sort of gravitational pull has kept her at the laboratory, where in addition to lunar science, she's now involved in projects studying asteroids, Jupiter's moon Europa and future missions. We met up with her earlier this year to talk about her journey, how a program at JPL helped set her career in motion and how she's paying it forward as a mentor to interns.
What do you do at JPL?
A lot of what I do is research science. So that involves interpreting data from spacecraft and doing some modeling to understand the physical properties of places like the Moon, asteroids and Jupiter's moon Europa.
I am also working on mission formulation. So in that case, my role is to work with the engineers to make sure that the missions we're designing will actually be able to obtain the data that we need in order to answer the science questions that we have.
Tell us about some of the projects you're working on.
A lot of my work right now is looking at the Moon. I'm on the team for the Diviner instrument on the Lunar Reconnaissance Orbiter. That instrument observes the Moon in infrared, which we can use to understand the geologic history, such as how rocks break down over time. We can also look at specific features, like volcanoes, and understand their material properties. I do similar work on the OSIRIS-REx mission [which aims to return a sample from the asteroid Bennu].
I'm on the Europa Clipper team right now. I'm the investigation scientist for the cameras on the mission [which is designed to make flybys of Jupiter's moon Europa]. So I serve as a liaison between the camera team and other parts of the project.
I'm also working on a project modeling the convection in the rocky portion of Europa, underneath the liquid-water layer. Our goal is to understand how likely it is that there are volcanoes on the seafloor of Europa. A lot of scientists in their previous work have suggested that life could originate in these volcanoes. So we're going back and looking at how likely it is that they exist.
Sounds like fascinating work and like you're keeping busy! What is your average day like?
When I'm analyzing the data and doing modeling, I'm usually at my computer. I do a lot of computer coding and programming. We do a lot of modeling to help interpret the data that we get. For example, if we think we know the physical properties of a surface, how are those going to affect how the surface heats up or cools down over the course of a day? I compare what we find to the observations [from spacecraft] and circle back and forth until we have a better idea of what those surface materials are like.
Then, for the mission work, it's a lot more meetings. I'm in meetings with the engineers and with other scientists, talking about mission requirements, observation plans and things like that.
Tell us a bit about your background and what brought you to JPL.
I have wanted to be an astronomer since I was nine years old. So I was an astronomy major at Cornell University in New York. I didn't really realize planetary science existed, but luckily Cornell is one of the few universities where planetary science is in the astronomy department. A lot of times it's in the geology department. I started to learn more about planetary science by taking classes and realized that was what I was really interested in. So I went to the University of Arizona for grad school and got a Ph.D. in planetary science.
I thought I eventually wanted to be a professor somewhere. A postdoc position is kind of a stepping stone between grad school and faculty positions or other more permanent positions. So I was looking for a postdoc, and I found one at JPL. It was pretty different from what my thesis work had been on, but it sounded really interesting. I didn't think I was going to stay at JPL, but I ended up really liking it, and I got hired as a research scientist.
You also took part in the Planetary Science Summer School at JPL, working on a simulated mission design project. What made you want to apply for that program and what was the experience like?
I've always been interested in missions. I began PSSS when I was a postdoc at JPL, so I was already working with mission data from the Lunar Reconnaissance Orbiter. But by the time I joined the team, LRO had been orbiting the Moon for more than five years, so it was a well oiled machine.
I was interested in thinking about future missions and how you design one. So PSSS was a really great experience. They gave us a couple targets that we could pick between, and we picked Uranus. We had to come up with all the science objectives we would want to have if we visited Uranus [with a robotic spacecraft]. We had a mix of scientists and engineers, but none of us had studied Uranus, so we had to do a lot of background reading and figure out the big outstanding questions about the planet and its moons. We came up with a ton of them. When we did our first session with Team X, which is JPL's mission formulation team, we realized that we had way too many objectives, and we were never going to be able to achieve all of them in the budget that we had. It was a big wake up call. We had to narrow the scope of what we wanted to do a lot.
Then we had two more sessions with Team X, and we eventually came up with a concept where we were within the budget and we had a couple of instruments that could answer some science questions. Then we presented the mission idea to scientists and engineers at JPL and NASA headquarters who volunteered as judges.
Participants in the Planetary Science Summer School are assigned various roles that are found on real mission design teams. What role did you play?
I had the role of principal investigator [which is the lead scientist for the mission].
How did that experience shape what you're doing today?
Actually, quite a bit. Learning how you develop a science objective and thinking through it, you start with goals like, "I want to understand the formation and evolution of the solar system." That's a huge question. You're never going to answer it in one mission. So the next step is to come up with a testable hypothesis, which for Uranus could be something like, "Is Uranus' current orbit where it originally formed?" And then you have to come up with measurement objectives that can address that hypothesis. Then you have to think about which instruments you need to make those measurements. So learning about that whole process has helped a lot, and it's similar to what I'm doing on the Europa mission now.
I also got really interested in the Uranus system, specifically the moons, because they show a lot of signs of recent geologic activity. They might be just as interesting as the moons of Saturn and Jupiter. But Voyager 2 is the only spacecraft that has visited them. At that time, only half of the moons were illuminated, so we've only seen half of these moons. I really want a mission to go back and look at the other half.
Recently, me and a few friends at JPL – two who also did PSSS and one who did a very similar mission formulation program in Europe – got really interested in the Uranus system. So now, in our free time, we're developing a mission concept to study the Uranus system and trying to convince the planetary science community that it’s worth going back to it.
Are there any other moments or memories from PSSS that stand out?
Actually, one I was thinking about recently is that I was in the same session as Jessica Watkins, who recently became a NASA astronaut. I remember I was super stressed out because we had to give this presentation, and me and the project manager, who is a good friend of mine, were disagreeing on some things. But I talked to Jess, and she was just so calm and understanding. So when she got selected as an astronaut, I was like, "That makes sense," [laughs].
But the other thing that stands out is we worked so hard that week. We were at JPL during the day. And in the evening, we would meet again and work another four hours. Now that I'm working on mission development for actual missions, I realize there's so much more that actually goes into a mission, but PSSS gives you a sense of how planetary missions are such a big endeavor. You really need to work as a team.
You've also served as a mentor, bringing interns to JPL. Tell us a bit about that experience and what made you interested in being a mentor?
I've worked with five students at this point, all undergrads. I've always been interested in being a mentor. I was a teaching assistant for a lot of grad school, and I really enjoyed that. I like working one-on-one with students. I find it really rewarding, too, because it helps you remember how cool the stuff you're doing really is. The interns are learning it for the first time, so being able to explain exciting things about the solar system to them for the first time is pretty fun.
What do you usually look for when choosing an intern?
Enthusiasm is a big one. At the undergrad level, most people haven't specialized that much yet; they have pretty similar backgrounds. So I think enthusiasm is usually what I use to identify candidates. Is this what they really want to be doing? Are they actually interested in the science of planets?
What kinds of things do you typically have interns do?
It varies. It can sometimes be repetitive, like looking at a lot of images and looking for differences between them. One of the projects I have a lot of students working on right now is looking at images of craters on the Moon. There's this class of craters on the Moon that we know are really young. By comparing the material excavated by them, we can actually learn about the Moon's subsurface. So I have students going through and looking at how rocky those craters are. We're basically trying to map the subsurface rocks on the Moon. So that can get a little repetitive, but I find that some students actually end up really liking it, and find it kind of relaxing [laughs].
For students who intern with me longer, I try to tailor it to their interests and their skill set. One student, Jose Martinez-Camacho, was really good at numerical modeling and understanding thermodynamics, so he was developing his own models to understand where ice might be stable near the lunar poles.
What's your mentorship philosophy? What do you want students to walk away with?
I think mentors are usually biased in that they want their students to turn out like them. So I'm always excited when my students decide they want to go to grad school, but grad school is not the path for everyone.
One of the important things to learn from doing research is how to solve a problem on your own. A lot of times coursework can be pretty formulaic, and you're learning how to solve one type of problem so that you can solve a similar problem. But with research, unexpected things come up, and you have to learn how to troubleshoot on your own. I think you learn a little bit about that as an intern.
What's the value of JPL internships and fellowships from your perspective?
We're lucky at JPL that we're working on really exciting things. I think we should share that with as many people as possible, and internships are a good way to do that.
Then, for me personally, participating in PSSS solidified that I was on the right path. I knew I wanted to continue to be involved in mission formulation, and that was a big part of why I decided to stay at JPL, to be really deeply involved in the formulation of space missions. There's only a handful of places in the world where you can do that.
This feature is part of an ongoing series about the stories and experiences of JPL scientists, engineers, and technologists who paved a path to a career in STEM with the help of NASA's Planetary Science Summer School program. › Read more from the series
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.
TAGS: Higher Education, Internships, STEM, Mentors, Science, Moon, Lunar Reconnaissance Orbiter, PSSS, Planetary Science Summer School, Careers, Research, Science, Women at NASA
Edu News | December 30, 2019
NASA's 9 Most Teachable Moments This Decade and Beyond
Whether discovering something about our own planet or phenomena billions of miles away, NASA missions and scientists unveiled a vast universe of mysteries this past decade. And with each daring landing, visit to a new world and journey into the unknown came new opportunities to inspire the next generation of explorers. Read on for a look at some of NASA's most teachable moments of the decade from missions studying Earth, the solar system and beyond. Plus, find out what's next in space exploration and how to continue engaging students into the 2020s with related lessons, activities and resources.
1. Earth's Changing Climate
Rising sea levels, shrinking ice caps, higher temperatures and extreme weather continued to impact our lives this past decade, making studying Earth’s changing climate more important than ever. During the 2010s, NASA and National Oceanic and Atmospheric Administration, or NOAA, led the way by adding new Earth-monitoring satellites to their fleets to measure soil moisture and study carbon dioxide levels. Meanwhile, satellites such as Terra and Aqua continued their work monitoring various aspects of the Earth system such as land cover, the atmosphere, wildfires, water, clouds and ice. NASA's airborne missions, such as Operation IceBridge, Airborne Snow Observatory and Oceans Melting Greenland, returned data on water movement, providing decision makers with more accurate data than ever before. But there's still more to be done in the future to understand the complex systems that make up Earth's climate and improve the scientific models that will help the world prepare for a warmer future. Using these missions and the science they're gathering as a jumping-off point, students can learn about the water cycle, build data-based scientific models and develop an understanding of Earth's energy systems.
Explore More
- Climate lessons for educators
- Climate activities for students
- Climate articles from NASA/JPL Edu
- Learn more about NASA climate missions and science
2. Teachable Moments in the Sky
Astronomical events are a sure-fire way to engage students, and this past decade delivered with exciting solar and lunar eclipses that provided real-world lessons about the Sun, the Moon and lunar exploration. The total solar eclipse that crossed the U.S. in 2017 gave students a chance to learn about the dynamic interactions between the Sun and Moon, while brilliant lunar eclipses year after year provided students with lessons in lunar science. There's more to look forward to in the decade ahead as another solar eclipse comes to the U.S. in 2024 – one of nine total solar eclipses around the world in the 2020s. There will be 10 total lunar eclipses in the 2020s, but observing the Moon at any time provides a great opportunity to study celestial patterns and inspire future explorers. Using the lessons below, students can develop and study models to understand the size and scale of the Earth-Moon system, predict future Moon phases and engage in engineering challenges to solve problems that will be faced by future explorers on the Moon!
Explore More
- Moon lessons for educators
- Moon activities for students
- Moon articles from NASA/JPL Edu
- Learn more about NASA Moon missions and science
3. Missions to Mars
The past decade showed us the Red Planet in a whole new light. We discovered evidence that suggests Mars could have once supported ancient life, and we developed a better understanding of how the planet lost much of its atmosphere and surface water. The Opportunity rover continued exploring long past its expected lifespan of 90 days as NASA sent a larger, more technologically advanced rover, Curiosity, to take the next steps in understanding the planet's ability to support life. (Opportunity's nearly 15-year mission succumbed to the elements in 2019 after a global dust storm engulfed Mars, blocking the critical sunlight the rover needed to stay powered.) The InSight lander touched down in 2018 to begin exploring interior features of the Red Planet, including marsquakes, while high above, long-lived spacecraft like the Mars Reconnaissance Orbiter and Mars Odyssey were joined by NASA's MAVEN Orbiter, and missions from the European Space Agency and the Indian Space Research Organization. The next decade on Mars will get a kick-start with the July launch of the souped-up Mars 2020 rover, which will look for signs of ancient life and begin collecting samples designed to one day be returned to Earth. Mars provides students with countless opportunities to do some of the same engineering as the folks at NASA and design ideas for future Mars exploration. They can also use Mars as a basis for coding activities, real-world math, and lessons in biology and geology.
Explore More
- Mars lessons for educators
- Mars activities for students
- Mars articles from NASA/JPL Edu
- Learn more about NASA Mars missions and science
4. Ocean Worlds and the Search for Life
This decade marked the final half of the Cassini spacecraft's 13-year mission at Saturn, during which it made countless discoveries about the planet, its rings and its fascinating moons. Some of the most exciting findings highlighted new frontiers in our search for life beyond Earth. Cassini spotted geysers erupting from cracks in the icy shell of Saturn's moon Enceladus, suggesting the presence of an ocean below. At the moon Titan, the spacecraft peered through the hazy atmosphere to discover an Earth-like hydrologic cycle in which liquid methane and ethane take the place of water. Meanwhile, evidence for another ocean world came to light when the Hubble Space Telescope spotted what appear to be geysers erupting from the icy shell surrounding Jupiter's moon Europa. NASA is currently developing Europa Clipper, a mission that will explore the icy moon of Jupiter to reveal even more about the fascinating world. For students, these discoveries and the moons themselves provide opportunities to build scientific models and improve them as they learn more information. Students can also use math to calculate physical properties of moons throughout the solar system and identify the characteristics that define life as we know it.
Explore More
- Ocean worlds lessons for educators
- Ocean worlds activities for students
- Ocean worlds articles from NASA/JPL Edu
- Learn more about NASA Solar System missions and science
5. Asteroids, Comets and Dwarf Planets, Oh My!
The past decade was a big deal for small objects in space. NASA's Dawn mission started 2010 as a new arrival in the main asteroid belt. The next eight years saw Dawn explore the two largest objects in the asteroid belt, the giant asteroid Vesta and the dwarf planet Ceres. On its way to comet 67P/Churyumov-Gerasimenko, ESA's Rosetta mission (with contributions from NASA) flew by the asteroid Luticia in 2010. After more than two years at its destination – during which time it measured comet properties, captured breathtaking photos and deposited a lander on the comet – Rosetta's mission ended in dramatic fashion in 2016 when it touched down on 67P/Churyumov-Gerasimenko. In 2013, as scientists around the world eagerly anticipated the near-Earth flyby of asteroid Duende, residents of Chelyabinsk, Russia, got a surprising mid-morning wake-up call when a small, previously undetected asteroid entered the atmosphere, burned as a bright fireball and disintegrated. The team from NASA's OSIRIS-Rex mission wrapped up the decade and set the stage for discoveries in 2020 by selecting the site that the spacecraft will visit in the new year to collect a sample of asteroid Bennu for eventual return to Earth. And in 2022, NASA's Psyche mission will launch for a rendezvous with a type of object never before explored up close: a metal asteroid. The small objects in our solar system present students with chances to explore the composition of comets, use math to calculate properties such as volume, density and kinetic energy of asteroids, and use Newton's Laws in real-world applications, such as spacecraft acceleration.
Explore More
- Small objects lessons for educators
- Small objects activities for students
- Learn more about NASA Solar System missions and science
6. Uncovering Pluto's Mysteries
In 2015, after nearly a decade of travel, NASA's New Horizons spacecraft arrived at Pluto for its planned flyby and became the first spacecraft to visit the dwarf planet and its moons. The images and scientific data the spacecraft returned brought into focus a complex and dynamic world, including seas of ice and mountain ranges. And there's still more left to explore. But New Horizons' journey is far from over. After its flyby of Pluto, the spacecraft continued deep into the Kuiper Belt, the band of icy bodies beyond the orbit of Neptune. In 2019, the spacecraft flew by a snowman-shaped object later named Arrokoth. In the 2020s, New Horizons will continue studying distant Kuiper Belt objects to better understand their physical properties and the region they call home. The new information gathered from the Pluto and Arrokoth flybys provides students with real-life examples of the ways in which scientific understanding changes as additional data is collected and gives them a chance to engage with the data themselves. At the same time, New Horizons' long-distance voyage through the Solar System serves as a good launchpad for discussions of solar system size and scale.
Explore More
- Pluto lessons for educators
- Pluto activities for students
- Pluto articles from NASA/JPL Edu
- Learn more about NASA Solar System missions and science
7. The Voyagers' Journey Into Interstellar Space
In 1977, two spacecraft left Earth on a journey to explore the outer planets. In the 2010s, decades after their prime mission ended, Voyager 1 and Voyager 2 made history by becoming the first spacecraft to enter interstellar space – the region beyond the influence of solar wind from our Sun. The Voyager spacecraft are expected to continue operating into the 2020s, until their fuel and power run out. In the meantime, they will continue sending data back to Earth, shaping our understanding of the structure of the solar system and interstellar space. The Voyagers can help engage students as they learn about and model the structure of the solar system and use math to understand the challenges of communicating with spacecraft so far away.
Explore More
- Voyager lessons for educators
- Voyager activities for students
- Voyager articles from NASA/JPL Edu
- Learn more about NASA's Voyager mission
8. The Search for Planets Beyond Our Solar System
It was only a few decades ago that the first planets outside our solar system, or exoplanets, were discovered. The 2010s saw the number of known exoplanets skyrocket in large part thanks to the Kepler mission. A space telescope designed to seek out Earth-sized planets orbiting in the habitable zone – the region around a star where liquid water could exist – Kepler was used to discover more than 2,600 exoplanets. Discoveries from other observatories and amateur astronomers added to the count, now at more than 4,100. In one of the most momentous exoplanet findings of the decade, the Spitzer telescope discovered that the TRAPPIST-1 system, first thought to have three exoplanets, actually had seven – three of which were in the star’s habitable zone. With thousands of candidates discovered by Kepler waiting to be confirmed as exoplanets and NASA's latest space telescope, the Transiting Exoplanet Survey Satellite, or TESS, surveying the entire sky, the 2020s promise to be a decade filled with exoplanet science. And we may not have to wait long for exciting new discoveries from the James Webb Space Telescope, set to launch in 2021. Exoplanets are a great way to get students exploring concepts in science and mathematics. In the lessons linked to below, students use math to find the size and orbital period of planets, learn how scientists are using spectrometry to determine what makes up exoplanet atmospheres and more.
Explore More
- Exoplanets lessons for educators
- Exoplanets activities for students
- Exoplanets articles from NASA/JPL Edu
- Learn more about NASA exoplanet missions and science
9. Shining a Light on Black Holes
Even from millions and billions of light-years away, black holes made big news in the 2010s. First, a collision of two black holes 1.3 billion light-years away sent gravitational waves across the universe that finally reached Earth in 2015, where the waves were detected by the Laser Interferometer Gravitational-Wave Observatory, or LIGO. This was the first detection of gravitational waves in history and confirmed a prediction Einstein made 100 years earlier in his Theory of General Relativity. Then, in 2019, a team of researchers working on the Event Horizon Telescope project announced they had taken the first image capturing the silhouette of a black hole. To take the historic image of the supermassive black hole (named M87* after its location at the center of the M87 galaxy), the team had to create a virtual telescope as large as Earth itself. In addition to capturing the world's attention, the image gave scientists new information about scientific concepts and measurements they had only been able to theorize about in the past. The innovations that led to these discoveries are changing the way scientists can study black holes and how they interact with the space around them. More revelations are likely in the years ahead as scientists continue to analyze the data from these projects. For students, black holes and gravitational waves provide a basis for developing and modifying scientific models. Since they are a topic of immense interest to students, they can also be used to encourage independent research.
Explore More
- Black hole lessons for educators
- Black hole activities for students
- Black hole articles from NASA/JPL Edu
TAGS: Teachable Moments, K-12 Education, Educators, Students, STEM, Lessons, Activities, Moon, Mars, Ocean Worlds, Small Objects, Pluto, Voyager, Exoplanets, Black Holes, Earth Science, Earth, Climate Change