Teachable Moments | September 12, 2017
A Moment You Won't Want to Miss: Cassini's Mission Finale at Saturn
Update – Sept. 11, 2017: This feature (originally published on April 25, 2017) has been updated to reflect Cassini's current mission status, as well as new lessons and activities.
- Visit the Cassini website's Grand Finale Toolkit for a timeline, resources and more information about the final phase of the mission.
- Follow along with NASA via live stream during the Grand Finale on September 15 and in the days leading up to the event. Programming begins on September 13 at 10 a.m. PDT.
- Get the latest news and updates for the Cassini mission on the JPL News website.
- Explore these standards-aligned lessons and out-of-school activities to bring the wonder of NASA's Cassini mission and science at Saturn to students.
In the News
After almost 20 years in space, NASA's Cassini spacecraft has begun the final chapter of its remarkable story of exploration. This last phase of the mission has delivered unprecedented views of Saturn and taken Cassini where no spacecraft has been before – all the way between the planet and its rings. On Friday, Sept. 15 Cassini will perform its Grand Finale: a farewell dive into Saturn’s atmosphere to protect the environments of Saturn’s moons, including the potentially habitable Enceladus.
Lessons All About Saturn
Explore our collection of standards-aligned lessons about NASA's Cassini mission.
How It Works
On April 22, Cassini flew within 608 miles (979 km) of Saturn’s giant moon Titan, using the moon’s gravity to place the spacecraft on its path for the ring-gap orbits. Without this gravity assist from Titan, the daring, science-rich mission ending would not be possible.
Cassini is almost out of the propellant that fuels its main engine, which is used to make large course adjustments. A course adjustment requires energy. Because the spacecraft does not have enough rocket fuel on board, Cassini engineers have used an external energy source to set the spacecraft on its new trajectory: the gravity of Saturn’s moon Titan. (The engineers have often used Titan to make major shifts in Cassini’s flight plan.)
Titan is a massive moon and thus has a significant amount of gravity. As Cassini comes near Titan, the spacecraft is affected by this gravity – and can use it to its advantage. Often referred to as a “slingshot maneuver,” a gravity assist is a powerful tool, which uses the gravity of another body to speed up, slow down or otherwise alter the orbital path of a spacecraft.
When Cassini passed close by Titan on April 22, the moon’s gravity pulled strongly on the spacecraft. The flyby gave Cassini a change in velocity of about 1,800 mph (800 meters per second) that sent the spacecraft into its first of the ring-gap orbits on April 23. On April 26, Cassini made its first of 22 daring plunges between the planet and its mighty rings.
As Kepler’s third law indicates, Cassini traveled faster than ever before during these final smaller orbits. Cassini's orbit continued to cross the orbit of Titan during these ring-gap orbits. And every couple of orbits, Titan passed near enough to give the spacecraft a nudge. One last nudge occured on September 11, placing the spacecraft on its final, half-orbit, impact trajectory toward Saturn.
Because a few hardy microbes from Earth might have survived onboard Cassini all these years, NASA has chosen to safely dispose of the spacecraft in the atmosphere of Saturn to avoid the possibility of Cassini someday colliding with and contaminating moons such as Enceladus and Titan that may hold the potential for life. Cassini will continue to send back science measurements as long as it is able to transmit during its final dive into Saturn.
Why It’s Important
Flying closer than ever before to Saturn and its rings has provided an unprecedented opportunity for science. During these orbits, Cassini’s cameras have captured ultra-close images of the planet’s clouds and the mysterious north polar hexagon, helping us to learn more about Saturn’s atmosphere and turbulent storms.
The cameras have been taking high-resolution images of the rings, and to improve our knowledge of how much material is in the rings, Cassini has also been conducting gravitational measurements. Cassini's particle detectors have sampled icy ring particles being funneled into the atmosphere by Saturn's magnetic field. Data and images from these observations are helping bring us closer to understanding the origins of Saturn’s massive ring system.
Cassini has also been making detailed maps of Saturn's gravity and magnetic fields to reveal how the planet is structured internally, which could help solve the great mystery of just how fast Saturn is rotating.
On its first pass through the unexplored 1,500-mile-wide (2,400-kilometer) space between the rings and the planet, Cassini was oriented so that its high-gain antenna faced forward, shielding the delicate scientific instruments from potential impacts by ring particles. After this first ring crossing informed scientists about the low number of particles at that particular point in the gap, the spacecraft was oriented differently for the next four orbits, providing the science instruments unique observing angles. For ring crossings 6, 7 and 12, the spacecraft was again oriented so that its high-gain antenna faced forward.
Fittingly, Cassini's final moments will be spent doing what it does best, returning data on never-before-observed regions of the Saturnian system. On September 15, just hours before Cassini enters Saturn's atmosphere for its Grand Finale dive, it will collect and transmit its final images back to Earth. During its fateful dive, Cassini will be sending home new data in real time informing us about Saturn’s atmospheric composition. It's our last chance to gather intimate data about Saturn and its rings – until another spacecraft journeys to this distant planet.
Explore the many discoveries made by Cassini and the story of the mission on the Cassini website.
Teach It
Use these standards-aligned lessons to get your students excited about the science we have learned and have yet to learn about the Saturnian system.
- NEW! Activity Collection: Jewel of the Solar System – Explore Saturn and the Cassini mission with this eight-part series of activities targeting after-school settings.
- Jewel of the Solar System Activity Guide
- What Do I See When I Picture Saturn?
- Where Are We in the Solar System?
- Discovering Saturn: The Real "Lord of the Rings"
- Saturn's Fascinating Features
- My Spacecraft to Saturn
- All About Titan and Huygens Probe
- Drop Zone! Design and Test a Probe
- Celebrating Saturn and Cassini
- Lesson: Flying By Saturn's Moon Enceladus – Teach students about Saturn's scientifically intriguing moon Enceladus and investigate its fascinating features, including its ocean and plumes, using math.
- Video Lesson: Bouncing Radio Waves Off Titan's Lakes – Learn about one way we study Titan in this educational video.
- Problem Set: Pi in the Sky – Have older students use mathematics to calculate Cassini's fuel reserves.
- Problem Set: Pi in the Sky 4 – Students can also calculate the date of the spacecraft's Grand Finale dive into Saturn.
- Download a poster of Saturn and the Cassini mission timeline.
- Download these Cassini retro posters: Whoosh | Swan Song | The Classic
Explore More
- Cassini Lessons for Educators
- Cassini Activities for Students
- Cassini Mission Website
- Cassini Grand Finale Toolkit
- Cassini Mission Overview
- Interactive Cassini Mission Timeline
- Video: NASA VR: Cassini's Grand Finale (360 Video)
- Slideshow for Students (includes a free poster!): 8 Real World Space Facts About Saturn's Moon Enceladus
- Slideshow for Students (includes a free poster!): Ocean Worlds
- Explore the Cassini Spacecraft in 3-D
- The Saturn System Through the Eyes of Cassini (e-book)
TAGS: Saturn, Titan, Cassini, Grand Finale, Teachable Moments, Kepler's Laws, K-12, Lessons, Ocean Worlds