Five students in sweatshirts and collared shirts pose for a selfie with Ms. Risbrough and JPL education specialist Brandon Rodriguez, all wearing masks.

A Los Angeles math teacher gets students engaged with connections to science and exploring the human side of math, such as how leaders inspire change in their communities.


Katherine Risbrough has been teaching high school math for almost 10 years. She began her teaching career in the Hickory Hill community of Memphis, Tennessee, where she taught everything from Algebra 1 to Calculus and served as a math coach for the district. Five years ago, she came to Los Angeles to teach Integrated Math and Calculus at Synergy Quantum Academy High School.

Outside of math, Ms. Risbrough is also a superfan of college football and never misses a game at her alma mater, the University of Southern California. Her fandom for making the game is rivaled only by her love of Harry Potter, having been to every midnight book and movie release.

I caught up with Ms. Risbrough to find out how she gets students excited about math, and I learned about a new strategy she used this past year: bridging math and science by teaming up with the AP Physics teacher. Her cross-discipline curriculum focused on helping students make connections between subjects and got them engaged as they returned from more than a year of remote learning.


Math can be intimidating for students and it can be difficult to keep them engaged. How do you get your students excited about math?

A student at a desk holds open a worksheet while Ms. Risbrough leans over and points to a section of the worksheet.

Ms. Risbrough works with one of her calculus students. Image courtesy: Katherine Risbrough | + Expand image

Sometimes it's easier said than done, but math needs to be as hands-on and discussion-based as possible. We use a lot of the calc-medic curriculum, which is application and discovery first followed by a whole class discussion to share ideas and cement new learning. When students have to speak and defend a hypothesis or an argument, they are practicing mathematical reasoning, which is a skill they can take into all STEM coursework. I avoid lectures as much as possible. We also do a lot of flipped classroom learning (videos at home and practice in class), group work, use technology, and do activities that get students moving around the classroom.

I believe that learning mathematics should be a collaborative, exploratory process and that every student already has the skills necessary to become a successful mathematician. It’s my job to give them opportunities to show off and strengthen those skills, so that they can be just as successful with or without me present to help them.

This year you’ve introduced some interesting projects to make your class more interdisciplinary. Tell me a bit more about that.

I’ve really focused on keeping the math contextualized by being sure the content is interdisciplinary. For example, over half of my AP Calculus students are also taking AP Physics. This year, in particular, I was sure to coordinate with the physics teacher to see how we could align our curriculum in kinematics with what we were doing with integrals and derivatives. This began with students doing JPL’s additive velocity lesson in their physics class to set the stage for how calculus ties together acceleration, velocity, and displacement.

Both classes are so challenging for students, but when they see how strategies in one class can help lift them in another, it’s almost as if they are getting to see two different strategies to solve the same problem. Designing challenges that could be solved with both physics and math gave the students an ability to approach problems from either side. At first, they were pretty intimidated to see their two most challenging classes teaming up, but the end result was some incredible student projects and dramatic improvement in their ability to graph out relationships.

I also kick off new units by making connections to students' own life or even their future careers. They need to know the “why” beyond just, “because you’ll be tested on it.” We try to talk about STEM historical figures and current leaders (specifically mathematicians and scientists of color) as often as possible. For example, I use clips from the movies "October Sky" and "Hidden Figures" to set the stage and then lead into projects about rocket trajectories and elliptical orbits.

Pieces of paper with math terms such as 'graph' and 'function' printed on them are taped to a desk. Lines and arrows drawn with marker connect that various pieces of paper and notes are written off to the side.

Students in Ms. Risbrough's class map out language and processes to better understand shapes and limits in functions. Image courtesy: Katherine Risbrough | + Expand image

This year, in calculus, we started the year with the idea of “Agents of Change” and looked at thought leaders such as veteran astronaut Ellen Ochoa and climate scientist Nicole Hernandez Hammer and how their work relates to “instant rates of change” and “average rates of change” in calculus. Then, I had students think about moments of change in their life, and how that instant can be carried forward to a make a long term change in their careers and communities.

Coming back from COVID-19 and more than a year of remote instruction, how are your students adjusting to being back in the classroom?

Our students missed out on so many social and academic opportunities because of COVID, but they aren’t letting that stop them. The biggest struggle was starting off the school year and getting back into routines. Because of the demographics of our students, there have been more absences than usual, as many of our students help support their family at home. Many parents struggled to keep work through the pandemic, and a lot of my students work outside of school or take care of their siblings. The effects of caring for their families while still trying to focus on applying to college has really taken a toll on students.

I’m fortunate that so many kids are comfortable and open sharing feelings of increased anxiety, responsibility, or worry over the past two years. I believe it's important that my classroom and our group first and foremost be an escape from that space rather than an added stress. Their success in math – even a rigorous AP math class with a breakneck pace – comes from me being there for them as a person first and a teacher second. We focus so much on “catching them up” that we forget to take some time for them to process all they have had to manage.

A group of five students with long dark hair stand next to each other and Ms. Risbrough looking at a whiteboard with graphs drawn on it.

AP Calculus students graph out kinematics as examples of integrals and derivatives. Image courtesy: Katherine Risbrough | + Expand image

As we move toward graduation, what is one story of success that you will take away from this year?

Honestly, it's the success of my students. They have jumped into AP Calculus after 1.5 years of distance learning and the social-emotional learning burdens of Covid, and have done amazing work. They are thoughtful, persistent, and often learning multiple grades worth of skills within one calculus lesson. I guess I'm a small piece of that, but all that I've really done is give them space to explore, discuss, and learn. It's what they've done with that space that has been the best thing to watch!


Looking for ways to bring NASA STEM into your classroom or already have a great idea? The Education Office at NASA's Jet Propulsion Laboratory serves educators in the greater Los Angeles area. Contact us at education@jpl.nasa.gov.

Explore More

TAGS: Teachers, School, Classroom, Instruction, K-12, High School, Math, Calculus, Physics, Algebra, Lessons, Resources

  • Brandon Rodriguez
READ MORE

Scenes from Jackie Prosser's fourth-grade classroom including a door poster commemorating Dorothy Vaughan, a poster with the words Dare Mighty Things glued to it, a yellow lab surrounded by NASA posters, and Miss Prosser with two other teachers all wearin

This fourth-grade teacher is finding creative ways to get her students back into the flow of classroom learning with the help of STEAM education resources from JPL.


Jackie Prosser is a fourth-grade teacher in Fairfield, California, finishing her second year as a classroom teacher. She is a recent graduate of the University of California, Riverside, where she simultaneously received her teaching credential and her master's in education. This was where I was fortunate enough to meet Miss Prosser, through a collaboration between the Education Office at NASA's Jet Propulsion Laboratory and UCR designed to help new teachers incorporate STEM into their future classrooms. She and her cohort immediately struck me as passionate future teachers already exploring unique ways to bring space science into their teaching.

But it's been a challenging transition for Miss Prosser and teachers like her who started their careers amid a pandemic. She began her student-teaching in person only to find that she would have to switch to teaching remotely just four months into the job. Now, she's back in the classroom but facing new challenges getting students up to speed academically while reacquainting them with the social aspects of in-person learning.

I caught up with her to find out how she's managing the transition and developing creative ways to support the individual needs of her students and, at the same time, incorporating science and art into her curriculum with the help of STEAM resources from the JPL Education Office.


What made you want to become an elementary school teacher?

Originally, I became a teacher because I love to see that moment of light when a concept finally clicks in a kid’s mind. I am still a teacher (even after the craziest two years ever) because every kid deserves someone to fight for them, and I know I can be that person for at least 32 kids a year.

I love to teach young kids especially for two reasons. The first is their honesty; no one will tell you exactly like it is like a nine-year-old will. The second is that I love the excitement kids have for learning at this age.

It has been a bumpy couple years, especially this past school year when it was unclear if we would be remote again or back in the classroom. How has it been coming back from remote learning?

Coming back from remote learning has been an incredible challenge, but we’ve come a long way since the beginning of the year. Students really struggled being back in a highly structured environment. It was very hard to balance meeting the individual needs of each student and getting them used to the structure and expectations of the classroom.

My fourth graders were online for the last part of second grade and a vast majority of third grade. This is when students really start to solve conflicts and regulate their emotions with less support from adults. I have seen a lot more problems with emotion regulation and conflict among my students this year than in years past.

There is a lot of pressure on teachers right now to make up for all the learning loss and for students being behind on grade-level standards. But I don’t think enough people talk about how much joy and social interaction they also lost during remote learning. Teachers are also feeling the pressure of that. I want to help my students be the very best versions of themselves and being happy and comfortable with themselves is a huge part of that.

Description in caption.

A student looks at a page from the NASA Solar System Exploration website. Image courtesy: Jackie Prosser | + Expand image

How do you structure your class to get students back in the flow of a school setting?

I use a lot of manipulatives in my math lessons and try to make their learning as hands-on as possible. I also teach math in small groups to be able to better meet the individual needs of my students. I have one group with me learning the lesson, one group doing their independent practice of the skill, and one group on their computers. Then, the students switch until each group has done each activity.

You’re a big fan of science and came to several JPL Education workshops while you were still in school yourself. Are there JPL Education resources that you have found particularly impactful for your students?

I have always loved teaching science. It is so often left behind or pushed aside. I think a lot of time that happens because teachers feel like they do not have enough background knowledge to teach high-quality science lessons or they think that the lessons will add to the already enormous workload teachers have. My district does not have an adopted or prescribed curriculum for teachers to follow, so we have a lot of freedom for when and how to make the time for STEAM.

The education resources [from NASA's Jet Propulsion Laboratory] have made it so easy for me to teach and get kids excited about science, and my kids absolutely love them. Our favorites always seem to be Make a Paper Mars Helicopter and Art and the Cosmic Connection.

Description in caption.

A student holds a paper Mars helicopter. Image courtesy: Jackie Prosser | + Expand image

I also am part of my district’s science pilot program. It has been so cool to be able to decide what curriculum to pilot and watch my students test it out and give feedback on their learning. Last year, I had the amazing opportunity to teach science for two elementary schools’ summer programs. My partner teacher and I got to create the curriculum for them, and we pulled a ton of lessons from the JPL Education website. It was by far the most fun I have ever had at a job.

Despite being a new teacher, you’ve already seen so much. How have you navigated the changing landscape?

I have an amazing network of teachers supporting me at every turn. My grade-level team and my friends from my credential program are some of the most amazing people and educators I have ever met. There is no way I would be able to get through the more difficult aspects of teaching without them.

I am also coaching the boys soccer team, directing the school’s "Lion King Jr." play, contributing to the science pilot program, and serving on the social committee for teachers and staff. I love using these different roles to make connections with not just my students, but also students from all grades.


Looking for ways to bring NASA STEM into your classroom or already have a great idea? The Education Office at NASA's Jet Propulsion Laboratory serves educators in the greater Los Angeles area. Contact us at education@jpl.nasa.gov.

Explore More

TAGS: Teachers, School, Remote School, Classroom, Instruction, K-12, Fourth Grade, STEAM, Science, Math, Art, UC Riverside, resources, lessons

  • Brandon Rodriguez
READ MORE

Collage of spacecraft featured in the 2022 NASA Pi Day Challenge

Graphic showing the various spacecraft featured in the 2022 NASA Pi Day Challenge overlaid with text that reads NASA Pi Day Challenge Answers

Learn about pi and some of the ways the number is used at NASA. Then, dig into the science behind the Pi Day Challenge.


Update: March 15, 2022 – The answers are here! Visit the NASA Pi Day Challenge slideshow to view the illustrated answer keys for each of the problems in the 2022 challenge.

In the News

No matter what Punxsutawney Phil saw on Groundhog Day, a sure sign that spring approaches is Pi Day. Celebrated on March 14, it’s the annual holiday that pays tribute to the mathematical constant pi – the number that results from dividing any circle's circumference by its diameter.

Every year, Pi Day gives us a reason to not only celebrate the mathematical wonder that helps NASA explore the universe, but also to enjoy our favorite sweet and savory pies. Students can join in the fun by using pi to explore Earth and space themselves in our ninth annual NASA Pi Day Challenge.

Read on to learn more about the science behind this year's challenge and find out how students can put their math mettle to the test to solve real problems faced by NASA scientists and engineers as we explore Earth, the Moon, Mars, and beyond!
Infographic of all of the Pi in the Sky 9 graphics and problems

Visit the Pi in the Sky 9 lesson page to explore classroom resources and downloads for the 2022 NASA Pi Day Challenge. Image credit: NASA/JPL-Caltech | + Expand image

An spacecraft orbiting the Moon shines a laser into a dark crater.

This artist's concept shows the Lunar Flashlight spacecraft, a six-unit CubeSat designed to search for ice on the Moon's surface using special lasers. Image credit: NASA/JPL-Caltech | › Full image details

Dome-covered seismometer sits on the surface of Mars while clouds pass overhead.

Clouds drift over the dome-covered seismometer, known as SEIS, belonging to NASA's InSight lander, on Mars. Credit: NASA/JPL-Caltech. | › Full image and caption

The SWOT spacecraft passes over Florida, sending signals and collecting data.

This animation shows the collection of data over the state of Florida, which is rich with rivers, lakes and wetlands. Credits: NASA/JPL-Caltech | + Expand image

A spacecraft points to a star that has three planets orbiting it.

Illustration of NASA’s Transiting Exoplanet Survey Satellite (TESS). Credits: NASA | + Expand image

How It Works

Dividing any circle’s circumference by its diameter gives you an answer of pi, which is usually rounded to 3.14. Because pi is an irrational number, its decimal representation goes on forever and never repeats. In 2021, a supercomputer calculated pi to more than 62 trillion digits. But you might be surprised to learn that for space exploration, NASA uses far fewer digits of pi.

Here at NASA, we use pi to understand how much signal we can receive from a distant spacecraft, to calculate the rotation speed of a Mars helicopter blade, and to collect asteroid samples. But pi isn’t just used for exploring the cosmos. Since pi can be used to find the area or circumference of round objects and the volume or surface area of shapes like cylinders, cones, and spheres, it is useful in all sorts of ways. Architects use pi when designing bridges or buildings with arches; electricians use pi when calculating the conductance of wire; and you might even want to use pi to figure out how much frozen goodness you are getting in your ice cream cone.

In the United States, March 14 can be written as 3.14, which is why that date was chosen for celebrating all things pi. In 2009, the U.S. House of Representatives passed a resolution officially designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi. And that's precisely what the NASA Pi Day Challenge is all about!

The Science Behind the 2022 NASA Pi Day Challenge

This ninth installment of the NASA Pi Day Challenge includes four brain-busters that get students using pi to measure frost deep within craters on the Moon, estimate the density of Mars’ core, calculate the water output from a dam to assess its potential environmental impact, and find how far a planet-hunting satellite needs to travel to send data back to Earth.

Read on to learn more about the science and engineering behind the problems or click the link below to jump right into the challenge.

› Take the NASA Pi Day Challenge

› Educators, get the lesson here!

Lunar Logic

NASA’s Lunar Flashlight mission is a small satellite that will seek out signs of frost in deep, permanently shadowed craters around the Moon’s south pole. By sending infrared laser pulses to the surface and measuring how much light is reflected back, scientists can determine which areas of the lunar surface contain frost and which are dry. Knowing the locations of water-ice on the Moon could be key for future crewed missions to the Moon, when water will be a precious resource. In Lunar Logic, students use pi to find out how much surface area Lunar Flashlight will measure with a single pulse from its laser.

Core Conundrum

Since 2018, the InSight lander has studied the interior of Mars by measuring vibrations from marsquakes and the “wobble” of the planet as it rotates on its axis. Through careful analysis of the data returned from InSight, scientists were able to measure the size of Mars’ liquid core for the first time and estimate its density. In Core Conundrum, students use pi to do some of the same calculations, determining the volume and density of the Red Planet’s core and comparing it to that of Earth’s core.

Dam Deduction

The Surface Water and Ocean Topography, or SWOT mission will conduct NASA's first global survey of Earth's surface water. SWOT’s state-of-the-art radar will measure the elevation of water in major lakes, rivers, wetlands, and reservoirs while revealing unprecedented detail on the ocean surface. This data will help scientists track how these bodies of water are changing over time and improve weather and climate models. In Dam Deduction, students learn how data from SWOT can be used to assess the environmental impact of dams. Students then use pi to do their own analysis, finding the powered output of a dam based on the water height of its reservoir and inferring potential impacts of this quick-flowing water.

Telescope Tango

The Transiting Exoplanet Survey Satellite, or TESS, is designed to survey the sky in search of planets orbiting bright, nearby stars. TESS does this while circling Earth in a unique, never-before-used orbit that brings the spacecraft close to Earth about once every two weeks to transmit its data. This special orbit keeps TESS stable while giving it an unobstructed view of space. In its first two years, TESS identified more than 2,600 possible exoplanets in our galaxy with thousands more discovered during its extended mission. In Telescope Tango, students will use pi to calculate the distance traveled by TESS each time it sends data back to Earth.

Teach It

Celebrate Pi Day by getting students thinking like NASA scientists and engineers to solve real-world problems in NASA Pi Day Challenge. Completing the problem set and reading about other ways NASA uses pi is a great way for students to see the importance of the M in STEM.

Pi Day Resources

Plus, join the conversation using the hashtag #NASAPiDayChallenge on Facebook, Twitter, and Instagram.

Recursos en español

Related Lessons for Educators

Related Activities for Students

Explore More

Infographic

Facts and Figures

Missions and Instruments

Websites

TAGS: Pi Day, Pi, Math, NASA Pi Day Challenge, Moon, Lunar Flashlight, Mars, InSight, Earth, Climate, SWOT, Exoplanets, Universe, TESS, Teachers, Educators, Parents, Students, Lessons, Activities, Resources, K-12

  • Lyle Tavernier
READ MORE

Collage of top 10 educational resources from NASA/JPL for 2021

In 2021, we added nearly 80 STEM education resources to our online catalog of lessons, activities, articles, and videos for educators, students, and families. The resources feature NASA's latest missions exploring Earth, the Moon, Mars, asteroids, the Solar System and the universe beyond. Here are the 10 resources our audiences visited most this year.


Collage of people participating in the Mission to Mars Student Challenge

NASA's Mission to Mars Student Challenge

To kick off the year, we invited students, educators, and families from around the world to create their own mission to Mars as we counted down to the Perseverance rover's epic landing on the Red Planet in February. More than one million students participated in the Mission to Mars Student Challenge, which features seven weeks of guided education plans, student projects, and expert talks and interviews highlighting each phase of a real Mars mission.

It's no surprise that this was our most popular product of the year. And good news: It's still available and timely! With Perseverance actively exploring Mars and making new discoveries all the time, the challenge offers ongoing opportunities to get students engaged in real-world STEM.

Need a primer on the Perseverance Mars rover mission, first? This article from our Teachable Moments series has you covered.


Animated image showing the planets at their relative distances.

Solar System Size and Distance

This video offers a short and simple answer to two of students' most enduring questions: How do the sizes of planets compare and how far is it between them? Plus, it gets at why we don't often (or ever) see images that show all the planets' sizes and distances to scale. Spoiler alert: It's pretty much impossible to do.

Get students exploring solar system size and distance in more detail and even making their own scale models with this student project.


Animated screenshot of an example Mars Helicopter Video Game on Scratch

Code a Mars Helicopter Video Game

As you'll soon see from the rest of this list, coding projects were a big draw this year. This one took off along with Ingenuity, the first helicopter designed to fly on Mars, which made its historic first flight in April. Designed as a test of technology that could be used on future missions, Ingenuity was only slated for a few flights, but it has far exceeded even that lofty goal.

In this project, students use the free visual programming language Scratch to create a game inspired by the helicopter-that-could.


A person holds the Moon phases calendar out in front of them.

Make a Moon Phases Calendar and Calculator

Just updated for 2022, this project is part educational activity and part art for your walls. Students learn about moon phases to complete this interactive calendar, which shows when and where to see moon phases throughout the year, plus lists moon events such as lunar eclipses and supermoons. The art-deco inspired design might just have you wanting to make one for yourself, too.


NASA Pi Day Challenge illustration

The NASA Pi Day Challenge

This year marked the eighth installment of our annual Pi Day Challenge, a set of illustrated math problems featuring pi (of course) and NASA missions and science. Don't let the name fool you – these problems are fun to solve year round.

Students can choose from 32 different problems that will develop their math skills while they take on some of the same challenges faced by NASA scientists and engineers. New this year are puzzlers featuring the OSIRIS-REx asteroid mission, Mars helicopter, Deep Space Network, and aurora science.

Educator guides for each problem and problem set are also available here. And don't miss the downloadable posters and virtual meeting backgrounds.


Animated image showing a Mars image with a cartoon rover moving across the surface collecting sample tube icons

Code a Mars Sample Collection Video Game

Another coding challenge using the visual programming language Scratch, this project is inspired by the Perseverance Mars rover mission, which is collecting samples that could be brought back to Earth by a potential future mission.

While developing a gamified version of the process, students are introduced to some of the considerations scientists and engineers have to make when collecting samples on Mars.


Animation showing the Perseverance Mars rover aeroshell descending on Mars and the parachute deploying

Code a Mars Landing

As if launching a rover to Mars wasn't hard enough, you still have to land when you get there. And that means using a complex series of devices – from parachutes to jet packs to bungee cords – and maneuvers that have to be performed remotely using instructions programmed into the spacecraft's computer.

Students who are ready to take their programming skills to the next level can get an idea of what it takes in this project, which has them use Python and microcontrollers to simulate the process of landing a rover on Mars.


Coins stacked on top of a printed map of the Los Angeles area.

How Far Away is Space?

Without giving the answer away: It's not as far as you might think.

In this activity, students stack coins (or other objects) on a map of their local area as a scale model of the distance to space. The stacking continues to the International Space Station, the Moon, and finally to the future orbit of the James Webb Space Telescope, which is slated to launch on Dec. 22.


A person puts a shape onto the tangram rover outline.

Build a Rover and More With Shapes

You don't have to be a big kid to start learning about space exploration. This activity, which is designed for kids in kindergarten through second grade, has learners use geometric shapes called tangrams to fill in a Mars rover design. It provides an introduction to geometry and thinking spatially.

Once kids become experts at building rovers, have them try building rockets.


A person holds seven cards over the Space Voyagers game mat.

Space Voyagers: The Game

Technically a classroom activity (it is standards-aligned, after all), this game will appeal to students and strategy card game enthusiasts alike. Download and print out a set for your classroom (or your next game night).

Players work collaboratively to explore destinations including the Moon, Mars, Jupiter and Jupiter's Moon Europa with actual NASA spacecraft and science instruments while working to overcome realistic challenges at their destination including dust storms and instrument failures.

TAGS: K-12, Lessons, Activities, Education Resources, Teachers, Students, Families, Kids, Learning, STEM, Science, Engineering, Technology, Math, Coding, Programming, Mars, Solar System, Moon

  • Kim Orr
READ MORE

Illustration of a notebook with a to-do list for future space explorers. See caption for text-version of to-do list.

Whether you're looking for a career in STEM or space exploration, this three-part series will cover everything you need to know about the world of internships at NASA's Jet Propulsion Laboratory, the skills and experience hiring managers are looking for, and how you can set yourself on the right trajectory even before you get to college.


In a typical year, NASA's Jet Propulsion Laboratory brings in about 1,000 interns from schools across the country to take part in projects that range from building spacecraft to studying climate change to developing software for space exploration. One of 10 NASA centers in the United States, the Southern California laboratory receives thousands of applications. So what can students do to stand out and set themselves on the right trajectory?

We asked interns and the people who bring them to JPL about their tips for students and anyone interested in a STEM career or working at the Laboratory. We're sharing their advice in this three-part series.

First up: Learn about the kinds of opportunities available as well as where and how to apply.

The World of JPL Internships

If you found this article, you're probably already somewhat familiar with the work that goes on at JPL. But at a place that employs more than 6,000 people across hundreds of teams, it can be hard to keep track of it all.

In a broad sense, JPL explores Earth, other planets, and the universe beyond with robotic spacecraft – meaning no humans on board. But along with the engineers and scientists who design and build spacecraft and study the data they return, there are thousands of others working on all the in-between pieces that make Earth and space exploration possible and accessible to all. This includes software developers, machinists, microbiologists, writers, video producers, designers, finance and information technology professionals, and more.

Some of the best ways to learn about the Laboratory's work – and get a sense for the kinds of internships on offer – are to follow JPL news and social media channels, take part in virtual and in-person events such as monthly talks, and keep up on the latest research. There are also a host of articles and videos online about interns and employees and the kinds of work they do.

While STEM internships make up the majority of the Laboratory's offerings, there are a handful of opportunities for students studying other subjects as well. Depending on which camp you fit into, there are different places to apply.

Education Office Internships

The largest number of internships can be found on the JPL Education website. These opportunities, for students studying STEM, are offered through about a dozen programs catered to college students of various academic and demographic backgrounds. This includes programs for students attending community college, those at minority-serving institutions, and others at Los Angeles-area schools.

Students apply to a program, or programs, rather than a specific opening. (See the program details for more information about where to apply and what you will need.) It's then up to the folks with open opportunities, the mentors, to select applicants who are the best match for their project.

It may seem odd to send an application into the void with no idea of what offer might return. But there is a good reason behind the process, says Jenny Tieu, a project manager in JPL's Education Office, which manages the Laboratory's STEM internship programs.

"Applying to a specific program allows for the applicant to be seen by a much broader group of hiring managers and mentors and be considered for more opportunities as a result," says Tieu. "We look at the resumes that come in to see what skills are compatible with open projects and then match students to opportunities they may not have even realized were available to them."

Shirin Nataneli says she wouldn't have known there was an internship for her at the Laboratory were it not for a suggestion to apply from her professor. In 2020, Nataneli graduated from UCLA with a Bachelor's degree in biology. She was on the pre-med track, studying for the MCAT, when she decided to take a couple of courses in computer science.

"I got sucked in," says the Santa Monica College student and JPL intern, who is using computer science to help her team classify extreme bacteria that can survive on spacecraft. "I didn't even know there was an intersection between computer science and biology, but somehow I found a group at JPL that does just that."

Shirin Nataneli holds out her hand, showcasing the JPL campus in the background.

Shirin Nataneli poses for a photo with the JPL campus in the background. Image courtesy: Shirin Nataneli | + Expand image

University Recruiting Opportunities

For college students who are interested in space exploration but studying other fields, such as business, communications, and finance, as well as those studying STEM, there are additional opportunities on the JPL Jobs website. Listed by opportunity, more like a traditional job opening, these internships are managed by the Laboratory's University Recruiting team, which is active on LinkedIn and Instagram and can often be found at conferences and career fairs.

The When, What, and Where

Both Education Office and University Recruiting opportunities are paid and require a minimum 3.00 GPA, U.S. citizenship or legal permanent resident status, as well as an initial commitment of 10 weeks. Applicants must be enrolled in a college undergraduate or graduate program to be eligible. (See "The Pre-College Trajectory" section of this article below to learn about what high-school and younger students can do to prepare for a future JPL internship or STEM career.)

After pivoting to fully remote internships during the COVID-19 pandemic, JPL has continued to offer some remote or hybrid internships now that the Los Angeles-area campus has opened back up.

"We know that remote internships are effective," says Tieu. "Interns have said that they're able to foster connections with JPL employees and gain valuable experience even from home." She notes that while in-person internships give students maximum exposure to JPL – including visits to Laboratory attractions like mission control, the "clean room" where spacecraft are built, and a rover testing ground called the Mars Yard – remote internships have had a positive impact on students who previously weren't able to participate in person due to life constraints.

Most programs offer housing and travel allowances to students attending universities outside the 50-mile radius of JPL, so be sure to check the program details if traveling to or living in the Los Angeles area could be tricky financially.

Full-time and part-time opportunities can be found throughout the year with most openings in the summertime for full-time interns, meaning 40 hours per week. For summer opportunities, Tieu recommends applying no later than November or December. Applicants can usually expect to hear back by April if they are going to receive an offer for summer, but it's always a good idea to keep yourself in the running, as applicants may be considered for school-year opportunities.

Tieu adds, "If you haven't heard back, and you're closing in on the six-month mark of when you submitted your application, I recommend students go back in and renew their application [for the programs listed on the JPL Education website] so that it remains active in the candidate pool for consideration."

And unlike job applications, where it's sometimes frowned upon to apply to multiple positions at once, it's perfectly alright – and even encouraged – to apply to multiple internships.

You may also want to consider these opportunities, especially if you're looking for internships at other NASA centers, you're a foreign citizen, or you're interested in a postdoc position:

The most important thing is to not count yourself out, says Tieu. "If you're interested, work on that resume, get people to review your resume and provide input and feedback and apply. We don't expect students to come in knowing how to do everything. We're looking for students with demonstrated problem-solving, teamwork, and leadership skills. Software and other technical skills are an added bonus and icing on the cake."

More on that next, plus advice from JPL mentors on the skills and experience they look for from potential interns.

Skills for Space Explorers

JPL is known for doing the impossible, whether it's sending spacecraft to the farthest reaches of our solar system or landing a 2,000-pound rover on Mars. But potential applicants may be surprised to learn that reputation wasn't earned by always having the right answer on the first try – or even the second, third, or fourth.

A black and white photo shows a desert scrub area. Five men lay on the ground and behind them is a rudimentary rocket motor with hoses leading to a device proped up on a stack of sandbags.

JPL's founders, several Caltech graduate students led by Frank Malina along with rocket enthusiasts from the Pasadena area, take a break from setting up their experimental rocket motor in the Arroyo Seco, north of Pasadena, California. Image credit: NASA/JPL-Caltech | + Expand image

In fact, the Laboratory has always had a penchant for experimentation, starting with its founders, Caltech students who in the 1930s would test rockets in the stairwells at their university. They had so many colossal (and dangerous) failures that they were banished to a dry riverbed north of Pasadena, which is now the site of JPL. Eventually, their rockets were successful and the laboratory they founded went on to build and launch the first American space satellite and send dozens of spacecraft to worlds throughout the solar system. But that trial-and-error attitude still permeates the Laboratory today.

As a result, potential interns who show enthusiasm and a willingness to learn, overcome obstacles, and work as part of a team often stand out more than those with academic achievements alone.

Standing Out

In an informal survey of JPL mentors, respondents most often cited problem-solving, communication, and teamwork skills as well as passion for learning and grit as the soft skills they look for when considering potential interns. Respondents added that students who can provide specific examples of these skills on their resume – and speak to them in an interview – stand out the most.

That doesn't necessarily have to mean leading your school’s robotics club or serving as your geology professor's teaching assistant, although those things don't hurt. But also consider less traditional examples, such as how critical thinking helps you overcome challenges while rock climbing or how you used leadership and teamwork to organize your friends to create a group costume for Comic Con.

"Students who share a link to their GitHub repository or online portfolio stand out to me because it shows they took the initiative and took time to build, develop, and create something on their own," says K'mar Grant-Smith, a JPL mentor who leads a team of developers in supporting and maintaining applications for the Laboratory's missions. "That vouches for you better than saying, 'I know these [coding] languages, and I took these courses.'"

Laurie Barge is a JPL scientist who co-leads an astrobiology lab exploring the possibility of life beyond Earth. The lab annually hosts about a dozen students and postdocs. Barge says that the top qualities she looks for in an intern are an expressed interest in her research and JPL as a whole as well as teamwork skills. "I look for students who are excited about the fact that they'll be working with 10 other students and postdocs and collaborating with other people on papers and abstracts."

Barge and Flores pose for a photo in a lab with test tubes and scientific devices surrounding them.

Astrobiologist Laurie Barge, left, and former intern Erika Flores, right, pose for a photo in the Origins and Habitability Lab that Barge co-leads at JPL. Image credit: NASA/JPL-Caltech | + Expand image

Teamwork is also key for students working in engineering, software, or any other capacity across the Laboratory. When it comes to designing missions to go where nothing has gone before, collaboration between multi-disciplinary teams is a must.

In terms of technical skills, knowledge of coding languages is the most sought after, with Python, MATLAB, and C languages leading the pack. And in certain groups, like the one that helps identify where it's safe to land spacecraft on Mars, experience with specialized tools like Geographic Information Systems, or GIS, can help applicants stand out.

Still, for many mentors, enthusiasm and a willingness to learn and be proactive are far more important than any technical skill.

"You don't have to be the most technically savvy person. If you have the initiative, the drive, and some experience, I find that to be more important than knowing 16 different [coding] languages," says Grant-Smith. "JPL is a unique place full of very smart people, but we're not good at what we do just because we have the know-how. We also have the drive and a passion for it."

Getting Involved

So you're a rock-climbing Red Planet enthusiast who likes to create "Dune"-inspired stillsuits when you're not busy at your part-time job making frappuccinos with your fellow baristas. How do you improve the chances this information will land on a JPL mentor's desk?

In a sentence: Build a strong network. So says Rebecca Gio of what made all the difference when she was struggling to find her academic groove right after high school. After a year spent repeating classes, changing schools, and feeling discouraged about what was next, Gio discovered what she needed to change her trajectory. She joined clubs and organizations that aligned with her career goals, formed study groups with her peers, found a mentor who could help her navigate everything from college classes to internship opportunities, and wasn't afraid to ask when she had a question.

Now, Gio is thriving – academically and on her career path. She's a junior studying computer science at Cal Poly Pomona and a first-time intern at JPL, where she's testing the software that will serve as the brains of a spacecraft designed to explore Jupiter's moon Europa.

"Being part of a community and being with people who have gone through similar experiences and can push you to do better, I think that that is just super motivating," says Gio.

JPL Education Program Manager Jenny Tieu agrees. “Along with academic achievements, we’re looking for students with diverse backgrounds, perspectives, and life experiences who can work collaboratively to learn, adapt to new situations, and solve problems.”

A new employee sits across from a program coordinator in an office setting.

Jenny Tieu catches up with Brandon Murphy, who came to the Laboratory as an intern in 2016 through a program Tieu manages, and soon after, was hired full-time. Image credit: NASA/JPL-Caltech | + Expand image

To that end, she suggests students get involved in campus STEM clubs and communities, NASA challenges and activities, and volunteer opportunities, which offer career experiences, introduce students to a network of peers and professionals, and look great on a resume.

Tieu leads a JPL internship program that partners with historically Black colleges and universities and other minority-serving institutions. She says that one way students get connected with the program is by word-of-mouth from current and former participants, who include students and faculty researchers.

"We see a lot of great allyship with interns and research fellows telling their classmates about their experience at JPL, how to apply, and what to expect," says Tieu. "We foster deep relationships with our partner campuses and their faculty as well." In other words, students may not have to look farther than their own professors, campus info sessions, or career fairs to learn about opportunities at the Laboratory.

A career fair is where Gio first connected with JPL's University Recruiting team after what she jokingly calls "stalking" them from LinkedIn to Handshake to the Grace Hopper conference – where she eventually handed over her resume. "Just get familiar with where JPL is going to be and try to make sure that you're there," says Gio.

Rebecca and her mom and sister pose for a photo in the lobby of JPL's mission control with NASA/JPL logo behind them.

Rebecca Gio (right) poses for a photo with her mom and sister (left) in the lobby of the Laboratory's mission control building during the Explore JPL event in 2019. Gio says her mom and sister are her two biggest supporters and the reason behind all of her success. Image courtesy Rebecca Gio | + Expand image

In the sciences especially, those connections can also be made through a shared interest in a particular area of research. Barge says that most of the students she brings to JPL find out about her research from a peer or professor, exploring the lab's website, or from reading papers her team has published. Then, they reach out to her directly. This way she can create a position suited to a student's skills while also finding out if their interests mesh with the team.

"I want to know why they're interested in JPL and not a different institution," says Barge. "Why do they want to work with me and not another person at JPL? Why do they want to do this research and what specifically would they like to gain from this internship experience? I'm trying to figure out who really, really wants this particular opportunity."

As Gio points out, it's often the same advice that applies whether you're looking for an internship at JPL or in STEM or a future career.

"If you really want it, if you really want to be a STEM professional, make the most of your education, and find ways to apply those skills," says Gio. "I made sure that I was a part of campus groups where I was doing extra projects outside of schoolwork. I made sure that I was talking to other students to learn what they were doing. There's a lot of opportunities now to learn online for free. If there's something that you think would interest you, just go and do it."

Next, we'll share more ways students can prepare for a future internship or career in STEM before they get to college, plus resources parents and teachers can use to get younger students practicing STEM skills.

The Pre-College Trajectory

First, let's address one of the most common questions we get when it comes to internships at JPL. As of this writing, the Laboratory does not offer an open call for high-school interns. For most of the past several years, JPL has been able to bring in just a handful of high-school students from underserved communities thanks to partnerships with local school districts.

That's not to say that there won't be an open call for high-school internships at JPL in the future. If and when opportunities become available, they'll be posted here on the JPL Education website.

That said, there's still plenty students can and should do before college or when they're just entering college to explore STEM fields, get hands-on experience, and practice the skills they'll need for a future internship or career.

Exploring STEM Fields

Ota Lutz, a former classroom teacher, leads JPL's K-12 education team, which takes the Laboratory's science, engineering, and technical work and translates it into STEM education resources for teachers, students, and families.

Other than exploring high-school internships at other organizations, Lutz says that students in grades K-12 can get hands-on experience through clubs, competitions, and camps offered in person and online.

Schools often have engineering, robotics, math, and science clubs, but if not, look for one in your community or encourage students to start their own, perhaps with the help of a teacher.

Five girls assemble their invention, decorated with a starry decale, as a crowd looks on.

JPL's Invention Challenge is an annual engineering competition for middle and high school students. In 2017, a team (pictured) traveled all the way from Ethiopia to participate. | › Read the news story

JPL hosts annual science and engineering competitions while NASA hosts a slew of other competitions, including essay contests with opportunities to interact with scientists and even name spacecraft.

If cost is an issue for camps or competitions, Lutz recommends that parents or guardians reach out to the host organization to see if scholarships are available and that they explore free events offered by groups such as NASA's Solar System Ambassadors and Night Sky Network as well as programs at museums, science centers, and libraries in their community.

NASA also offers a number of citizen science projects that give students (and adults) opportunities to contribute to real research, from identifying near-Earth asteroids to observing and cataloging clouds to searching for planets beyond our solar system.

Building Foundational Skills

All of the above can help students explore whether they might be interested in STEM, but it's also important that kids start practicing the skills they will need to succeed academically and in a future internship or career.

"Developing those foundational STEM and language arts skills is incredibly important to future success," says Lutz, adding that, generally, students should practice what are called scientific habits of mind, "learning how to think critically, problem solve and do so in a methodical way as well as learning to examine data to determine trends without personal bias."

One way students can gain skills and knowledge directly related to a future STEM internship or career is by trying these educational projects and activities offered free online from the JPL Education Office. (Teachers can explore this page to find out how to turn these activities into standards-aligned classroom lessons.) Activities include engineering projects and science experiments as well as math and coding challenges, all of which feature the latest NASA missions and science.

A group of kids stands along a railing and drops their lunar lander designs to see how they perform.

Students test their designs as part of the "Make an Astronaut Lander" activity on the JPL Education website. | + Expand image

Coding skills, in particular, will serve students well no matter what career path they take, says Lutz. "Coding is something that is applicable across a broad range of subject areas and majors, so we strongly encourage students to learn some coding."

She points to the plethora of online courses and tutorials in coding and other STEM subjects that give students a chance to explore on their own and work on projects that interest them.

Parents and guardians can also help their kids develop foundational skills by allowing them to explore and tinker at home. "In every house, there's something that needs fixing," says Lutz. "Have the kid figure out how to fix a wobbly chair, but be patient with mistakes and encourage them to keep trying." That persistence and determination in overcoming obstacles will come in handy throughout their education and career path, whether it's learning how to code, getting into a robotics club in high school, applying and reapplying for internships, or figuring out how to land a spacecraft on Mars.

Similarly, it's never too early to start learning those ever-important soft skills such as teamwork, communication, and leadership. There's no single or right place to gain these skills, rather they come from a range of experiences that can include a school project, a part-time job, or a volunteer opportunity.

Ota Lutz stands behind a tabletop Mars globe and speaks with a group of people

Ota Lutz, who leads the Laboratory's K-12 education team, speaks with a group of JPL employees during a Pi Day event. | + Expand image

Lutz grew up in a small town in Central California and says, "I was a smart kid, but these things called soft skills were beyond me, and I was the shyest kid in my class." That is until she joined her high school's service club. "Through volunteering, I ended up interacting with people from all walks of life and learned how to work with teams. My club advisor coached me, and I started taking on more leadership roles in the club and in class projects."

Later, it was that same club advisor and her youth pastor who encouraged Lutz to attend a college that would challenge her academically despite pressures to stay closer to home.

"You never know what experiences or conversations might open up opportunities for you," says Lutz, which is why she recommends that students get comfortable talking with peers and teachers – and especially asking questions. "It's really important to learn to ask questions so you build your confidence in learning and also develop relationships with people."

Launching into College

As Lutz experienced, those foundational skills can make all the difference when it comes to transitioning into college, too.

"When I got to college, I discovered I was woefully unprepared even though I had been at the top of my class in high school," says Lutz. "I never learned how to study, and I mistakenly believed that asking questions would make me look dumb. After struggling on my own for a couple of years, I learned that study groups existed and they helped me get to know my peers, build my confidence, and improve my GPA."

While building a support network is key, don't overload yourself the first year, Lutz says. But do start taking classes in the field you're interested in to see if it's the right fit. "The important thing is getting some experience in the field that you think you want to go into."

After that, internships, whether they're at JPL, NASA or elsewhere, will give you an even deeper look at what a future career might be like. When the time comes, you'll know exactly where to look to set yourself on the right trajectory – that is just above under "The World of JPL Internships" and "Skills for Space Explorers."


The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Internships, Students, Careers, Science, Computer Science, Engineering, Math, Programs, University Recruiting, Undergraduate, Graduate, College, High School, Mentors

  • Kim Orr
READ MORE

Illustration of spacecraft on a light blue background that reads "NASA Pi Day Challenge"

Cartoonish illustration of spacecraft on a dark purple background with various pi formulas

Update: March 15, 2021 – The answers are here! Visit the NASA Pi Day Challenge slideshow to view the illustrated answer keys (also available as a text-only doc) with each problem.


Learn about pi and the history of Pi Day before exploring some of the ways the number is used at NASA. Then, try the math for yourself in our Pi Day Challenge.

Infographic of all of the Pi in the Sky 7 graphics and problems

Visit the Pi in the Sky 8 lesson page to explore classroom resources and downloads for the 2021 NASA Pi Day Challenge. Image credit: NASA/JPL-Caltech | + Expand image

In this black and white animated image, a circular device stretched out from a robotic arm descends quickly toward a rocky surface, touches it, and then ascends as debris flies all around.

Captured on Oct. 20, 2020, during the OSIRIS-REx mission’s Touch-And-Go (TAG) sample collection event, this series of images shows the SamCam imager’s field of view as the NASA spacecraft approached and touched asteroid Bennu’s surface. Image credit: NASA/Goddard/University of Arizona | › Full image and caption

The Ingenuity Mars helicopter has a small box-like body topped by two sets of oblong blades. Four stick-like legs extend from the body of the helicopter.

In this illustration, NASA's Ingenuity Mars Helicopter stands on the Red Planet's surface as NASA's Perseverance rover (partially visible on the left) rolls away. Image credit: NASA/JPL-Caltech | › Full image and caption

A giant dish with a honeycomb-patterned device at its center is shown in a desert landscape.

This artist's concept shows what Deep Space Station-23, a new antenna dish capable of supporting both radio wave and laser communications, will look like when completed at the Deep Space Network's Goldstone, California, complex. Image credit: NASA/JPL-Caltech | + Expand image

A swirling fabric of glowing neon green, orange, and pink extends above Earth's limb. A partial silhouette of the ISS frames the right corner of the image.

Expedition 52 Flight Engineer Jack Fischer of NASA shared photos and time-lapse video of a glowing green aurora seen from his vantage point 250 miles up, aboard the International Space Station. This aurora photo was taken on June 26, 2017. Image credit: NASA | › Full image and caption

In the News

As March 14 approaches, it’s time to get ready to celebrate Pi Day! It’s the annual holiday that pays tribute to the mathematical constant pi – the number that results from dividing any circle's circumference by its diameter.

Pi Day comes around only once a year, giving us a reason to chow down on our favorite sweet and savory pies while we appreciate the mathematical marvel that helps NASA explore Earth, the solar system, and beyond. There’s no better way to observe this day than by getting students exploring space right along with NASA by doing the math in our Pi Day Challenge. Keep reading to find out how students – and you – can put their math mettle to the test and solve real problems faced by NASA scientists and engineers as they explore the cosmos!

How It Works

Dividing any circle’s circumference by its diameter gives us pi, which is often rounded to 3.14. However, pi is an irrational number, meaning its decimal representation goes on forever and never repeats. Pi has been calculated to 50 trillion digits, but NASA uses far fewer for space exploration.

Some people may think that a circle has no points. In fact, a circle does have points, and knowing what pi is and how to use it is far from pointless. Pi is used for calculating the area and circumference of circular objects and the volume of shapes like spheres and cylinders. So it's useful for everyone from farmers storing crops in silos to manufacturers of water storage tanks to people who want to find the best value when ordering a pizza. At NASA, we use pi to find the best place to touch down on Mars, study the health of Earth's coral reefs, measure the size of a ring of planetary debris light years away, and lots more.

In the United States, one format to write March 14 is 3.14, which is why we celebrate on that date. In 2009, the U.S. House of Representatives passed a resolution officially designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi. And you're in luck, because that's precisely what the NASA Pi Day Challenge is all about.

The Science Behind the 2021 NASA Pi Day Challenge

This year, the NASA Pi Day Challenge offers up four brain-ticklers that will require students to use pi to collect samples from an asteroid, fly a helicopter on Mars for the first time, find efficient ways to talk with distant spacecraft, and study the forces behind Earth's beautiful auroras. Learn more about the science and engineering behind the problems below or click the link below to jump right into the challenge. Be sure to check back on March 15 for the answers to this year’s challenge.

› Take the NASA Pi Day Challenge

› Educators, get the lesson here!

Sample Science

NASA’s OSIRIS-REx mission has flown to an asteroid and collected a sample of surface material to bring back to Earth. (It will arrive back at Earth in 2023.) The mission is designed to help scientists understand how planets form and add to what we know about near-Earth asteroids, like the one visited by OSIRIS-REx, asteroid Bennu. Launched in 2016, OSIRIS-REx began orbiting Bennu in 2018 and successfully performed its maneuver to retrieve a sample on October 20, 2020. In the Sample Science problem, students use pi to determine how much of the spacecraft's sample-collection device needs to make contact with the surface of Bennu to meet mission requirements for success.

Whirling Wonder

Joining the Perseverance rover on Mars is the first helicopter designed to fly on another planet. Named Ingenuity, the helicopter is a technology demonstration, meaning it's a test to see if a similar device could be used for a future Mars mission. To achieve the first powered flight on another planet, Ingenuity must spin its blades at a rapid rate to generate lift in Mars’ thin atmosphere. In Twirly Whirly, students use pi to compare the spin rate of Ingenuity’s blades to those of a typical helicopter on Earth.

Signal Solution

NASA uses radio signals to communicate with spacecraft across the solar system and in interstellar space. As more and more data flows between Earth and these distant spacecraft, NASA needs new technologies to improve how quickly data can be received. One such technology in development is Deep Space Optical Communications, which will use near-infrared light instead of radio waves to transmit data. Near-infrared light, with its higher frequency than radio waves, allows for more data to be transmitted per second. In Signal Solution, students can compare the efficiency of optical communication with radio communication, using pi to crunch the numbers.

Force Field

Earth’s magnetic field extends from within the planet to space, and it serves as a protective shield, blocking charged particles from the Sun. Known as the solar wind, these charged particles of helium and hydrogen race from the Sun at hundreds of miles per second. When they reach Earth, they would bombard our planet and orbiting satellites were it not for the magnetic field. Instead, they are deflected, though some particles become trapped by the field and are directed toward the poles, where they interact with the atmosphere, creating auroras. Knowing how Earth’s magnetic field shifts and how particles interact with the field can help keep satellites in safe orbits. In Force Field, students use pi to calculate how much force a hydrogen atom would experience at different points along Earth’s magnetic field.

Teach It

Pi Day is a fun and engaging way to get students thinking like NASA scientists and engineers. By solving the NASA Pi Day Challenge problems below, reading about other ways NASA uses pi, and doing the related activities, students can see first hand how math is an important part of STEM.

Pi Day Resources

Plus, join the conversation using the hashtag #NASAPiDayChallenge on Facebook, Twitter, and Instagram.

Related Lessons for Educators

Related Activities for Students

TAGS: Pi, Pi Day, NASA Pi Day Challenge, Math, Mars, Perseverance, Ingenuity, Mars Helicopter, OSIRIS-REx, Bennu, Asteroid, Auroras, Earth, Magnetic Field, DSOC, Light Waves, DSN, Deep Space Network, Space Communications

  • Lyle Tavernier
READ MORE

Illustration of spacecraft on a light purple background that reads "NASA Pi Day Challenge"

Update: March 16, 2020 – The answers to the 2020 NASA Pi Day Challenge are here! View the illustrated answer key (also available as a text-only doc).


In the News

Our annual opportunity to indulge in a shared love of space exploration, mathematics and sweet treats has come around again! Pi Day is the March 14 holiday that celebrates the mathematical constant pi – the number that results from dividing any circle's circumference by its diameter.

Infographic of all of the Pi in the Sky 7 graphics and problems

Visit the Pi in the Sky 7 lesson page to explore classroom resources and downloads for the 2019 NASA Pi Day Challenge. Image credit: NASA/JPL-Caltech | + Expand image

Overhead view of Mars with a comparison of the smaller landing ellipse made possible by Range Trigger technology

A new Mars landing technique called Range Trigger is reducing the size of the ellipse where spacecraft touch down. Image credit: NASA/JPL-Caltech | › Full image and caption

Composite image of the Kuiper Belt object Arrokoth from NASA's New Horizons spacecraft. Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Roman Tkachenko | › Full image and caption

Diagram of an airplane flying over a section of ocean with an example of the spectral data that CORAL collects

The CORAL mission records the spectra of light reflected from the ocean to study the composition and health of Earth's coral reefs. Image credit: NASA | + Expand image

Rays of bright orange and red shoot out diagonally from a blue circle surrounding the star Beta Pictoris

The star Beta Pictoris and its surrounding debris disk in near-infrared light. Image credit: ESO/A.-M. Lagrange et al. | › Full image and caption

Besides providing an excuse to eat all varieties of pie, Pi Day gives us a chance to appreciate some of the ways NASA uses pi to explore the solar system and beyond. You can do the math for yourself – or get students doing it – by taking part in the NASA Pi Day Challenge. Find out below how to test your pi skills with real-world problems faced by NASA space explorers, plus get lessons and resources for educators.

How It Works

The ratio of any circle's circumference to its diameter is equal to pi, which is often rounded to 3.14. But pi is what is known as an irrational number, so its decimal representation never ends, and it never repeats. Though it has been calculated to trillions of digits, we use far fewer at NASA.

Pi is useful for all sorts of things, like calculating the circumference and area of circular objects and the volume of cylinders. That's helpful information for everyone from farmers irrigating crops to tire manufacturers to soup-makers filling their cans. At NASA, we use pi to calculate the densities of planets, point space telescopes at distant stars and galaxies, steer rovers on the Red Planet, put spacecraft into orbit and so much more! With so many practical applications, it's no wonder so many people love pi!

In the U.S., 3.14 is also how we refer to March 14, which is why we celebrate the mathematical marvel that is pi on that date each year. In 2009, the U.S. House of Representatives passed a resolution officially designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi.

The NASA Pi Day Challenge

This year's NASA Pi Day Challenge poses four puzzlers that require pi to compare the sizes of Mars landing areas, calculate the length of a year for one of the most distant objects in the solar system, measure the depth of the ocean from an airplane, and determine the diameter of a distant debris disk. Learn more about the science and engineering behind the problems below or click the link to jump right into the challenge.

› Take the NASA Pi Day Challenge
› Educators, get the lesson here!

Mars Maneuver

Long before a Mars rover touches down on the Red Planet, scientists and engineers must determine where to land. Rather than choosing a specific landing spot, NASA selects an area known as a landing ellipse. A Mars rover could land anywhere within this ellipse. Choosing where the landing ellipse is located requires compromising between getting as close as possible to interesting science targets and avoiding hazards like steep slopes and large boulders, which could quickly bring a mission to its end. In the Mars Maneuver problem, students use pi to see how new technologies have reduced the size of landing ellipses from one Mars rover mission to the next.

Cold Case

In January 2019, NASA's New Horizons spacecraft sped past Arrokoth, a frigid, primitive object that orbits within the Kuiper Belt, a doughnut-shaped ring of icy bodies beyond the orbit of Neptune. Arrokoth is the most distant Kuiper Belt object to be visited by a spacecraft and only the second object in the region to have been explored up close. To get New Horizons to Arrokoth, mission navigators needed to know the orbital properties of the object, such as its speed, distance from the Sun, and the tilt and shape of its orbit. This information is also important for scientists studying the object. In the Cold Case problem, students can use pi to determine how long it takes the distant object to make one trip around the Sun.

Coral Calculus

Coral reefs provide food and shelter to many ocean species and protect coastal communities against extreme weather events. Ocean warming, invasive species, pollutants, and acidification caused by climate change can harm the tiny living coral organisms responsible for building coral reefs. To better understand the health of Earth's coral reefs, NASA's COral Reef Airborne Laboratory, or CORAL, mission maps them from the air using spectroscopy, studying how light interacts with the reefs. To make accurate maps, CORAL must be able to differentiate among coral, algae and sand on the ocean floor from an airplane. And to do that, it needs to calculate the depth of the ocean at every point it maps by measuring how much sunlight passes through the ocean and is reflected upward from the ocean floor. In Coral Calculus, students use pi to measure the water depth of an area mapped by the CORAL mission and help scientists better understand the status of Earth's coral reefs.

Planet Pinpointer

Our galaxy contains billions of stars, many of which are likely home to exoplanets – planets outside our solar system. So how do scientists decide where to look for these worlds? Using data gathered by NASA's Spitzer Space Telescope, researchers found that they're more likely to find giant exoplanets around young stars surrounded by debris disks, which are made up of material similar to what's found in the asteroid belt and Kuiper Belt in our solar system. Sure enough, after discovering a debris disk around the star Beta Pictoris, researchers later confirmed that it is home to at least two giant exoplanets. Learning more about Beta Pictoris' debris disk could give scientists insight into the formation of these giant worlds. In Planet Pinpointer, put yourself in the role of a NASA scientist to learn more about Beta Pictoris' debris disk, using pi to calculate the distance across it.

Participate

Join the conversation and share your Pi Day Challenge answers with @NASAJPL_Edu on social media using the hashtag #NASAPiDayChallenge

Blogs and Features

Related Lessons for Educators

Related Activities for Students

NOAA Video Series: Coral Comeback

Multimedia

Facts and Figures

Missions and Instruments

Websites

TAGS: K-12 Education, Math, Pi Day, Pi, NASA Pi Day Challenge, Events, Space, Educators, Teachers, Parents, Students, STEM, Lessons, Problem Set, Mars 2020, Perseverance, Curiosity, Mars rovers, Mars landing, MU69, Arrokoth, New Horizons, Earth science, Climate change, CORAL, NASA Expeditions, coral reefs, oceans, Spitzer, exoplanets, Beta Pictoris, stars, universe, space telescope, Climate TM

  • Lyle Tavernier
READ MORE

Animated illustration of Earth orbiting the Sun

You may have noticed that there's an extra day on your calendar this year. That's not a typo; it's leap day! Leap day is another name for Feb. 29, a date that typically comes around every four years, during a leap year. Why doesn't Feb. 29 appear on the calendar every year? Read on to find out how the imperfect match between the length of a calendar year and Earth's orbit results in the need to make small adjustments to our calendar on a regular basis. Explore leap day resources for students, too.

The length of a year is based on how long it takes a planet to revolve around the Sun. Earth takes about 365.2422 days to make one revolution around the Sun. That's about six hours longer than the 365 days that we typically include in a calendar year. As a result, every four years we have about 24 extra hours that we add to the calendar at the end of February in the form of leap day. Without leap day, the dates of annual events, such as equinoxes and solstices, would slowly shift to later in the year, changing the dates of each season. After only a century without leap day, summer wouldn’t start until mid-July!

But the peculiar adjustments don't end there. If Earth revolved around the Sun in exactly 365 days and six hours, this system of adding a leap day every four years would need no exceptions. However, Earth takes a little less time than that to orbit the Sun. Rounding up and inserting a 24-hour leap day every four years adds about 45 extra minutes to every four-year leap cycle. That adds up to about three days every 400 years. To correct for that, years that are divisible by 100 don't have leap days unless they’re also divisible by 400. If you do the math, you'll see that the year 2000 was a leap year, but 2100, 2200 and 2300 will not be.

After learning more about leap years with this article from NASA's Space Place, students can do the math for themselves with this leap day problem set. Follow that up with writing a letter or poem to be opened on the next leap day. And since we've got an extra 24 hours this year, don't forget to take a little time to relax!

Explore More

Check out these related resources for kids from NASA Space Place:

TAGS: K-12 Education, Math, Leap Day, Leap Year, Events, Space, Educators, Teachers, Parents, Students, STEM, Lessons, Earth Science, Earth

  • Lyle Tavernier
READ MORE

Illustration of spacecraft against a starry background

Update: March 15, 2019 – The answers to the 2019 NASA Pi Day Challenge are here! View the illustrated answer key


In the News

The excitement of Pi Day – and our annual excuse to chow down on pie – is upon us! The holiday celebrating the mathematical constant pi arrives on March 14, and with it comes the sixth installment of the NASA Pi Day Challenge from the Jet Propulsion Laboratory’s Education Office. This challenge gives students in grades 6-12 a chance to solve four real-world problems faced by NASA scientists and engineers. (Even if you’re done with school, they’re worth a try for the bragging rights.)

https://www.jpl.nasa.gov/edu/teach/activity/pi-in-the-sky-6/

Visit the "Pi in the Sky 6" lesson page to explore classroom resources and downloads for the 2019 NASA Pi Day Challenge. Image credit: NASA/JPL-Caltech/Kim Orr | + Expand image

Why March 14?

Pi, the ratio of a circle’s circumference to its diameter, is what is known as an irrational number. As an irrational number, its decimal representation never ends, and it never repeats. Though it has been calculated to trillions of digits, we use far fewer at NASA. In fact, 3.14 is a good approximation, which is why March 14 (or 3/14 in U.S. month/day format) came to be the date that we celebrate this mathematical marvel.

The first-known Pi Day celebration occurred in 1988. In 2009, the U.S. House of Representatives passed a resolution designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi.

The 2019 Challenge

This year’s NASA Pi Day Challenge features four planetary puzzlers that show students how pi is used at the agency. The challenges involve weathering a Mars dust storm, sizing up a shrinking storm on Jupiter, estimating the water content of a rain cloud on Earth and blasting ice samples with lasers!

›Take on the 2019 NASA Pi Day Challenge!

The Science Behind the Challenge

In late spring of 2018, a dust storm began stretching across Mars and eventually nearly blanketed the entire planet in thick dust. Darkness fell across Mars’ surface, blocking the vital sunlight that the solar-powered Opportunity rover needed to survive. It was the beginning of the end for the rover’s 15-year mission on Mars. At its height, the storm covered all but the peak of Olympus Mons, the largest known volcano in the solar system. In the Deadly Dust challenge, students must use pi to calculate what percentage of the Red Planet was covered by the dust storm.

The Terra satellite, orbiting Earth since 1999, uses the nine cameras on its Multi-Angle Imaging SpectroRadiometer, or MISR, instrument to provide scientists with unique views of Earth, returning data about atmospheric particles, land-surface features and clouds. Estimating the amount of water in a cloud, and the potential for rainfall, is serious business. Knowing how much rain may fall in a given area can help residents and first responders prepare for emergencies like flooding and mudslides. In Cloud Computing, students can use their knowledge of pi and geometric shapes to estimate the amount of water contained in a cloud.

Jupiter’s Great Red Spot, a giant storm that has been fascinating observers since the early 19th century, is shrinking. The storm has been continuously observed since the 1830s, but measurements from spacecraft like Voyager, the Hubble Space Telescope and Juno indicate the storm is getting smaller. How much smaller? In Storm Spotter, students can determine the answer to that very question faced by scientists.

Scientists studying ices found in space, such as comets, want to understand what they’re made of and how they interact and react with the environment around them. To see what molecules may form in space when a comet comes into contact with solar wind or sunlight, scientists place an ice sample in a vacuum and then expose it to electrons or ultraviolet photons. Scientists have analyzed samples in the lab and detected molecules that were later observed in space on comet 67P/Churyumov-Gerasimenko. To analyze the lab samples, an infrared laser is aimed at the ice, causing it to explode. But the ice will explode only if the laser is powerful enough. Scientist use pi to figure out how strong the laser needs to be to explode the sample – and students can do the same when they solve the Icy Intel challenge.

Explore More

Participate

Join the conversation and share your Pi Day Challenge answers with @NASAJPL_Edu on social media using the hashtag #NASAPiDayChallenge

Blogs and Features

Related Activities

Multimedia

Facts and Figures

Missions and Instruments

Websites

TAGS: Pi Day, K-12, STEM, Science, Engineering, Technology, Math, Pi, Educators, Teachers, Informal Education, Museums, Earth Science, Earth, Climate Change

  • Lyle Tavernier
READ MORE