In the News

This summer, a global dust storm encircled Mars, blocking much of the vital solar energy that NASA’s Opportunity rover needs to survive. After months of listening for a signal, the agency has declared that the longest-lived rover to explore Mars has come to the end of its mission. Originally slated for a three-month mission, the Opportunity rover lived a whopping 14.5 years on Mars. Opportunity beat the odds many times while exploring the Red Planet, returning an abundance of scientific data that paved the way for future exploration.

Scientists and engineers are celebrating this unprecedented mission success, still analyzing data collected during the past decade and a half and applying lessons learned to the design of future spacecraft. For teachers, this historic mission provides lessons in engineering design, troubleshooting and scientific discovery.

How They Did It

Launched in 2003 and landed in early 2004, the twin Mars Exploration Rovers, Spirit and Opportunity, were the second spacecraft of their kind to land on our neighboring planet.

Preceded by the small Sojourner rover in 1997, Spirit and Opportunity were substantially larger, weighing about 400 pounds, or 185 kilograms, on Earth (150 pounds, or 70 kilograms, on Mars) and standing about 5 feet tall. The solar-powered rovers were designed for a mission lasting 90 sols, or Mars days, during which they would look for evidence of water on the seemingly barren planet.

Dust in the Wind

Scientists and engineers always hope a spacecraft will outlive its designed lifetime, and the Mars Exploration Rovers did not disappoint. Engineers at NASA’s Jet Propulsion Laboratory in Pasadena, California, expected the lifetime of these sun-powered robots to be limited by dust accumulating on the rovers’ solar panels. As expected, power input to the rovers slowly decreased as dust settled on the panels and blocked some of the incoming sunlight. However, the panels were “cleaned” accidentally when seasonal winds blew off the dust. Several times during the mission, power levels were restored to pre-dusty conditions. Because of these events, the rovers were able to continue their exploration much longer than expected with enough power to continue running all of their instruments.

Side-by-side images of Opportunity on Mars, showing dust on its solar panels and then relatively clean solar panels

A self-portrait of NASA's Mars Exploration Rover Opportunity taken in late March 2014 (right) shows that much of the dust on the rover's solar arrays was removed since a similar portrait from January 2014 (left). Image Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ. | › Full image and caption

Terrestrial Twin

To troubleshoot and overcome challenges during the rovers’ long mission, engineers would perform tests on a duplicate model of the spacecraft, which remained on Earth for just this purpose. One such instance was in 2005, when Opportunity got stuck in the sand. Its right front wheel dug into loose sand, reaching to just below its axle. Engineers and scientists worked for five weeks to free Opportunity, first using images and spectroscopy obtained by the rover’s instruments to recreate the sand trap on Earth and then placing the test rover in the exact same position as Opportunity. The team eventually found a way to get the test rover out of the sand trap. Engineers tested their commands repeatedly with consistent results, giving them confidence in their solution. The same commands were relayed to Opportunity through NASA’s Deep Space Network, and the patient rover turned its stuck wheel just the right amount and backed out of the trap that had ensnared it for over a month, enabling the mission to continue.

Engineers test moves on a model of the Opportunity rover in the In-Situ Instrument Laboratory at JPL

Inside the In-Situ Instrument Laboratory at JPL, rover engineers check how a test rover moves in material chosen to simulate some difficult Mars driving conditions. | › Full image and caption

A few years later, in 2009, Spirit wasn’t as lucky. Having already sustained some wheel problems, Spirit got stuck on a slope in a position that would not be favorable for the Martian winter. Engineers were not able to free Spirit before winter took hold, denying the rover adequate sunlight for power. Its mission officially ended in 2011. Meanwhile, despite a troubled shoulder joint on its robotic arm that first started showing wear in 2006, Opportunity continued exploring the Red Planet. It wasn’t until a dust storm completely enveloped Mars in the summer of 2018 that Opportunity finally succumbed to the elements.

The Final Act

animation showing a dust storm moving across Mars

This set of images from NASA’s Mars Reconnaissance Orbiter (MRO) shows a giant dust storm building up on Mars in 2018, with rovers on the surface indicated as icons. Image credit: NASA/JPL-Caltech/MSSS | › Full image and caption

simulated views of the sun as the 2018 dust storm darkened from Opportunity's perspective on Mars

This series of images shows simulated views of a darkening Martian sky blotting out the Sun from NASA’s Opportunity rover’s point of view in the 2018 global dust storm. Each frame corresponds to a tau value, or measure of opacity: 1, 3, 5, 7, 9, 11. Image credit: NASA/JPL-Caltech/TAMU | › Full image and caption

Dust storm season on Mars can be treacherous for solar-powered rovers because if they are in the path of the dust storm, their access to sunlight can be obstructed for months on end, longer than their batteries can sustain them. Though several dust storms occurred on Mars during the reign of the Mars Exploration Rovers, 2018 brought a large, thick dust storm that covered the entire globe and shrouded Opportunity’s access to sunlight for four months. Only the caldera of Olympus Mons, the largest known volcano in the solar system, peeked out above the dust.

The transparency or “thickness” of the dust in Mars’ atmosphere is denoted by the Greek letter tau. The higher the tau, the less sunlight is available to charge a surface spacecraft’s batteries. An average tau for Opportunity’s location is 0.5. The tau at the peak of the 2018 dust storm was 10.8. This thick dust was imaged and measured by the Curiosity Mars rover on the opposite side of the planet. (Curiosity is powered by a radioisotope thermoelectric generator.)

Since the last communication with Opportunity on June 10, 2018, NASA has sent more than 1,000 commands to the rover that have gone unanswered. Each of these commands was an attempt to get Opportunity to send back a signal saying it was alive. A last-ditch effort to reset the rover’s mission clock was met with silence.

Why It’s Important

The Mars Exploration Rovers were designed to give a human-height perspective of Mars, using panoramic cameras approximately 5 feet off the surface, while their science instruments investigated Mars’ surface geology for signs of water. Spirit and Opportunity returned more than 340,000 raw images conveying the beauty of Mars and leading to scientific discoveries. The rovers brought Mars into classrooms and living rooms around the world. From curious geologic formations to dune fields, dust devils and even their own tracks on the surface of the Red Planet, the rovers showed us Mars in a way we had never seen it before.

tracks on Mars with a patch of white soil showing

This mosaic shows an area of disturbed soil made by the Spirit rover's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. Image credit: NASA/JPL-Caltech/Cornell | › Full image and caption

Mineral vein on the surface of Mars

This color view of a mineral vein was taken by the Mars rover Opportunity on Nov. 7, 2011. Image credit: NASA/JPL-Caltech/Cornell/ASU | › Full image and caption

The rovers discovered that Mars was once a warmer, wetter world than it is today and was potentially able to support microbial life. Opportunity landed in a crater and almost immediately discovered deposits of hematite, which is a mineral known to typically form in the presence of water. During its travels across the Mars surface, Spirit found rocks rich in magnesium and iron carbonates that likely formed when Mars was warm and wet, and sustained a near-neutral pH environment hospitable to life. At one point, while dragging its malfunctioning wheel, Spirit excavated 90 percent pure silica lurking just below the sandy surface. On Earth, this sort of silica usually exists in hot springs or hot steam vents, where life as we know it often finds a happy home. Later in its mission, near the rim of Endeavor crater, Opportunity found bright-colored veins of gypsum in the rocks. These veins likely formed when water flowed through underground fractures in the rocks, leaving calcium behind. All of these discoveries lead scientists to believe that Mars was once more hospitable to life than it is today, and they laid the groundwork for future exploration.

Imagery from the Mars Reconnaissance Orbiter and Mars Odyssey, both orbiting the Red Planet, has been combined with surface views and data from the Mars Exploration Rovers for an unprecedented understanding of the planet’s geology and environment.

Not only did Spirit and Opportunity add to our understanding of Mars, but also the rovers set the stage for future exploration. Following in their tracks, the Curiosity rover landed in 2012 and is still active, investigating the planet’s surface chemistry and geology, and confirming the presence of past water. Launching in 2020 is the next Mars rover, currently named Mars 2020. Mars 2020 will be able to analyze soil samples for signs of past microbial life. It will carry a drill that can collect samples of interesting rocks and soils, and set them aside in a cache on the surface of Mars. In the future, those samples could be retrieved and returned to Earth by another mission. Mars 2020 will also do preliminary research for future human missions to the Red Planet, including testing a method of producing oxygen from Mars’ atmosphere.

It’s thanks to three generations of surface-exploring rovers coupled with the knowledge obtained by orbiters and stationary landers that we have a deeper understanding of the Red Planet’s geologic history and can continue to explore Mars in new and exciting ways.

Teach It

Use these standards-aligned lessons and related activities to get students doing engineering, troubleshooting and scientific discovery just like NASA scientists and engineers!

Explore More

Try these related resources for students from NASA’s Space Place

TAGS: K-12 Education, Teachers, Educators, Students, Opportunity, Mars rover, Rovers, Mars, Lessons, Activities, Missions

  • Ota Lutz
READ MORE

Michelle Vo poses for a photo in front of a full-size model of the Curiosity Mars rover at JPL.

Michelle Vo poses for a photo in front of a full-size model of the Curiosity Mars rover at JPL.

Until she discovered game development, Michelle Vo’s daydreams were a problem. She couldn’t focus in her computer science classes. Her grades were dipping. She wondered whether she was cut out to be a programmer or for school at all. So she took a break to make something just for fun, a self-help game. And help her, it did. Now focusing on virtual and augmented reality, Vo is back at school, studying not just computer science, but also cognitive science, linguistics and digital humanities. It’s a lot, but to create a virtual world, she says one has to first understand how people navigate the real one. This summer, at NASA’s Jet Propulsion Laboratory, the UCLA student applied her talents to VR and AR experiences that help scientists explore a totally different world, Mars. While Vo’s tendency to daydream hasn’t gone away, she now knows how to use the distractions for good; she turns them into VR inspiration.

What are you working on at JPL?

I've been working on multiple things. I work on this project called OnSight, which just won NASA Software of the Year, which we're really excited about. It's an AR project. ...

[A hummingbird flies past us and Michelle stops to point it out.]

Sorry, just got distracted. This is me on a daily basis, just distracted by everything, which is kind of how I work. I get distracted so easily, and it always takes my full attention. So if I get distracted by my work, it holds all my attention. I found out this year I have ADHD, which probably explains why I struggled so much in school. Oh gosh, this is distracting from the interview. [Laughs.] No, this is good for visibility. I struggled a lot in school because I was always distracted by my own daydreams. ADHD is often undetected in girls, since it’s not so much exhibited as fidgeting but, for me at least, spacing out and daydreaming. It was always really hard for me to focus if I wasn’t engaged. Thankfully, I’ve finally found a career where I can actually utilize that skill. My daydreaming is how I come up with my VR design ideas, and I’m so glad I can use it to help others. Maybe I didn't perform too well in school, but hey, look where I am now!

That's so great that you were able to channel it in that way. How did you go from struggling in school to doing VR?

When I first tried on a VR headset, I was like, "This is the future. I need to do whatever I can to learn about this." I decided to study computer science, but it was such a huge struggle. Not a lot of people know this, but I was on academic probation for a while. I had a 1.8 GPA at one point, because I was too shy to ask for help. I would get distracted and, overall, I felt discouraged. So I stopped studying computer science for a little bit.

When I took a break from school, I decided I wanted to try making a game. I wanted to do something just for fun, and I was determined to fix my bad habits. So with some friends, I created a self-help game at AthenaHacks, a women’s hackathon. For 24 hours, I was just immersed in my work. I had never felt that way about anything in my life, where I was just zoned in, in my own world, doing the thing I love. And that's when I realized, I think it's game development. I think this is what I want.

So I spent the year teaching myself [game development], and I got a lot more comfortable using the Unity game engine. I knew I eventually wanted to be a VR developer, so I saved up and invested in myself to learn the skills at Make School’s VR Summer Academy. That smaller learning environment opened up the world for me. It boosted my confidence more than anything to have the support I needed. I was like, "Maybe my grades aren’t so great, but I know how to make VR." And the world needs VR right now.

So when I went back to my university, I thought, "I'll try again. I'm going to go back to computer science.” And so far so good. I'm into my fourth year at UCLA studying cognitive science, linguistics, computer science and digital humanities. It sounds like a lot, but they're all related in the sense that they're all connected to VR, because VR is mainly a study of the mind and how we perceive reality. It’s not so much about computer science; you really have to know more about humans to create good VR.

So I went from literally the worst student in the class to killing it at NASA. [Laughs.]

Sorry, ugh, that was a lot. Haha, I look at a bird and go off on a tangent. That's my life.

So going back to your JPL internship, how are you using your VR skills to help scientists and engineers?

Michelle Vo in the InSight testbed at JPL

Michelle Vo poses for a photo with InSight Testbed Lead, Marleen Sundgaard. Image courtesy Michelle Vo | + Expand image

I’m interning in the Ops Lab, and the project I've been working on primarily is called OnSight. OnSight uses Microsoft’s HoloLens [mixed-reality software] to simulate walking on Mars. Mars scientists use it to collaborate with each other. We had “Meet on Mars” this morning, actually. On certain days, Mars scientists will put on their headsets and hang out virtually on Mars. They see each other. They talk. They look at Mars rocks and take notes. It's based on images from the Curiosity Mars rover. We converted those images to 3-D models to create the virtual terrain, so through VR, we can simulate walking on Mars without being there.

For a few weeks, I worked on another project with the InSight Mars lander mission. We took the terrain model that's generated from images of [the landing site] and made it so the team could see that terrain on top of their testbed [at JPL] with a HoloLens. For them, that's important because they're trying to recreate the terrain to … Wait, I recorded this.

[Michelle quickly scans through the photo library on her phone and pulls up a video she recorded from JPL’s In-Situ Instruments Laboratory. Pranay Mishra, a testbed engineer for the InSight mission, stands in a simulated Mars landscape next to a working model of the lander and explains:]

“When InSight reaches Mars, we're going to get images of the terrain that we land on. The instruments will be deployed to that terrain, so we will want to practice those deployments in the testbed. One of the biggest things that affects our deployment ability is the terrain. If the terrain is tilted or there are rocks in certain spots, that all has a strong effect on our deployment accuracy. To practice it here, we want the terrain in the testbed to match the terrain on Mars. The only things we can view from Mars are the images that we get back [from the lander]. We want to put those into the HoloLens so that we can start terraforming, or “marsforming,” the testbed terrain to match the terrain on Mars. That way, we can maybe get a rough idea of what the deployment would look like on Mars by practicing it on Earth.”
Michelle Vo in the InSight testbed at JPL

Michelle Vo stands in the InSight testbed at JPL with testbed engineers Drew Penrod (left) and Pranay Mishra (right). Image courtesy Michelle Vo | + Expand image

› Learn more about how scientists and engineers are creating a version of InSight's Mars landing site on Earth

They already gave us photos of Mars, which they turned into a 3D model. I created an AR project, where you look through the HoloLens – looking at the real world – and the 3D model is superimposed on the testbed. So the [testbed team] will shovel through and shape the terrain to match what it’s like on Mars, at InSight’s landing site.

Did you know that this was an area that you could work in at JPL before interning here?

OnSight was a well known project in the VR/AR space, since it was the first project to use the Microsoft Hololens. I remember being excited to see a talk on the project at the VRLA conference. So when I finally got on board with the team, I was super excited. I also realized that there’s room for improvement, and that’s OK. That’s why I'm here as an intern; I can bring in a fresh look.

One of the things I did on this project was incorporate physical controllers. My critique when I first started was, "This is really hard to use." And if it's hard for me to use as a millenial, how is this going to be usable for people of all ages? I'm always thinking in terms of accessibility for everybody. Through lots of testing, I realized that people need to be touching things, physical things. That's what OnSight lacked, a physical controller. There were a lot of things that I experimented with, and eventually, it came down to a keyboard that allows you to manipulate the simulated Mars rovers. So now with OnSight, you can drive the [simulated] rovers around with a keyboard controller and possibly in the future, type notes within the application. Previously, you had to tap into the air to use an AR keyboard, and that's not intuitive. We still need to touch the physical world.

How has this project compared with other ones that you've done elsewhere?

Well, I was the only girl developer intern on the team. I’m always battling stereotypes wherever I go and usually on other projects, I'm fighting for my place and fighting to fit in. But at JPL, everyone’s here because they love what they do. People are secure in themselves, and they see me as an equal. They're like, "Michelle has good ideas. Let's bring her to the table." Right off the bat, I felt accepted and, for the first time ever, the imposter-syndrome voice went away. I felt like I could just be myself and actually have a voice to contribute. You know, I might be small, I might be the shortest one, but I'm mighty. It’s been such a positive and supportive environment. I've had an incredible internship and learned so much.

What has been the most unique experience that you've had at JPL?

Working in the Ops Lab has been such a unique experience. Every day, we’re tinkering with cutting-edge technology in AR and VR. I am so thankful to have my mentors, Victor Luo and Parker Abercrombie, who give me the support and guidance I need to grow and learn. Outside of the Ops Lab, I also had the unique opportunity to meet astronaut Kate Rubins and talk about VR with her. I had lunch with NASA Administrator Jim Bridenstine when he visited JPL. And working with the InSight mission and Marleen Sundgaard, the mission’s testbed lead, was especially cool. I can't believe I was able to use my skills for something the Mars InSight mission needed. Being able to say that is something I'm really proud of. And seeing how far I came, from knowing nothing to being here, makes me feel happy. If I can transform, anyone can do this too, if they choose to work hard, follow their own path and see it in themselves to take a risk.

What advice do you have for others looking to follow your path?

Listen to your gut. Your gut knows. It’s easy to feel discouraged. But trust me, you’re not alone. You’ve always got to stay optimistic about finding a solution. I've always been someone who has experimented with a lot of things, and I think learning is something you should definitely experiment with. If the classroom setting is not for you, try teaching yourself, try a bootcamp, try asking a friend – just any alternative. You just have to know how you learn best.

My biggest inspiration is the future. I think about it on a daily basis. The future is so cool. I know I have a very cheery, idealistic view on life, but I think, "What's wrong with that?" as long as you can bring it back to reality, which I think I’ve been able to do.

Speaking of that, what is your ultimate dream for your career and your future?

I was raised in the Bay Area, and I grew up in Santa Clara so the tech culture of Silicon Valley was inescapable. I love Silicon Valley, but we have our problems. We have a huge homelessness issue. I’ve always thought, “We have the brightest engineers and scientists doing the most amazing, crazy things, yet we still can't alleviate homelessness.” Everybody deserves a place to sleep and shower. People need to have their basic needs met. I’d love to see some sort of VR wellness center that could help people train for a job, overcome fears and treat mental health.

That's my idealistic dream, but back to present-day dreams: I'm actually doing a 180. I'm leaving tech for a little bit, and I’m taking Fall quarter off. I'll start back at UCLA in January, but I'm taking a leave to explore being an artist. I'm writing a science-fiction play about Vietnamese-American culture. I was inspired by my experience here at JPL. I feel really optimistic about the future of technology, which is funny because science fiction usually likes to depict tech as something crazy, like an apocalypse or the world crashing down. But I'm like, “Vietnamese people survived an actual war, and they’re still here.” For my parents and grandparents, their country as they knew it came crashing down on them when they were just about my age. They escaped Vietnam by boat and faced many hardships as immigrants who came to America penniless and without knowing English. For them to have survived all of that and sacrificed so much to make it possible for me to be here is incredible. I think it’s a testament to how, despite the worst things, there's always good that continues. I’m so grateful and thankful for my family. I wouldn’t be here living my dream without them, and I want to create a play about that.

It's funny. Before I used to be so shy, so shy. I used to be that one kid who would never talk to anybody. So it's kind of nice to see what happens when the introvert comes out of her shell. And this is what happens. All of this. [Laughs.]


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Women in STEM, Higher Education, College, Students, STEM, VR, AR, Technology, Mars, InSight, Curiosity, Women in STEM

  • Kim Orr
READ MORE

JPL interns Heather Lethcoe and Lauren Berger pose with the InSight engineering model in its testbed at JPL

UPDATE: Nov. 27, 2018 – The InSight spacecraft successfully touched down on Mars just before noon on Nov. 26, 2018, marking the eighth time NASA has succeeded in landing a spacecraft on the Red Planet. This story has been updated to reflect the current mission status. For more mission updates, follow along on the InSight Mission Blog, JPL News, as well as Facebook and Twitter (@NASAInSight, @NASAJPL and @NASA).


Matt Golombek’s job is one that could only exist at a place that regularly lands spacecraft on Mars. And for more than 20 years, the self-proclaimed “landing-site dude” and his rotating cast of interns at NASA’s Jet Propulsion Laboratory have helped select seven of the agency’s landing sites on the Red Planet.

Golombek got his start in the Mars landing-site business as the project scientist for the first rover mission to the Red Planet in 1997. Since that time, he has enlisted the help of geology students to make the maps that tell engineers, scientists, stakeholders and now even the rovers and landers themselves where – and where not – to land. Among the list of no-gos can be rock fields, craters, cliffs, “inescapable hazards” and anything else that might impede an otherwise healthy landing or drive on Mars.

For Golombek’s interns, the goal of helping safely land a spacecraft on Mars is as awe-inspiring as it comes, but the awe can sometimes be forgotten in the day-to-day work of counting rocks and merging multitudes of maps, especially when a landing is scheduled for well after their internships are over. But with the landing site for NASA’s next Mars rover just announced and the careful work of deciding where to lay down science instruments for the freshly landed InSight mission soon to begin, interns Lauren Berger, Rachel Hausmann and Heather Lethcoe are well aware of the significance of their work – the most important of which lies just ahead.

Site Unseen

Selecting a landing site on Mars requires a careful balancing act between engineering capabilities and science goals. It’s a partnership that for Golombek, a geologist, has evolved over the years.

Golombek reflects on the time before spacecraft like the now-critical Mars Reconnaissance Orbiter provided high-resolution, global views of the Martian terrain. In those early days, without close-up images of the surface, the science was largely guesswork, using similar terrain on Earth to get a sense for what the team might be up against. Spacecraft would successfully touch down, but engineers would look aghast at images sent back of vast rock fields punctuated by sharp boulders that could easily destroy a lander speeding to the surface from space. NASA’s 1997 Pathfinder spacecraft, encased in airbags for landing, bounced as high as a 10-story building before rolling to a stop at its jagged outpost.

Matt Golombek sits in his office in the science building at NASA's Jet Propulsion Laboratory surrounded by images and maps of Mars amassed over a 20-year career as the "landing-site dude." Image credit: NASA/JPL-Caltech/Kim Orr | + Expand image

Now, Golombek and his interns take a decidedly more technological approach, feeding images of candidate landing sites into a machine-learning program designed to measure the size of rocks based on the shadows they cast and carefully combining a series of images, maps and other data using Geographical Information Systems, or GIS, software (a required skill for Golombek’s interns).

Still, there are some things that must be done by hand – or eye, as the case may be.

“Lauren [Berger] is now an expert on inescapable hazards,” says Golombek of one of his current trio of interns. “She can look at those ripples, and she knows immediately whether it’s inescapable, probably inescapable, probably escapable or not a problem.”

“Or, as we like to say, death, part death and no death,” jokes Berger.

“We work with them to train them so their eye can see it. And so far, that’s the best way to [identify such hazards]. We don’t have any automated way to do that,” says Golombek.

“I like to call Lauren the Jedi master of ripples-pattern mapping,” says fellow intern Heather Lethcoe, who is the team’s mapping expert for the Mars 2020 rover mission. “I helped her a little bit with that, and now I’m seeing ripples closing my eyes at night.”

Until recently, Lethcoe and Berger were busily preparing maps for October’s landing site workshop, during which scientists debated the merits of the final four touchdown locations for the Mars 2020 mission. If Golombek’s team had a preferred candidate, they wouldn’t say. Their task was to identify the risks and determine what’s safe, not what’s most scientifically worthy. Thanks to new technology that for the first time will allow the rover to divert to the safest part of its landing ellipse using a map created by Golombek’s team, the debate about where to land was solely focused on science. So unlike landing site workshops for past Mars missions, Golombek’s team stayed on the sidelines and let the scientists “have at it.” (In the end, as with all other missions, the final site recommendation was made by the mission with NASA’s approval.)

Now, with an official landing site announced, it might seem that Golombek’s team is out of work. But really, the work is just beginning. “We’ll be heavily involved in making the final hazard map for the [Mars 2020] landing site, which will then get handed to the engineers to code up so that the rover will make the right decisions,” says Golombek.

Meanwhile, the team will be busy with the outcome of another Mars landing: InSight, a spacecraft designed to study the inner workings of Mars and investigate how rocky planets, including Earth, came to be.

Golombek’s third intern, Rachel Hausmann, became a master at piecing together the hundreds of images, rock maps, slope maps and other data that were used to successfully land InSight. But because InSight is a stationary spacecraft, one of the most important parts of ensuring the mission’s success will happen after it lands. The team will need to survey the landing area and determine how and where to place each of the mission’s science instruments on the surface.

“If you think about it, it’s like landing-site selection, just a little smaller scale,” says Golombek. “You don’t want [the instruments] sitting on a slope. You don’t want them sitting on a rock.”

For that, Golombek is getting the help of not just Hausmann but all three interns. “It’s a once-in-a-lifetime opportunity to have students who happen to be in the right place at the right time when a spacecraft lands and needs their expertise.”

Practice Makes Perfect

To prepare for this rare opportunity, the students have been embedded with different working groups, rehearsing the steps that will be required to place each of InSight’s instruments safely on Mars several weeks after landing.

Rachel Hausmann in the museum at JPL

Rachel Hausmann started with Golombek's team in June 2017 and until recently has been charged with finalizing the map that will be used to land InSight on Mars. Image courtesy: Rachel Hausmann | + Expand image

Lauren Berger stands in the InSight testbed at JPL

Lauren Berger, the longest tenured of the intern team, says everything she knew about Mars before interning at JPL came from a picture book she checked out at the library where her mom works. Now, she's an expert in identifying the sand-dune-like features considered hazardous to Mars rovers. Image credit: NASA/JPL-Caltech/Lyle Tavernier | + Expand image

Heather Lethcoe points at a Mars globe

Even when it was clear Heather Lethcoe's JPL internship was a sure thing, she says she didn't want to be too sure of herself and kept telling people she had a "potential internship." But as the praises roll in, she's learning to have more confidence in herself. Image credit: NASA/JPL-Caltech/Lyle Tavernier | + Expand image

“The groups have rehearsals for different anomalies, or issues, that could go wrong,” says Hausmann. “They do this to problem solve even down to, ‘Are we in the right room? Do we have enough space?’ because when you’re working on a space mission, you can’t have an issue with facilities.”

The students took part in the first of these so-called Operational Readiness Tests in early October and say it was an eye-opening experience.

“It was really helpful just to get to know the team and really understand what’s going to happen,” says Berger. “Now we know how to make it happen, and everyone’s a lot more ready. Also, it was so much fun.”

“That’s what I was going to say!” says Lethcoe. “That was just the rehearsal, and at the end of it, I felt so amped and pumped up. I can’t even imagine when we’re actually doing it how good that’s going to feel.”

Lethcoe says there was also the matter of balancing homework and midterms with full-time preparations for a Mars landing. That was its own sort of readiness test for December when the real work of deploying the instruments will coincide with finals.

Perhaps most surprising, say the students, was their realization that their expertise is valued by a team that’s well-versed in Mars landings.

“Imposter syndrome is real,” says Hausmann. But the team’s internships are serving as the perfect antidote.

“I had this fear that I don’t know if I’m going to be more in the way and more pestering or if I’m actually going to be helpful,” says Lethcoe, a student at Cal State University, Northridge, who was first exposed to the mapping software used by the team during her time in the U.S. Army. “It turns out that the [InSight geology] team lead gave me really nice reviews.”

Berger interjects to add supportive emphasis to Lethcoe’s statement – a common occurrence among the three women who have shared the same small office for more than a year now. “He said he absolutely needed her and she could not go away.”

Lethcoe laughs. “[My co-mentor] texted me to let me know, ‘You earned this,” and I tried not to take screenshots and send them to all my friends and my mom. They definitely make it known how much we’re appreciated.”

Adds Berger, “I think JPL really teaches you to have confidence in what you know.”

More than the mapping skills and research experience they’ve picked up during their time at JPL, it’s that confidence that they’re most eager to take back to school with them and impart to other young women interested in STEM careers.

Berger gave a talk about imposter syndrome at her school, Occidental College in Los Angeles, earlier this month. And Hausmann, a student at Oregon State University, says her efforts to encourage and coach young women are the most important contribution she’s making as a JPL intern.

“I just want to help young women get in [to research and internships] as early as possible in their college careers," says Hausmann. "I think that’s so important, just as important as the work we’re doing.”

The Next Frontier

When your internship or your job is to help land spacecraft and deploy instruments on Mars, the question, “Where do we go from here?” is literal and figurative. While the next year or so will be perhaps one of the busiest Golombek’s team has ever known, his future as the landing-site dude is uncertain.

“If what you do is select landing sites for a living, it’s kind of an odd thing because you can only work at one place,” says Golombek. “You need to have a spacecraft that needs a landing site selected for it. And for the past 20 years, there have been spacecraft that we’ve been landing on Mars. So I’m kind of out of business now because Mars 2020 is the last for the time being – there are no new [NASA Mars] landing sites that are being conceived of.”

At the mention of possible lander missions to other worlds, Golombek shrugs and his near-constant grin sinks into a thin horizon. “Don’t know,” he says. “I’m kind of a Martian, and I’ll probably stick with Mars.”

Maybe it’s a torch best carried by his intern alums, many of whom have gone from their internships to careers at JPL or other NASA centers. While Lethcoe, Berger and Hausmann are still enmeshed in their education – Lethcoe is in her junior year, Berger is taking a gap year before applying to graduate programs, and Hausmann is applying to Ph.D. programs in January – their experiences are sure to have a profound impact on their future. In many ways, they already have.

Could they be the landing-site dudes of the future? Maybe someday.

But for now, they’re focused on the challenges of the immediate future, helping NASA take the next steps in its exploration of Mars. And for that, “They’re super well trained,” Golombek says, “and just perfect for the job.”


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Women in STEM, Interns, Internships, Higher Education, College, Geology, Science, Rovers, Landers, Mars, InSight, Mars 2020

  • Kim Orr
READ MORE

Illustration of InSight landing on Mars

Tom Hoffman, InSight Project Manager, NASA JPL, left, and Sue Smrekar, InSight deputy principal investigator, NASA JPL, react after receiving confirmation InSight is safe on the surface of Mars

This is the first image taken by NASA's InSight lander on the surface of Mars.

The Instrument Deployment Camera (IDC), located on the robotic arm of NASA's InSight lander, took this picture of the Martian surface on Nov. 26

UPDATE: Nov. 27, 2018 – The InSight spacecraft successfully touched down on Mars just before noon on Nov. 26, 2018, marking the eighth time NASA has succeeded in landing a spacecraft on the Red Planet. This story has been updated to reflect the current mission status. For more mission updates, follow along on the InSight Mission Blog, JPL News, as well as Facebook and Twitter (@NASAInSight, @NASAJPL and @NASA).


NASA's newest Mars mission, the InSight lander, touched down on the Red Planet just before noon PST on Nov. 26. But there's more work ahead before the mission can get a look into the inner workings of Mars. Get your classroom ready to partake in all the excitement of NASA’s InSight mission with this educator game plan. We’ve got everything you need to engage students in NASA's ongoing exploration of Mars!

Day Before Landing

Landing Day (Nov. 26)

Next Day

  • Review the Teachable Moment to find out what needs to happen before InSight’s science operations can begin. Then create an instructional plan with these lessons, activities and resources that get students engaged in the science and engineering behind the mission.
  • Check out InSight’s first images from Mars, here. (This is also where you can find raw images from InSight throughout the life of the mission.)

Over the Next Month


Explore More

Follow Along

Resources and Activities

Feature Stories and Podcasts

Websites and Interactives

TAGS: InSight, Mars Landing, Educators, K-12, Elementary School, Middle School, High School, Lessons and Activities, Educator Resources, Mars

  • NASA/JPL Edu
READ MORE

Animation showing InSight landing on Mars

Tom Hoffman, InSight Project Manager, NASA JPL, left, and Sue Smrekar, InSight deputy principal investigator, NASA JPL, react after receiving confirmation InSight is safe on the surface of Mars

This is the first image taken by NASA's InSight lander on the surface of Mars.

The Instrument Deployment Camera (IDC), located on the robotic arm of NASA's InSight lander, took this picture of the Martian surface on Nov. 26

UPDATE: Nov. 27, 2018 – The InSight spacecraft successfully touched down on Mars just before noon on Nov. 26, 2018, marking the eighth time NASA has succeeded in landing a spacecraft on the Red Planet. This story has been updated to reflect the current mission status. For more mission updates, follow along on the InSight Mission Blog, JPL News, as well as Facebook and Twitter (@NASAInSight, @NASAJPL and @NASA).


In the News

NASA’s newest mission to Mars, the InSight lander, touched down just before noon PST on Nov. 26. So while some people were looking for Cyber Monday deals, scientists and engineers at NASA’s Jet Propulsion Laboratory were monitoring their screens for something else: signals from the spacecraft that it successfully touched down on the Red Planet.

InSight spent nearly seven months in space, kicked off by the first interplanetary launch from the West Coast of the U.S. Once it arrived at the Red Planet, InSight had to perform its entry, descent and landing, or EDL, to safely touch down on the Martian surface. This was perhaps the most dangerous part of the entire mission because it required that the spacecraft withstand temperatures near 1,500 degrees Fahrenheit, quickly put on its brakes by using the atmosphere to slow down, then release a supersonic parachute and finally lower itself to the surface using 12 retrorockets.

When NASA’s InSight descends to the Red Planet on Nov. 26, 2018, it is guaranteed to be a white-knuckle event. Rob Manning, chief engineer at NASA’s Jet Propulsion Laboratory, explains the critical steps that must happen in perfect sequence to get the robotic lander safely to the surface. | Watch on YouTube

But even after that harrowing trip to the surface, InSight will have to overcome one more challenge before it can get to the most important part of the mission, the science. After a thorough survey of its landing area, InSight will need to carefully deploy each of its science instruments to the surface of Mars. It may sound like an easy task, but it’s one that requires precision and patience.

It’s also a great opportunity for educators to engage students in NASA’s exploration of Mars and the importance of planetary science while making real-world connections to lessons in science, coding and engineering. Read on to find out how.

How It Works: Deploying InSight’s Instruments

InSight is equipped with three science investigations with which to study the deep interior of Mars for the first time. The Seismic Experiment for Interior Structures, or SEIS, is a seismometer that will record seismic waves traveling through the interior of Mars.

These waves can be created by marsquakes, or even meteorites striking the surface. The Heat Flow and Physical Properties Package, or HP3, will investigate how much heat is still flowing out of Mars. It will do so by hammering a probe down to a depth of up to 16 feet (about 5 meters) underground. The Rotation and Interior Structure Experiment, or RISE, will use InSight’s telecommunications system to precisely track the movement of Mars through space. This will shed light on the makeup of Mars’ iron-rich core.

But to start capturing much of that science data, InSight will have to first carefully move the SEIS and HP3 instruments from its stowage area on the lander deck and place them in precise locations on the ground. Among its many firsts, InSight will be the first spacecraft to use a robotic arm to place instruments on the surface of Mars. Even though each instrument will need to be lowered only a little more than three feet (1 meter) to the ground, it’s a delicate maneuver that the team will rehearse to make sure they get it right.

InSight’s robotic arm is nearly 6 feet (about 2 meters) long. At the end of the arm is a five-fingered grappler that is designed to grab SEIS and HP3 from the deck of the lander and place them on the ground in front of the lander in a manner similar to how a claw game grabs prizes and deposits them in the collection chute. But on Mars, it has to work every time.

InSight will be the first mission on another planet to use a robotic arm to grasp instruments and place them on the surface. While it may look like an arcade machine, this space claw is designed to come away with a prize every time. | Watch on YouTube

Before the instruments can be set down, the area where they will be deployed – commonly referred to as the work space – must be assessed so SEIS and HP3 can be positioned in the best possible spots to meet their science goals. InSight is designed to land with the solar panels at an east-west orientation and the robotic arm facing south. The work space covers about three-square meters to the south of the rover. Because InSight is a three-legged lander and not a six-wheeled rover, science and engineering teams must find the best areas to deploy the instruments within the limited work space at InSight’s landing spot. That is why choosing the best landing site (which for InSight means one that is very flat and has few rocks) is so important.

Just as having two eyes gives us the ability to perceive depth, InSight will use a camera on its robotic arm to take what are known as stereo-pair images. These image pairs, made by taking a photo and then moving the camera slightly to the side for another image, provide 3D elevation information that’s used by the science and engineering teams. With this information, they can build terrain maps that show roughness and tilt, and generate something called a goodness map to help identify the best location to place each instrument. Evaluating the work space is expected to take a few weeks.

Once the team has selected the locations where they plan to deploy the instruments, the robotic arm will use its grapple to first grab SEIS and lower it to the surface. When the team confirms that the instrument is on the ground, the grapple will be released and images will be taken. If the team decides they like where the instrument is placed, it will be leveled, and the seismic sensor will be re-centered so it can be calibrated to collect scientific data. If the location is deemed unsuitable, InSight will use its robotic arm to reposition SEIS.

But wait, there’s more! SEIS is sensitive to changes in air pressure, wind and even local magnetic fields. In fact, it is so sensitive that it can detect ground movement as small as half the radius of a hydrogen atom! So that the instrument isn’t affected by the wind and changes in temperature, the robotic arm will have to cover SEIS with the Wind and Thermal Shield.

After SEIS is on the ground and covered by the shield, and the deployment team is satisfied with their placement, the robotic arm will grab the HP3 instrument and place it on the surface. Just as with SEIS, once the team receives confirmation that HP3 is on the ground, the grapple will be released and the stability of the instrument will be confirmed. The final step in deploying the science instruments is to release the HP3 self-hammering mole from within the instrument so that it will be able to drive itself into the ground. The whole process from landing to final deployment is expected to take two to three months.

Why It’s Important

For the science instruments to work – and for the mission to be a success – it’s critical that the instruments are safely deployed. So while sending a mission to another planet is a huge accomplishment and getting pictures of other worlds is inspiring, it’s important to remember that science is the driver behind these missions. As technologies advance, new techniques are discovered and new ideas are formulated. Opportunities arise to explore new worlds and revisit seemingly familiar worlds with new tools.

Using its science instruments, SEIS and HP3, plus the radio-science experiment (RISE) to study how much Mars wobbles as it orbits the Sun, InSight will help scientists look at Mars in a whole new way: from the inside.

SEIS will help scientists understand how tectonically active Mars is today by measuring the power and frequency of marsquakes, and it will also measure how often meteorites impact the surface of Mars.

HP3 and RISE will give scientists the information they need to determine the size of Mars’ core and whether it’s liquid or solid; the thickness and structure of the crust; the structure of the mantle and what it’s made of; and how warm the interior is and how much heat is still flowing through.

Answering these questions is important for understanding Mars, and on a grander scale, it is key to forming a better picture of the formation of our solar system, including Earth.

Teach It

Use these resources to bring the excitement of NASA’s newest Mars mission and the scientific discovery that comes with it into the classroom.

Explore More

Follow Along

Resources and Activities

Feature Stories and Podcasts

Websites and Interactives

TAGS: InSight, Landing, Mars, K-12 Educators, Informal Educators, Engineering, Science, Mission Events

  • Lyle Tavernier
READ MORE

In the News

A spacecraft designed to study seismic activity on Mars, or “marsquakes,” is scheduled to lift off on a nearly seven-month journey to the Red Planet on May 5, 2018.

NASA’s InSight Mars lander is designed to get the first in-depth look at the “heart” of Mars: its crust, mantle and core. In other words, it will be the Red Planet’s first thorough checkup since it formed 4.5 billion years ago. The launch, from Vandenberg Air Force Base in Central California, also marks a first: It will be the first time a spacecraft bound for another planet lifts off from the West Coast. It’s a great opportunity to get students excited about the science and math used to launch rockets and explore other planets.

How It Works

NASA usually launches interplanetary spacecraft from the East Coast, at Cape Canaveral in Florida, to provide them with a momentum boost from Earth’s easterly rotation. It’s similar to how running in the direction you are throwing a ball can provide a momentum boost to the ball. If a spacecraft is launched without that extra earthly boost, the difference must be made up by the rocket engine. Since InSight is a small, lightweight spacecraft, its rocket can easily accommodate getting it into orbit without the help of Earth’s momentum.

Scheduled to launch no earlier than 4:05 a.m. PDT on May 5, InSight will travel aboard an Atlas V 401 launch vehicle on a southerly trajectory over the Pacific Ocean. (Here's how to watch the launch in person or online.) If the weather is bad or there are any mechanical delays, InSight can launch the next day. In fact, InSight can launch any day between May 5 and June 8, a time span known as a launch period, which has multiple launch opportunities during a two-hour launch window each day.

Regardless of the date when InSight launches, its landing on Mars is planned for November 26, 2018, around noon PST. Mission controllers can account for the difference in planetary location between the beginning of the launch window and the end by varying the amount of time InSight spends in what’s called a parking orbit. A parking orbit is a temporary orbit that a spacecraft can enter before moving to its final orbit or trajectory. For InSight, the Atlas V 401 will boost the spacecraft into a parking orbit where it will coast for a while to get into proper position for an engine burn that will send it toward Mars. The parking orbit will last 59 to 66 minutes, depending on the date and time of the launch.

Why It’s Important

Previous missions to Mars have investigated the history of the Red Planet’s surface by examining features like canyons, volcanoes, rocks and soil. However, many important details about the planet's formation can only be found by studying the planet’s interior, far below the surface. And to do that, you need specialized instruments and sensors like those found on InSight.

The InSight mission, designed to operate for one Mars year (approximately two Earth years), will use its suite of instruments to investigate the interior of Mars and uncover how a rocky body forms and becomes a planet. Scientists hope to learn the size of Mars’ core, what it’s made of and whether it’s liquid or solid. InSight will also study the thickness and structure of Mars’ crust, the structure and composition of the mantle and the temperature of the planet’s interior. And a seismometer will determine how often Mars experiences tectonic activity, known as “marsquakes,” and meteorite impacts.

Together, the instruments will measure Mars’ vital signs: its "pulse" (seismology), "temperature" (heat flow), and "reflexes" (wobble). Here’s how they work:

Illustration of the InSight Mars lander on the Red Planet - Labeled

This labeled artist's concept depicts the NASA InSight Mars lander at work studying the interior of Mars.

InSight’s seismometer is called SEIS, or the Seismic Experiment for Interior Structure. By measuring seismic vibrations across Mars, it will provide a glimpse into the planet’s internal activity. The volleyball-size instrument will sit on the Martian surface and wait patiently to sense the seismic waves from marsquakes and meteorite impacts. These measurements can tell scientists about the arrangement of different materials inside Mars and how the rocky planets of the solar system first formed. The seismometer may even be able to tell us if there's liquid water or rising columns of hot magma from active volcanoes underneath the Martian surface.

The Heat Flow and Physical Properties Probe, HP3 for short, burrows down almost 16 feet (five meters) into Mars' surface. That's deeper than any previous spacecraft arms, scoops, drills or probes have gone before. Like studying the heat leaving a car engine, HP3 will measure the heat coming from Mars' interior to reveal how much heat is flowing out and what the source of the heat is. This will help scientists determine whether Mars formed from the same material as Earth and the Moon, and will give them a sneak peek into how the planet evolved.

InSight’s Rotation and Interior Structure Experiment, or RISE, instrument tracks tiny variations in the location of the lander. Even though InSight is stationary on the planet, its position in space will wobble slightly with Mars itself, as the planet spins on its axis. Scientists can use what they learn about the Red Planet’s wobble to determine the size of Mars’ iron-rich core, whether the core is liquid, and which other elements, besides iron, may be present.

When InSight lifts off, along for the ride in the rocket will be two briefcase-size satellites, or CubeSats, known as MarCO, or Mars Cube One. They will take their own path to Mars behind InSight, arriving in time for landing. If all goes as planned, as InSight enters the Martian atmosphere, MarCO will relay data to Earth about entry, descent and landing operations, potentially faster than ever before. InSight will also transmit data to Earth the way previous Mars spacecraft have, by using NASA’s Mars Reconnaissance Orbiter as a relay. MarCO will be the first test of CubeSat technology at another planet, and if successful, it could provide a new way to communicate with spacecraft in the future, providing news of a safe landing – or any potential problems – sooner.

Thanks to the Mars rovers, landers and orbiters that have come before, scientists know that Mars has low levels of geological activity – but a lander like InSight can reveal what might be lurking below the surface. And InSight will give us a chance to discover more not just about the history of Mars, but also of our own planet’s formation.

Teach It

When launching to another planet, we want to take the most efficient route, using the least amount of rocket fuel possible. To take this path, we must launch during a specific window of time, called a launch window. Use this lesson in advanced algebra to estimate the launch window for the InSight lander and future Mars missions.

SEIS will record the times that marsquake surface waves arrive at the lander. Try your hand, just like NASA scientists, using these times, a little bit of algebra and the mathematical constant π to determine the timing and location of a marsquake!

Take students on a journey to Mars with this set of 19 standards-aligned STEM lessons that can be modified to fit various learning environments, including out-of-school time.

Build, test and launch your very own air-powered rocket to celebrate the first West Coast interplanetary spacecraft launch!

Explore More

Try these related resources for students from NASA's Space Place:

TAGS: InSight, Lessons, K-12, Activities, Teaching, STEM, Mars

  • Ota Lutz
READ MORE

Pi in the Sky 5 promo graphic

Update: March 15, 2018 – The answers to the 2018 NASA Pi Day Challenge are here! View the illustrated answer key


In the News

Pi in the Sky 5

The 2018 NASA Pi Day Challenge

Can you solve these stellar mysteries with pi? Click to get started.

Pi Day, the annual celebration of one of mathematics’ most popular numbers, is back! Representing the ratio of a circle’s circumference to its diameter, pi has many practical applications, including the development and operation of space missions at NASA’s Jet Propulsion Laboratory.

The March 14 holiday is celebrated around the world by math enthusiasts and casual fans alike – from memorizing digits of pi (the current Pi World Ranking record is 70,030 digits) to baking and eating pies.

JPL is inviting people to participate in its 2018 NASA Pi Day Challenge – four illustrated math puzzlers involving pi and real problems scientists and engineers solve to explore space, also available as a free poster! Answers will be released on March 15. 

Why March 14?

Pi is what’s known as an irrational number, meaning its decimal representation never ends and it never repeats. It has been calculated to more than one trillion digits, but NASA scientists and engineers actually use far fewer digits in their calculations (see “How Many Decimals of Pi Do We Really Need?”). The approximation 3.14 is often precise enough, hence the celebration occurring on March 14, or 3/14 (when written in U.S. month/day format). The first known celebration occurred in 1988, and in 2009, the U.S. House of Representatives passed a resolution designating March 14 as Pi Day and encouraging teachers and students to celebrate the day with activities that teach students about pi.

NASA’s Pi Day Challenge

Pi in the Sky 5

Lessons: Pi in the Sky

Explore the entire NASA Pi Day Challenge lesson collection, including free posters and handouts!

To show students how pi is used at NASA and give them a chance to do the very same math, the JPL Education Office has once again put together a Pi Day challenge featuring real-world math problems used for space exploration. This year’s challenge includes exploring the interior of Mars, finding missing helium in the clouds of Jupiter, searching for Earth-size exoplanets and uncovering the mysteries of an asteroid from outside our solar system.

Here’s some of the science behind this year’s challenge:

Scheduled to launch May 5, 2018, the InSight Mars lander will be equipped with several scientific instruments, including a heat flow probe and a seismometer. Together, these instruments will help scientists understand the interior structure of the Red Planet. It’s the first time we’ll get an in-depth look at what’s happening inside Mars. On Earth, seismometers are used to measure the strength and location of earthquakes. Similarly, the seismometer on Insight will allow us to measure marsquakes! The way seismic waves travel through the interior of Mars can tell us a lot about what lies beneath the surface. This year’s Quake Quandary problem challenges students to determine the distance from InSight to a hypothetical marsquake using pi!

Also launching in spring is NASA’s Transiting Exoplanet Survey Satellite, or TESS, mission. TESS is designed to build upon the discoveries made by NASA’s Kepler Space Telescope by searching for exoplanets – planets that orbit stars other than our Sun. Like Kepler, TESS will monitor hundreds of thousands of stars across the sky, looking for the temporary dips in brightness that occur when an exoplanet passes in front of its star from the perspective of TESS. The amount that the star dims helps scientists determine the radius of the exoplanet. Like those exoplanet-hunting scientists, students will have to use pi along with data from Kepler to find the size of an exoplanet in the Solar Sleuth challenge.

Jupiter is our solar system’s largest planet. Shrouded in clouds, the planet’s interior holds clues to the formation of our solar system. In 1995, NASA’s Galileo spacecraft dropped a probe into Jupiter’s atmosphere. The probe detected unusually low levels of helium in the upper atmosphere. It has been hypothesized that the helium was depleted out of the upper atmosphere and transported deeper inside the planet. The extreme pressure inside Jupiter condenses helium into droplets that form inside a liquid metallic hydrogen layer below. Because the helium is denser than the surrounding hydrogen, the helium droplets fall like rain through the liquid metallic hydrogen. In 2016, the Juno spacecraft, which is designed to study Jupiter’s interior, entered orbit around the planet. Juno’s initial gravity measurements have helped scientists better understand the inner layers of Jupiter and how they interact, giving them a clearer window into what goes on inside the planet. In the Helium Heist problem, students can use pi to find out just how much helium has been depleted from Jupiter’s upper atmosphere over the planet’s lifetime.

In October 2017, astronomers spotted a uniquely-shaped object traveling in our solar system. Its path and high velocity led scientists to believe ‘Oumuamua, as it has been dubbed, is actually an object from outside of our solar system – the first ever interstellar visitor to be detected – that made its way to our neighborhood thanks to the Sun’s gravity. In addition to its high speed, ‘Oumuamua is reflecting the Sun’s light with great variation as the asteroid rotates on its axis, causing scientists to conclude it has an elongated shape. In the Asteroid Ace problem, students can use pi to find the rate of rotation for ‘Oumuamua and compare it with Earth’s rotation rate.

Explore More

Join the Conversation

Standards-Aligned Lessons

Multimedia

Facts and Figures

Missions

Websites

TAGS: Pi Day, Math, Science, Engineering, NASA Pi Day Challenge, K-12, Lesson, Activity, Slideshow, Mars, Jupiter, Exoplanets, Kepler, Kepler-186f, Juno, InSight, TESS, ‘Oumuamua, asteroid, asteroids, NEO, Nearth Earth Object

  • Lyle Tavernier
READ MORE

Today, after spending 340 days aboard the International Space Station on a mission to better understand the bodily impacts of extended stays in space, NASA astronaut Scott Kelly will begin his return trip to Earth.

> See the NASA Television schedule for coverage of Kelly's return March 1-4

Kelly's mission is a key step in NASA's Journey to Mars, which aims to send American astronauts deeper into space and, eventually, all the way to Mars – on missions lasting more than 900 days.

To get astronauts to Mars, scientists and engineers won't only need to study how such a journey might affect the human body, but also invent new modes of transportation that can land astronauts on the Red Planet and then launch them back to Earth; find efficient ways to supply astronauts with food, water and oxygen; and develop systems for living and working on Mars.

NASA Journey to Mars graphic

> See this infographic from NASA that shows what's in the works and the plans ahead for NASA's Journey to Mars

As a leading center for robotic exploration of the solar system, NASA's Jet Propulsion Laboratory may not seem like it has much to do with sending humans to Mars. But actually, JPL scientists and engineers are helping lay much of the groundwork (sometimes literally!) for NASA's Journey to Mars. The Curiosity, Spirit and Opportunity rovers as well as the Mars Reconnaissance Orbiter have spent years on and around Mars collecting science that may help identify a landing location for a human mission, determine the kinds of science that astronauts will do, and discover key info about surviving in the harsh environment. And a number of other missions and technologies being developed at JPL – Low-Density Supersonic Decelerator (LDSD), Mars 2020 and Mars Sample Return, to name a few – are helping to bring astronauts one small step closer to Mars.

Learn more about the Journey to Mars and get students involved with these activities and resources:

READ MORE

Journey to Mars Poster - NASA JPL Edu

UPDATE - Aug. 31, 2016: Our Mars Bulletin Board materials are out of stock. To download and print out the resources, click on the links next to each product.


Get the school year back in gear with a Mars-themed bulletin board for your school, classroom, library or educational program. The Educator Resource Center at NASA's Jet Propulsion Laboratory is offering a set of free posters and lithographs with fun facts about the Red Planet and NASA's Mars missions.

The Mars Bulletin Board includes:

NASA JPL Edu Earth/Mars Comparison Poster

Earth/Mars Comparison poster

This poster highlights the likenesses and differences between the Red Planet and Earth.

NASA JPL Edu MSL Mars Curiosity rover lithograph poster

Mars Science Laboratory: Curiosity Rover lithograph set

This lithograph set features images of NASA's Mars rover Curiosity as well as images the rover has taken on the Red Planet. Facts about Curiosity and its discoveries are included on the back of each image.

NASA JPL Edu Mars Exploration Rovers Spirit and Opportunity lithograph poster

Mars Exploration Rovers, Spirit and Opportunity lithograph

Learn about the twin Mars Exploration Rovers, Spirit and Opportunity, and their key discoveries. (Opportunity is still roving on Mars, more than 10 years after landing on the Red Planet!)

NASA Journey to Mars poster

Journey to Mars poster

As part of its "Journey to Mars" initiative, NASA is developing spacecraft and technologies that will pave the way for a future manned mission to the Red Planet. This graphic shows some of the key milestones of that initiative.

NASA JPL Edu Mars lithograph poster

Mars lithograph

Learn about the history, composition and exploration of Mars on this lithograph featuring images of the Red Planet on one side and fun facts on the other.


The NASA/JPL Educator Resource Center provides formal and informal educators with NASA resources and materials that support STEM learning. For more information, visit the Educator Resource Center page.

TAGS: Bulletin Board, Mars, Journey to Mars, Rover, Spacecraft

  • NASA/JPL Edu
READ MORE