Teacher Feature | April 2, 2021
Beaming NASA Science Into the Classroom in the COVID Era and Beyond
Jayme Wisdom has been teaching for 15 years at the Vaughn Charter System in Pacoima, California. She has taught eighth-grade science for most of her career but switched to high school biology for the first time this year.
Ms. Wisdom has long utilized NASA and JPL educational resources, finding creative ways to adapt lessons to meet her students’ needs and exposing them to STEM careers.
A self-described professional nerd, she doesn't shy away from her love of all things Star Trek and Star Wars (and stands firm in her refusal to pick which is superior). While presenting during a recent JPL Education workshop, she shared how she continues to get her students excited about science – both in the classroom and remotely – during the COVID era.
What unique challenges do you face engaging or addressing the needs of your students?
Many of the students I teach face challenges including poverty, homelessness, and learning English as a second language. This year, in particular, has been extremely difficult for all of us dealing with the pandemic and distance learning. As a teacher, I have had to find ways to make sure that my students are engaged in scientific inquiry and have access to resources and materials while learning remotely. This begins and ends with a conscious effort to acknowledge that kids are struggling with this online format and carving out time in every single class to provide the socio-emotional support they have come to expect from a classroom environment. Before we dive into content, this means making time for check-ins and updates. In any in-person classroom, we carve out time to get to know each other, and being online should not diminish that. Of course, as we all learned this year, easier said than done.
Social isolation is another factor that contributes to the challenges of distance learning. Even though students see their peers virtually, it is often difficult for them to open up and talk as freely as they would if they were in a physical classroom. So I have had to find ways to make sure that my students are comfortable with engaging in a virtual setting by allowing them opportunities to talk and collaborate with each other online.
Using breakout sessions was difficult at first, because the students were very self-conscious about speaking to each other on screen and were reluctant to share ideas. So every day, we spent the first few minutes in each class just talking to each other through text-based chat to get them socializing and feeling more comfortable with this new way of interacting. Now they are more comfortable engaging in scientific inquiry with each other and have meaningful discussions to expand their learning. It is not the same as having them physically perform labs together in class but things are definitely improving.
Another challenge has been providing all of my students with access to resources and materials that allow them to simulate a laboratory experience at home. I have been pleasantly surprised at the wealth of resources I have available to me as a teacher to provide virtual labs and activities to my students. Whether it is virtual demonstrations and simulations or scientific investigations that require simple materials that students can find around the house, we have been very resourceful so we can give students the best experience possible through distance learning. Promoting lab science with home supplies has been instrumental in student engagement, as they really get to explore in their own context, expressing themselves creatively with what they have at their disposal instead of being provided the materials.
How have you used lessons from NASA and JPL to keep students engaged while teaching in person and remotely?
I have always been fascinated by outer space and have loved sci-fi TV shows and movies since I was very young. So as a teacher, I was so excited to discover ways to use my love of astronomy to engage my students.
When I discovered NASA and JPL's resources and lessons, I went through them like a kid in a candy store. I found so many different activities that I could adapt to use in my own classroom. Over the past few years, I have used several JPL Education lessons and modified and extended them for my students.
For example, I took JPL's Touchdown lesson and allowed students to create their own planetary lander using materials they could find around their home. I challenged them to create a way to quantify how much impact the touchdown would have on the "astronauts" in their lander. Some students used balls of play dough as their astronauts, and quantified the impact by measuring the dents made in the play dough by paper clips that they had placed on the "seats" of their lander.
Another example was when I combined the Soda-Straw Rocket and Stomp Rockets lessons. I had my students create a straw-stomp rocket to investigate how changing the angle of the rocket launch could have an effect on the distance the rocket traveled.
My students also had the opportunity to participate in engineering activities with JPL and college students from Pasadena City College. The impact that this had on my students was profound and long-lasting. It was inspiring for my students to hear from NASA scientists and student role-models who encouraged them to pursue careers in science, engineering, and technology.
How have students reacted to these lessons?
The biggest payoff for me was seeing students envision themselves as NASA scientists. They learned to collaborate with each other, learn from each other, and challenge each other. They were able to experience every step of the engineering process firsthand. They were actively involved in designing, building, and testing their rockets and landers. They could also gather information from watching other students revise and improve their designs. Learning from each other was so much fun for them. As a teacher, watching my students strengthen their critical thinking, practical engineering, and problem-solving skills is one of the best parts of my job.
You switched from teaching middle school to teaching high school this year. How are you thinking about incorporating NASA resources into lessons for older students?
Growing up, I loved how the technology that I saw in the sci-fi shows I watched as a kid eventually made its way into our reality. I am always amazed at how NASA scientists push the boundaries of technology development and are only limited by the scope of their imagination.
As a high school biology teacher, I'm looking forward to having my students examine the ways that space technology is being used to help humans improve the health of the planet. Investigating climate change and the ecological impact humans have on the environment is so important. Looking at how NASA gathers data to better understand climate change is especially critical at this time because my students' generation is going to play a pivotal role in developing technologies for improving life on Earth. I'm looking forward to continuing to use JPL Education resources to help my students prepare for that challenge.
Looking for ways to bring NASA STEM into your classroom or already have a great idea? The Education Office at NASA's Jet Propulsion Laboratory serves educators in the greater Los Angeles area. Contact us at education@jpl.nasa.gov.
Explore More
-
Touchdown
Students design and build a shock-absorbing system that will protect two "astronauts" when they land.
Grades 3-8
Time 30-60 mins
-
Soda-Straw Rockets
Students study rocket stability as they design, construct and launch paper rockets using soda straws.
Grades 4-8
Time Less than 30 mins
-
Stomp Rockets
In this video lesson, students learn to design, build and launch paper rockets, calculate how high they fly and improve their designs.
Grades 4-9
Time 1-2 hrs
-
Roving on the Moon
Students build a rubber-band-powered rover that can scramble across the room.
Grades 6-12
Time 30-60 mins
-
Global Warming Demonstration
This demonstration uses a water balloon to show how Earth's oceans are absorbing most of the heat being trapped on our warming world.
Grades 1-12
Time Less than 30 mins
TAGS: Teaching, Teachers, K-12, Middle School, High School, Remote Instruction, Classroom, Lessons, Educators, Workshops, Professional Development
Edu News | November 25, 2018
Educator Game Plan: InSight Mars Landing and Beyond!
UPDATE: Nov. 27, 2018 – The InSight spacecraft successfully touched down on Mars just before noon on Nov. 26, 2018, marking the eighth time NASA has succeeded in landing a spacecraft on the Red Planet. This story has been updated to reflect the current mission status. For more mission updates, follow along on the InSight Mission Blog, JPL News, as well as Facebook and Twitter (@NASAInSight, @NASAJPL and @NASA).
NASA's newest Mars mission, the InSight lander, touched down on the Red Planet just before noon PST on Nov. 26. But there's more work ahead before the mission can get a look into the inner workings of Mars. Get your classroom ready to partake in all the excitement of NASA’s InSight mission with this educator game plan. We’ve got everything you need to engage students in NASA's ongoing exploration of Mars!
Day Before Landing
- Read NASA/JPL Edu’s Teachable Moment, “NASA’s ‘Cyber Monday’ Mars Landing to Deliver Science Firsts,” to get a preview of the engineering and science involved in landing InSight and placing its instruments on Mars. Explore the related activities and resources in the “Teach It” and “Explore More” sections.
Landing Day (Nov. 26)
- Check out The Oatmeal’s webcomic for an explainer of how the InSight mission will land on Mars, what it will do on the planet and what it's hoping to find out.
- Watch these fun, one-minute videos for a quick overview of how landing sites are chosen, how spacecraft get to Mars, and what it takes to land there.
- Have students read about JPL’s “landing-site dude” and his rotating cast of interns, who have helped select seven of NASA’s Mars landing sites – including InSight’s!
- Have students read the JPL news release “How Will We Know When InSight Touches Down?”
- Watch live commentary as a class and follow along on the InSight Mission Blog, as well as Facebook and Twitter (@NASAInSight, @NASAJPL and @NASA) using #MarsLanding.
Next Day
- Review the Teachable Moment to find out what needs to happen before InSight’s science operations can begin. Then create an instructional plan with these lessons, activities and resources that get students engaged in the science and engineering behind the mission.
- Check out InSight’s first images from Mars, here. (This is also where you can find raw images from InSight throughout the life of the mission.)
Over the Next Month
- Watch these “Mars in a Minute” videos to find out what InSight is hoping to learn on the Red Planet: “What’s Inside Mars?” “Are There Quakes on Mars?” And “How Did Mars Get Such Enormous Mountains?”
- Have students explore NASA’s Experience InSight interactive to learn about InSight’s science instruments and how each will be deployed to the surface of Mars.
- Follow along on the InSight Mission Blog and @NASAInSight social media over the next few weeks as NASA gets to work surveying the landing site and determining where to place each of the instruments.
- Try the lessons and activities below with students to get them doing some of the same science and engineering as InSight:
-
Robotic Arm Challenge
In this challenge, students will use a model robotic arm to move items from one location to another. They will engage in the engineering design process to design, build and operate the arm.
Grades K-8
Time 30 mins - 1 hr
-
*NEW* Exploring the Colors of Mars
Students use satellite and rover images to learn about the various features and materials that cause color variation on the surface of Mars, then create their own “Marscape.”
Grades 2 and 5
Time 1-2 hrs
-
*NEW* Planetary (Egg) Wobble and Newton's First Law
Students try to determine the interior makeup of an egg (hard-boiled or raw) based on their understanding of center of mass and Newton’s first law of motion.
Grades 3, 6-8
Time 30 mins - 1 hr
-
Touchdown
Students design and build a shock-absorbing system that will protect two "astronauts" when they land.
Grades 3-8
Time 30 mins - 1 hr
-
Mission to Mars Unit
In this 19-lesson, standards-aligned unit, students learn about Mars, design a mission to explore the planet, build and test model spacecraft and components, and engage in scientific exploration.
Grades 3-8
Time Varies
-
*NEW* Heat Flow Programming Challenge
Students use microcontrollers and temperature sensors to measure the flow of heat through a soil sample.
Grades 5-12
Time 1-2 hrs
-
Quake Quandary
In this illustrated math problem, students use the mathematical constant pi to identify the timing and location of a seismic event on Mars, called a "marsquake."
Grades 11-12
Time Less than 30 mins
Explore More
Follow Along
Resources and Activities
- Teachable Moment: NASA InSight Lander to Get First Look at ‘Heart’ of Mars
- InSight Lessons
- Mars Lessons
- Mars Activities for Students
Feature Stories and Podcasts
- InSight Podcast: "On a Mission"
- "The 'Claw Game' on Mars Plays to Win" – Oct 16, 2018
- "NASA's InSight Will Study Mars While Standing Still" – Oct. 24, 2018
- "The Mars InSight Landing Site is Just Plain Perfect" – Nov. 5, 2018
Websites and Interactives
TAGS: InSight, Mars Landing, Educators, K-12, Elementary School, Middle School, High School, Lessons and Activities, Educator Resources, Mars
Edu News | April 23, 2015
JPL Role Models and Rovers Promote STEM for Girls
On a recent school night, seven enthusiastic female engineers and scientists from NASA's Jet Propulsion Laboratory in Pasadena, California, rolled into Santa Clarita, armed with three eight-wheeled Mars rover models. Their mission: to encourage hundreds of junior high and high school girls to reach for the stars in their education and future careers. Their strategy: to pique the girls' interest with an event called "Women in STEM: Going to Mars and Beyond!"
The evening featured rover races, demos and encouragement from the JPLers, who told the girls, "You, too, can do what we do someday."
There was definitely an audience for a message like that. Within five days of being advertised online, the March 18 event at Golden Valley High School "sold out," with 550 free tickets distributed and a waiting list cut off after 90 people.
"This just shows that people are hungry for events where girls can learn about STEM careers and consider them as an option," said Dennis Young, who works on the Mars Curiosity rover mission at JPL. Young, a longtime Santa Clarita resident, initiated and organized the event. His motivation was to expose his young daughter and other girls like her to career opportunities in STEM - science, technology, engineering and math - in the same way as his son and other boys. He had the blessing of Curiosity Project Manager Jim Erickson, who said, "I'm happy to support our team in fostering interest in STEM by young people."
The event was a collaboration between JPL and the William S. Hart Union School District. Janis Fiock, the district's college and career advisor, said she was thrilled when Young first proposed the event to her. "I recognize that women are under-represented in STEM careers. Girls need exceptional role models such as the women scientists and engineers from JPL to encourage them to move forward with their goals. They need to know that it's 'cool' to be smart."
Among the role models participating that night was Mars Curiosity Deputy Project Manager Jennifer Trosper, who also lives in Santa Clarita. Trosper had already teamed up with Young for previous community outreach and education events. She eagerly agreed to speak at the Women in STEM event, as did the six other speakers. Trosper's presentation included hands-on demonstrations, such as asking a young girl to jump as high as she could, then showing her with a tape measure how much higher she could jump under the lesser gravity of Mars.
One common theme ran through all the personal stories shared by the JPL speakers: STEM is not just for boys. Mechanical engineer Jackie Lyra explained that as a child in Brazil, she was literally told the opposite - that engineering school was only for boys. But she ended up studying in the U.S. and ultimately working at JPL, where she has been involved in landing four rovers on Mars, including Curiosity.
Lyra believes that because girls are generally not exposed to STEM topics as often as boys, the subject matter might seem intimidating to some, and they might be afraid to fail. She tried to drive home the point that it's okay to fail, as long as you learn from your mistakes and try again.
Looking back on the evening, Trosper recalls one particular conversation with a girl that reminded her why it's important to promote STEM opportunities. The girl had previously been told at a career fair that she should pursue a job in sales because she was pretty and could make a lot more money.
"This turned her off to engineering, even though she had dreamed of building a spacecraft to capture space junk and designing rocket engines to travel to distant stars," Trosper said. "Her mother dragged her to our STEM event to see if her interest in space could be sparked again." Trosper hopes she encouraged the girl to pursue her dreams, whatever they are, and not to let anyone else tell her what her talents or interests should be. "Besides, I told her I probably make more money than many people in sales."
Lyra brought up that same point in her presentation, throwing out a few numbers to demonstrate that the girls can potentially make more money in STEM. She asked the audience "Who wants to make $280 today?" After hands shot up throughout the auditorium, Lyra explained that STEM careers are not only fun and exciting, but lucrative as well -- a female fresh out of college could make about $75,000 a year with a bachelor's degree.
Other JPL speakers included Molly Bitner, just a few years out of college and working as a systems engineer, who told the girls she loves STEM, skydiving and chocolate; Victoria Davis, a chemist in the JPL battery group who lives in Santa Clarita and, in fact, introduced two local teachers who had pushed her toward excellence at Saugus High School; and Kim Lichtenberg, who, despite being the daughter of an astronaut and thinking she herself would not pursue a STEM career, eventually carved her own path in the sciences, with specialties such as analyzing Martian terrain.
Another JPLer, Shannon Statham, an aerospace engineer, described how she works with CubeSats -- "big satellites in small packages" and, in her free time, perfects salsa dancing. Diana Trujillo told the audience she spoke minimal English when she came to the United States from Colombia. She worked hard to become an engineer and now, at JPL, she "telecommutes" to Mars, as part of the team that sends computer commands to Curiosity.
During the course of the evening, the non-human guests also got their share of attention. The three Mars rover models arranged on the stage sprang into action at times, first when the girls joined in races with them. Then, the audience was invited to come up and get "rolled over" by a mini rover. The first volunteer was Hart School District Superintendent Vicki Engbrecht, who gamely went up on stage to have a rover "run over" her back. Once the ice was broken, the girls and their parents lined up to sprawl on a blanket so the rover could roll over them, too.
Young points out that, because numerous studies show that girls often hesitate to raise their hands and ask a question in a group setting, there was no formal Q and A. Instead, at the end of the event, there was a casual meet-and-greet, featuring the women of JPL standing near tables festooned with spacecraft parts, brochures and stickers.
As the audience filed out afterwards, smiles were clearly visible on the faces of the students, parents and JPL participants.
Young has heard from grateful parents who were thrilled that their daughters were able to meet real-life female role models from JPL. But he thinks perhaps the ultimate measure of success came during the program, while the JPL women were speaking. He watched the audience closely and did not see even one girl looking down at a cell phone or texting.
For more information about hiring JPL speakers for your classroom or group, visit the JPL Speakers Bureau page.
To hear more inspirational stories from female engineers and scientists at JPL, visit the Women at JPL website.
TAGS: STEM, Women in STEM, High School, Middle School, Elementary School, Women at NASA
Edu News | April 15, 2015
Students, Scientists Mind Meld at JPL Science Fair Showcase
More than 50 students from schools across Los Angeles County took their science experiments and engineering designs on the road on Tuesday for the opportunity to display their work during a science fair showcase at NASA's Jet Propulsion Laboratory in Pasadena, California.
Students as young as 11 filed into JPL's von Karman auditorium, eager to speak with professional scientists and engineers about their projects, which examined questions like: Could a solar oven be an effective cooking tool? How well does the human eye adjust to light? Is hagfish slime an efficient material for cleaning up oil spills? And how do different building bracing systems stand up in an earthquake?
JPL's chief scientist, Dan McCleese, who oversees the laboratory's research programs, met with students about their projects to offer feedback and encouragement.
"What you're working on today may end up being what you do for the rest of your life, and it's the greatest thing in the world," McCleese said during an opening address to the students. "When I was a freshman in high school, I started studying Mars, and I will admit I do that today."
David Seidel, manager of K-12 programs for JPL's Education Office, which organized the showcase, said it's statements like McCleese's that illustrate the value of science fairs for students.
"When students do a science project and they're properly mentored and they're doing real science, they're experiencing it. They're actually doing the science and engineering themselves and not just talking about it or following some sort of recipe," Seidel said. "So if you're looking for the next generation of scientists, let's get them in the habit of actually trying to do some science while they're still young."
While eighth-grader Sarah Garelick, 13, hasn't yet decided on her future career, her science fair project did give her the chance to investigate a personal interest.
"I was inspired by my dad," said Garelick, whose project looked at how the rate of glucose released into a pancreas would affect insulin levels. "He had his pancreas removed when I was little."
It was a similar motivation that drove sixth-grader Jeanie Benedict, 11, to create an elaborate evaporative cooling system for chinchillas -- a system she named "Chinchiller."
"Last summer during a Los Angeles heatwave, my pet chinchilla died of a heatstroke, so I wanted to create something that could have prevented it," said Benedict, whose project proved such a curiosity for passers-by that she barely had time to grab a slice of the free cake on offer to attendees.
"What stood out to me was the diversity of student projects that represented the diversity of student interests," said education specialist Ota Lutz, who created and starred in an online video series that walks students through the ins and outs of creating their own science fair projects. "Students do a lot of work to develop these science fair projects, so this event was a great opportunity for them to showcase their hard work and interact with professional scientists and engineers."
Enthusiasm for the event was so high that when participants, who had already presented their projects at the Los Angeles County Science Fair, were invited to register for the showcase, the available slots filled up within 24 hours.
"It was a big success," said Seidel. "I think it was eye-opening for a lot of the students and the chaperones to learn about the range of activities we have here at JPL and interact with people who are doing these things professionally."
For more events, activities and resources for students, provided by the JPL Education Office, visit http://www.jpl.nasa.gov/education/students/
The JPL Education Office provides formal and informal educators, parents and students with NASA science, technology, engineering and mathematics (STEM) content, including resources, classroom activities and internship opportunities.
TAGS: Science Fair, Science, Engineering, High School, Middle School