Image showing the difference in size and brightness between a full moon at apogee and a full moon at perigee, also called a "supermoon"

The term “supermoon” has been popping up a lot in the news and on social media over the past few years. But what are supermoons, why do they occur and how can they be used as an educational tool. Plus, are they really that super?

There’s a good chance you’ll hear even more about supermoons in the coming months. The full moon on December 3 marks the first and only supermoon of 2017, but it will be followed by two more in January and February 2018. Three supermoons in a row! Now is a great time to learn about these celestial events and get students exploring more about Earth’s only natural satellite.

Moon and Supermoon Lessons from NASA/JPL Edu

Lessons About the Moon

Explore our collection of standards-aligned lessons for grades 1-12.

How it Works

As the Moon orbits Earth, it goes through phases, which are determined by its position relative to Earth and the Sun. When the Moon lines up on the opposite side of Earth from the Sun, we see a full moon. The new moon phase occurs when the Moon and the Sun are lined up on the same side of Earth.

The Moon doesn’t orbit in a perfect circle. Instead, it travels in an ellipse that brings the Moon closer to and farther from Earth in its orbit. The farthest point in this ellipse is called the apogee and is about 405,500 kilometers from Earth on average. Its closest point is the perigee, which is an average distance of about 363,300 kilometers from Earth. During every 27-day orbit around Earth, the Moon reaches both its apogee and perigee.

Full moons can occur at any point along the Moon’s elliptical path, but when a full moon occurs at or near the perigee, it looks slightly larger and brighter than a typical full moon. That’s what the term “supermoon" refers to.

What makes a supermoon super? Watch this short animation to find out. Credit: NASA/JPL-Caltech

Because supermoon is not an official astronomical term, there is no definition about just how close to perigee the full moon has to be in order to be called “super." Generally, supermoon is used to refer to a full moon 90 percent or closer to perigee. (When the term supermoon was originally coined, it was also used to describe a new moon in the same position, but since the new moon isn’t easily visible from Earth, it’s rarely used in that context anymore.)

A more accurate and scientific term is “perigee syzygy.” Syzygy is the alignment of three celestial bodies, in this case the Sun, Moon and Earth. But that doesn’t quite roll off the tongue as easily as supermoon.

Why It’s Important

As the largest and brightest object in the night sky, the Moon is a popular focal point for many amateur and professional astronomers pointing their telescopes to the sky, and the source of inspiration for everyone from aspiring space scientists to engineers to artists.

The supermoon is a great opportunity for teachers to connect concepts being taught in the classroom to something students will undoubtedly be hearing about. Students can practice writing skills in a Moon journal, study Moon phases and apply their math skills to observing the supermoon. (Click here for related activities from JPL’s Education Office.)

Incorrect and misleading information about the Moon (and supermoons) can lead to confusion and frustration. It’s important to help students understand what to expect and be able to identify inaccurate info.

What to Expect

Size

As with anything that moves closer to the person viewing it, the supermoon will appear bigger than an average full Moon. At its largest, it can appear 14% larger in diameter than the smallest full moon. Keep in mind that a 14% increase in the apparent size of something that can be covered with a fingernail on an outstretched arm won’t seem significantly bigger. Unlike side-by-side comparisons made in science and everyday life, students will not have seen the full moon for at least 30 days, and won’t see another for at least 30 more days. Comparing a supermoon with a typical full moon from memory is very difficult.

A nearly full Moon sets as the space shuttle Discovery sits atop Launch pad 39A at the Kennedy Space Center in Cape Canaveral, Florida, Wednesday, March 11, 2009. Photo Credit: (NASA/Bill Ingalls

While they make for great photographs, images like this one that rely on a special photographic technique aren't an accurate representation of what the supermoon will look like to the naked eye. Credit: NASA/Bill Ingalls | Full image and caption on Flickr

Graphic showing the position of the moon at apogee and perigee

A supermoon looks bigger than a "micromoon" (when the full moon is at apogee) because it's about 40,000 kilometers closer to Earth on average. Credit: NASA/JPL-Caltech

Graphic showing the position of the moon at apogee and perigee

It's nearly impossible to compare the apparent size of the supermoon with a micromoon from memory, but when seen side-by-side as in this graphic, it becomes clear. Credit: NASA/JPL-Caltech

Leading up to a supermoon, there are often misleading images on popular media. A technique that involves using a long telephoto lens to take photographs of the Moon next to buildings or other objects makes the Moon look huge compared with its surroundings. This effect can make for great photographs, but it has nothing to do with the supermoon. In fact, these photos can be taken during any Moon phase, but they will likely be used in stories promoting the supermoon.

There are also images that have been edited to inaccurately dramatize the size of the supermoon. Both of these can lead students, and adults, taking pictures with their cell phone to think that they’ve done something wrong or just aren’t cut out for observing the sky, which isn’t true!

Your students may have noticed that when they see a full moon low on the horizon, it appears huge and then seems to shrink as it rises into the night sky. This can happen during any full moon. Known as the Moon Illusion, it has nothing to do with a supermoon. In fact, scientists still aren’t sure what causes the Moon Illusion.

Brightness

The full moon is bright and the supermoon is even brighter! Sunlight reflecting off the Moon during its full phase is bright enough to cast shadows on the ground. During a supermoon, that brightness can increase up to 30 percent as a result of the Moon being closer to Earth, a phenomenon explained by the inverse square law. (Introduce students to the inverse square law with this space-related math lesson for 6th- through 8th-graders.) As with the size of the Moon, students may not remember just how bright the last full moon was or easily be able to compare it. Powerful city lights can also diminish how bright a supermoon seems. Viewing it away from bright overhead street lights or outside the city can help viewers appreciate the increase in brightness.

What Not to Expect

A supermoon will not cause extreme flooding, earthquakes, fires, volcanic eruptions, severe weather, nor tsunamis, despite what incorrect and non-scientific speculators might suggest. Encourage your students to be good scientists and research this for themselves.

Teach It

The excitement and buzz surrounding a supermoon is a great opportunity to teach a variety of Moon topics with these lessons from JPL’s Education Office:

  • *NEW* Observing the Moon (Grades K-6) – Students identify the Moon’s location in the sky and record their observations over the course of the Moon-phase cycle in a journal.
  • *NEW* Measuring the Supermoon (Grades 5-12) – Students take measurements of the Moon during its full phases over multiple Moon cycles to compare and contrast results.
  • Moon Phases (Grades 1-6) – Students learn about the phases of the Moon by acting them out. In 30 minutes, they will act out one complete Moon cycle.
  • Whip Up a Moon-Like Crater (Grades 1-6) – Whip up a Moon-like crater with baking ingredients as a demonstration for students.
  • Modeling the Earth-Moon System (Grades 6-8) – Using an assortment of playground and toy balls, students will measure diameter, calculate distance and scale, and build a model of the Earth-Moon system.

TAGS: Supermoon, Moon Phases, Moon, Earth's Moon, What's Up, Astronomy, K-12, Educators

  • Lyle Tavernier
READ MORE

Saturn's moon Enceladus

In the News

Saturn’s icy moon Enceladus has been making news lately, and it could make even bigger news soon! In September, scientists confirmed that there was a global ocean underneath Enceladus’ thick icy shell. That was just the latest in a long history of exciting finds dating back to the beginning of NASA’s Cassini-Huygens Mission to Saturn in 2004 that have helped scientists to better understand this fascinating world!

Even while Cassini was still on its way to Saturn, its Cosmic Dust Analyzer detected microscopic grains of silica (tiny grains of sand). On Earth, grains of silica similar in size to those detected near Saturn form when hydrothermal activity -- the processes involving heated water beneath Earth’s surface or ocean -- causes salty water to chemically interact with rocky material to form silica. But where were these grains coming from in the space around Saturn?

In 2005, scientists were surprised to find out that Enceladus’ south pole is both warmer than expected and warmer than the surrounding areas, suggesting there is a heat source inside Enceladus. Not only that, but they also discovered long parallel cracks in the ice on Enceladus’ south pole. The young age of these cracks, nicknamed Tiger Stripes, meant that Saturn’s icy moon is a geologically active place.


Color image of the cracks, or Tiger Stripes, on the South Pole of Saturn's moon Enceladus
This enhanced color view of Saturn's moon Enceladus shows the south polar terrain, where jets of material spray out form long cracks called Tiger Stripes. Image credit: NASA/JPL-Caltech/Space Science Institute | Full image and caption


Heat map of Saturn's moon Enceladus
This image shows the infrared (heat) radiation at the south pole of Saturn's moon Enceladus, including the dramatic warm spot centered on the pole near the moon's Tiger Stripes feature. The data were taken during the spacecraft's third flyby of Enceladus on July 14, 2005. Image credit: NASA/JPL-Caltech/Space Science Institute | Full image and caption

Another piece of this puzzle was put in place with the discovery of jets of material spraying out of the Tiger Stripes. Studies have shown these jets are composed of mostly of water vapor, tiny ice particles and small amounts of other material (for example, microscopic silica grains). Together, over 100 jets make up a feature called a plume. Investigating further, scientists have hypothesized that these silica grains are the result of hydrothermal activity on the ocean floor below Enceladus’ icy crust.


Movie of the Plume on Saturn's moon Enceladus
Jets of icy particles burst from Saturn’s moon Enceladus in this brief movie sequence of four images taken on Nov. 27, 2005. Credit: NASA/JPL-Caltech/Space Science Institute | Full image and caption

On October 28, Cassini will fly right through the plume jetting out of Enceladus’ south pole at an altitude of only 49 kilometers (30 miles) – closer than any previous passes directly through the plume! This is an exciting moment in the mission -- one that allows science teams to use a combination of tools on board the spacecraft to strengthen previous findings and potentially make new discoveries.

Why It's Important

Cassini will use its Cosmic Dust Analyzer to study the solid plume particles and an instrument called the Ion and Neutral Mass Spectrometer to “sniff” the gas vapor in order to determine the composition of the jets. Specifically, the latter instrument is looking for H2, or molecular hydrogen. Finding H2 in the plume will strengthen the evidence that hydrothermal activity is occurring on Enceladus’ ocean floor. And the amount of H2 in the plume, will tell scientists just how much activity is happening.

In addition to indicating that hydrothermal activity is taking place, figuring out the amount of hydrothermal activity will give scientists a good indication of how much internal energy there is deep inside Enceladus.

That Cassini is making a pass through the plume at such a low, 49-kilometer-high altitude is also important. Organic compounds -- substances formed when carbon bonds with hydrogen, nitrogen, oxygen, phosphorus or sulfur -- tend to be heavy and would fall out of the plume before reaching the heights of Cassini’s previous, higher altitude flybys and be undetected. Organic compounds are the building blocks of life on Earth. Without them, life as we know it wouldn’t exist. If they are present in Enceladus’ oceans, they could be detected when Cassini passes through the plume on this encounter.

Perhaps more important, though, are the implications of finding hydrothermal activity somewhere other than Earth. It was once believed that all forms of life needed sunlight as a source of energy, but in 1977, the first hydrothermal vent -- essentially an underwater geyser of hot, mineral-rich water -- was discovered and it was teeming with life. The organisms were using the heat and minerals as a source of energy! Some scientists have hypothesized that hydrothermal vents could be where life on our planet first took hold and could represent environments in the solar system with the necessary ingredients to support life.

Teach It

Here are a handful of lessons and resources you can use to teach key concepts related to the October 28 Enceladus flyby and help your students feel connected to this exciting moment in science at Saturn.

Modeling

Standard(s):

  • NGSS 5-ESS2-1 - Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Activity:

Because scientists can’t dig beneath the ice and see what’s below, they rely on creating models that show what is happening beneath the surface. A model helps us imagine what can’t be seen and explains the things that we can see and measure. A model could be a drawing, a diagram or a computer simulation. For this model, students will draw a cut away model of Enceladus and iterate, or improve, their model as you provide more description, just as scientists improved their models as they learned more about Enceladus.

  1. Tell students there is a moon around Saturn. They should draw a moon (likely a circle, half-circle, or arc, depending on how big you want the drawing to be).

  2. Explain to students that the moon is covered in a shell of ice (students will need to modify their model by drawing a layer of ice). Thus far, everything students are modeling is observable by looking at the moon.

  3. Share with students that temperature measurements of the south pole revealed spots that are warmer than the rest of the moon’s surface. Ask students to brainstorm possible sources of heat at the south pole and explain what might happen to ice near a heat source. Based on this new information, and what they think might be causing the heat, allow them to modify their drawing. (Depending on what students brainstorm, their drawing might now include volcanoes, hot spots, magma, hydrothermal vents and a pool of liquid water beneath the ice).

  4. The next piece of information the students will need to incorporate into their drawing is that there are large cracks in the ice over the warmer south-pole region.

  5. Explain that students have now received images that show jets expelling material from the cracks. They will need to incorporate this new data and add it to their drawing.

  6. Tell students that by studying the gravity of the moon, scientists now believe there is an ocean covering the whole surface of the moon beneath the ice. Ask students to share how they would represent that in the model. Allow them to modify their drawing.

  7. Show students the following image depicting a model of Enceladus:

    Saturn's moon Enceladus global ocean model

    This model shows what scientists believe the interior of Enceladus may look like. Have students compare it to what they drew and note similarities and differences.

Particle Travel Rate

Standard(s):

  • CCSS.MATH 6.RP.A.3.B - - Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?

Problem:

Based on the size of the silica grains (6 to 9 nanometers), scientists think they spend anywhere from several months to a few years (a longer time than that means the grains would be larger) traveling from hydrothermal vents to space, a distance of 40 to 50 km.

  1. What rate (in km/day) are the particles traveling if it takes them 6 months to travel 50 km (assume 182 days)?

    50 km ÷ 182 days = 0.27 km/day

  2. What rate are they traveling if it takes two years to travel 40 km?

    40 km ÷ 730 days = 0.05 km/day

  3. Do you think the particles in each example traveled at the same speed the entire time they moved?

  4. Why might the particle rate vary?

  5. At what point in their journey might particles have been traveling at the highest rate?

Plume Data

Standard(s):

  • CCSS.MATH 6.RP.A.3.B - Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?
  • CCSS.MATH 8.G.B.7 - Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.

Problem:

Cassini will be flying past Enceladus at a staggering 8.5 km per second (19,014 mph). At an altitude of 49 km, the plume is estimated to be approximately 130 km across.

  • How long will Cassini have to capture particles and record data while within the plume?

    130 km ÷ 8.5 km/sec ≈ 15 seconds

  • If Cassini is 49 km above the surface of Enceladus at the center of the plume, what is its altitude as it enters and exits the plume (the radius of Enceladus is 252.1 km)?

    252.1 km + 49 km = 301.1 km
    (301.1 km)2 + (65 km)2 ≈ 95,000 km2
    √(95,000 km2) ≈ 308 km
    ≈ 308 km – 252.1 km ≈ 56 km

  • This information can help scientists determine where in the plume heavy particles may fall out if they are not detected on the edge of the plume but are detected closer to the middle of the plume. It is also important because the Cosmic Dust Analyzer uses a high-rate detector that can count impacting particles at over 10,000 parts per second to tell us how much material is being sprayed out.

Volume of Enceladus’ Ocean

Standard(s):

  • CCSS.MATH 8.G.C.9 - Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.
  • CCSS.MATH HSG.GMD.A.3 - Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.

Problem:

Gravity field measurements of Enceladus and the wobble in its orbital motion show a 10 km deep ocean beneath a layer of ice estimated to be between 30 km and 40 km thick. If the mean radius of Enceladus is 252.1 km, what is the minimum and maximum volume of water contained within its ocean?

Volume of a sphere = 43πr3

Minimum volume with a 40 km thick crust
43 π212.1 km3 - 43π202.1 km3 ≈ 40,000,000 km3 – 35,000,000 km3 ≈ 5,000,000 km3

Maximum volume with a 30 km thick crust
43 π222.1 km343 π212.1 km3 ≈ 46,000,000 km3 – 40,000,000 km3 ≈ 6,000,000 km3

This is important because if scientists know how much water is in the ocean and how much vapor is escaping through the plume, they can make estimates about how long the plume has existed -- or could continue to exist.

Download the Full Problem Set

Explore More!

TAGS: Enceladus, moon, Saturn, Cassini, flyby, spacecraft, plume, jets, geysers, science, math

  • Lyle Tavernier
READ MORE

Ryan Clegg in a mock spacesuit

When people ask me what I want to do with my life, I tell them, "Every little kid wants to be an astronaut when they grow up - but I never outgrew it." It was in eighth grade that I realized I wanted to be an astronaut and explore our solar system. The journey wasn't always easy, however. I was consistently laughed at and made fun of in high school when I would tell people that my dream was to work at NASA and one day become an astronaut. No one really expected me to stick to those dreams, let alone accomplish them.

Fast forward a few years, and I entered college at the Florida Institute of Technology, where I double-majored in physics and space science to learn more about stars and comets. One moment I will never forget is orientation day for my department. A professor asked the freshmen in the room who wanted to be an astronaut, and every hand in the room shot up. I knew I was in the right place.


In my sophomore year, an upperclassman sent an email around about a scholarship-internship program with NASA, called MUST (Motivating Undergraduates in Science and Technology). I figured it was a long shot, but decided to apply. To my delight, I was selected and given the opportunity to begin living out my dream by interning at Kennedy Space Center for the summer. I worked for Dr. Philip Metzger, a granular physicist who leads NASA's research into rocket blast effects for manned missions. In the Granular Mechanics and Surface Systems Laboratory, I designed and built experiments to study how the spray of lunar soil from a landing rocket will impinge upon and damage hardware at a future lunar outpost.

This NASA experience changed the course of my career, in a very good way. I suddenly realized I was far more interested in the surfaces of planets and in planetary exploration than in stars and astrophysics, and decided after that summer to pursue planetary science for my graduate studies.

I returned to KSC the next summer to work with Dr. Metzger on a new project that involved studying the compaction and magnetic properties of lunar soil using various experimental methods. We were working on developing more effective ways to store large quantities of soil for mining.

The summer before starting graduate school, I was offered an internship at JPL working on the proposed MoonRise mission, lead by my (soon-to-be) advisor, Dr. Bradley Jolliff. MoonRise would have been a robotic sample return mission to the lunar farside. I was part of a team of students who were tasked with designing an instrument to fly on the spacecraft. We designed a camera system that would have flown on the communications satellite and detected impact flashes from impacting meteorites. Unfortunately, MoonRise was not selected to fly, but the experience shaped my future career path. I realized I really enjoy the mission design and planning process and decided that summer that I wanted to both study the moon and plan for future missions.

I am now a couple years shy of having my Ph.D. in Earth and Planetary Science, and have loved the journey. My research focuses on studying the effects of rocket exhaust on lunar soil properties and volcanic complexes on the moon. Once I have finished my graduate studies, I plan to apply for a position at NASA and become involved in mission planning. I hope to work on the problems associated with rocket exhaust effects on planetary surfaces and continue to research geologically interesting locations on the moon. Ultimately, I plan to apply to become an astronaut candidate and maybe even become the first woman to walk on the moon! My NASA internships helped me realize my true passions and have paved the way for the career path I want to take. I'm incredibly happy in the field I'm in and hope that funding for both NASA and NASA education programs continues so that other students with dreams like mine have a chance to see them come true.

TAGS: Planetary Science, Physics, Moon, Career Guidance, MoonRise, Women in STEM

READ MORE

PASADENA,Calif. – Middle-school students and their teachers gathered in Washington last Friday (6/1) to demonstrate science lessons and highlight images they took from lunar orbit using NASA’s lunar orbiting Gravity Recovery and Interior Laboratory (GRAIL) spacecraft and its MoonKAM system. Along with demonstrating their knowledge of the moon and science, the students listened top resentations from the GRAIL mission’s lead scientist, Maria Zuber, NASA deputy administrator Lori Garver, President Obama’s science advisor John Holdren, and Sally Ride, America’s first woman in space. The event took place at the Ronald Reagan Building and International Trade Center.

“I was more than impressed with the student demonstrations and their grasp of lunar science, I was blown away,”said Maria Zuber, principal investigator of the GRAIL mission from the Massachusetts Institute of Technology, Cambridge. “The GRAIL mission and MoonKAM are making a difference in young student’s lives one image at a time.”

MoonKAM (Moon Knowledge Acquired by Middle school students) is the education and public outreach instrument aboard the lunar orbiting GRAIL spacecraft. MoonKAM provides students around the world with an opportunity to identify and choose images of the moon's surface using small cameras aboard the two lunar orbiters of GRAIL – Ebb and Flow. To date, over 80,000 pictures of the lunar surface have been commanded, imaged and received by fifth- to eighth-grade students. The MoonKAM program is led by Sally Ride and her team at Sally Ride Science in collaboration with undergraduate students at the University of California in San Diego.

“The MoonKAM program brings out students’ natural enthusiasm for science,” said Sally Ride. “Many of these students will be our future scientists and I expect some of them may even visit the craters they photographed.”

The GRAIL mission is managed by JPL for NASA's Science Mission Directorate in Washington. The mission is part of the Discovery Program managed at NASA's Marshall Space Flight Center in Huntsville, Ala. NASA's Deep Space Network is an international network of antennas that supports interplanetary spacecraft missions and radio and radar astronomy observations for the exploration of thesolar system and the universe. The network also supports selected Earth-orbiting missions. Lockheed Martin Space Systems in Denver built the spacecraft. JPL is a division of the California Institute of Technology in Pasadena.

For information about MoonKAM, visit: https://moonkam.ucsd.edu.

For more information about GRAIL, visit: http://www.nasa.gov/grail.

TAGS: MoonKAM, GRAIL, Moon, K-12

READ MORE