JPL interns Heather Lethcoe and Lauren Berger pose with the InSight engineering model in its testbed at JPL

UPDATE: Nov. 27, 2018 – The InSight spacecraft successfully touched down on Mars just before noon on Nov. 26, 2018, marking the eighth time NASA has succeeded in landing a spacecraft on the Red Planet. This story has been updated to reflect the current mission status. For more mission updates, follow along on the InSight Mission Blog, JPL News, as well as Facebook and Twitter (@NASAInSight, @NASAJPL and @NASA).


Matt Golombek’s job is one that could only exist at a place that regularly lands spacecraft on Mars. And for more than 20 years, the self-proclaimed “landing-site dude” and his rotating cast of interns at NASA’s Jet Propulsion Laboratory have helped select seven of the agency’s landing sites on the Red Planet.

Golombek got his start in the Mars landing-site business as the project scientist for the first rover mission to the Red Planet in 1997. Since that time, he has enlisted the help of geology students to make the maps that tell engineers, scientists, stakeholders and now even the rovers and landers themselves where – and where not – to land. Among the list of no-gos can be rock fields, craters, cliffs, “inescapable hazards” and anything else that might impede an otherwise healthy landing or drive on Mars.

For Golombek’s interns, the goal of helping safely land a spacecraft on Mars is as awe-inspiring as it comes, but the awe can sometimes be forgotten in the day-to-day work of counting rocks and merging multitudes of maps, especially when a landing is scheduled for well after their internships are over. But with the landing site for NASA’s next Mars rover just announced and the careful work of deciding where to lay down science instruments for the freshly landed InSight mission soon to begin, interns Lauren Berger, Rachel Hausmann and Heather Lethcoe are well aware of the significance of their work – the most important of which lies just ahead.

Site Unseen

Selecting a landing site on Mars requires a careful balancing act between engineering capabilities and science goals. It’s a partnership that for Golombek, a geologist, has evolved over the years.

Golombek reflects on the time before spacecraft like the now-critical Mars Reconnaissance Orbiter provided high-resolution, global views of the Martian terrain. In those early days, without close-up images of the surface, the science was largely guesswork, using similar terrain on Earth to get a sense for what the team might be up against. Spacecraft would successfully touch down, but engineers would look aghast at images sent back of vast rock fields punctuated by sharp boulders that could easily destroy a lander speeding to the surface from space. NASA’s 1997 Pathfinder spacecraft, encased in airbags for landing, bounced as high as a 10-story building before rolling to a stop at its jagged outpost.

Matt Golombek sits in his office in the science building at NASA's Jet Propulsion Laboratory surrounded by images and maps of Mars amassed over a 20-year career as the "landing-site dude." Image credit: NASA/JPL-Caltech/Kim Orr | + Expand image

Now, Golombek and his interns take a decidedly more technological approach, feeding images of candidate landing sites into a machine-learning program designed to measure the size of rocks based on the shadows they cast and carefully combining a series of images, maps and other data using Geographical Information Systems, or GIS, software (a required skill for Golombek’s interns).

Still, there are some things that must be done by hand – or eye, as the case may be.

“Lauren [Berger] is now an expert on inescapable hazards,” says Golombek of one of his current trio of interns. “She can look at those ripples, and she knows immediately whether it’s inescapable, probably inescapable, probably escapable or not a problem.”

“Or, as we like to say, death, part death and no death,” jokes Berger.

“We work with them to train them so their eye can see it. And so far, that’s the best way to [identify such hazards]. We don’t have any automated way to do that,” says Golombek.

“I like to call Lauren the Jedi master of ripples-pattern mapping,” says fellow intern Heather Lethcoe, who is the team’s mapping expert for the Mars 2020 rover mission. “I helped her a little bit with that, and now I’m seeing ripples closing my eyes at night.”

Until recently, Lethcoe and Berger were busily preparing maps for October’s landing site workshop, during which scientists debated the merits of the final four touchdown locations for the Mars 2020 mission. If Golombek’s team had a preferred candidate, they wouldn’t say. Their task was to identify the risks and determine what’s safe, not what’s most scientifically worthy. Thanks to new technology that for the first time will allow the rover to divert to the safest part of its landing ellipse using a map created by Golombek’s team, the debate about where to land was solely focused on science. So unlike landing site workshops for past Mars missions, Golombek’s team stayed on the sidelines and let the scientists “have at it.” (In the end, as with all other missions, the final site recommendation was made by the mission with NASA’s approval.)

Now, with an official landing site announced, it might seem that Golombek’s team is out of work. But really, the work is just beginning. “We’ll be heavily involved in making the final hazard map for the [Mars 2020] landing site, which will then get handed to the engineers to code up so that the rover will make the right decisions,” says Golombek.

Meanwhile, the team will be busy with the outcome of another Mars landing: InSight, a spacecraft designed to study the inner workings of Mars and investigate how rocky planets, including Earth, came to be.

Golombek’s third intern, Rachel Hausmann, became a master at piecing together the hundreds of images, rock maps, slope maps and other data that were used to successfully land InSight. But because InSight is a stationary spacecraft, one of the most important parts of ensuring the mission’s success will happen after it lands. The team will need to survey the landing area and determine how and where to place each of the mission’s science instruments on the surface.

“If you think about it, it’s like landing-site selection, just a little smaller scale,” says Golombek. “You don’t want [the instruments] sitting on a slope. You don’t want them sitting on a rock.”

For that, Golombek is getting the help of not just Hausmann but all three interns. “It’s a once-in-a-lifetime opportunity to have students who happen to be in the right place at the right time when a spacecraft lands and needs their expertise.”

Practice Makes Perfect

To prepare for this rare opportunity, the students have been embedded with different working groups, rehearsing the steps that will be required to place each of InSight’s instruments safely on Mars several weeks after landing.

Rachel Hausmann in the museum at JPL

Rachel Hausmann started with Golombek's team in June 2017 and until recently has been charged with finalizing the map that will be used to land InSight on Mars. Image courtesy: Rachel Hausmann | + Expand image

Lauren Berger stands in the InSight testbed at JPL

Lauren Berger, the longest tenured of the intern team, says everything she knew about Mars before interning at JPL came from a picture book she checked out at the library where her mom works. Now, she's an expert in identifying the sand-dune-like features considered hazardous to Mars rovers. Image credit: NASA/JPL-Caltech/Lyle Tavernier | + Expand image

Heather Lethcoe points at a Mars globe

Even when it was clear Heather Lethcoe's JPL internship was a sure thing, she says she didn't want to be too sure of herself and kept telling people she had a "potential internship." But as the praises roll in, she's learning to have more confidence in herself. Image credit: NASA/JPL-Caltech/Lyle Tavernier | + Expand image

“The groups have rehearsals for different anomalies, or issues, that could go wrong,” says Hausmann. “They do this to problem solve even down to, ‘Are we in the right room? Do we have enough space?’ because when you’re working on a space mission, you can’t have an issue with facilities.”

The students took part in the first of these so-called Operational Readiness Tests in early October and say it was an eye-opening experience.

“It was really helpful just to get to know the team and really understand what’s going to happen,” says Berger. “Now we know how to make it happen, and everyone’s a lot more ready. Also, it was so much fun.”

“That’s what I was going to say!” says Lethcoe. “That was just the rehearsal, and at the end of it, I felt so amped and pumped up. I can’t even imagine when we’re actually doing it how good that’s going to feel.”

Lethcoe says there was also the matter of balancing homework and midterms with full-time preparations for a Mars landing. That was its own sort of readiness test for December when the real work of deploying the instruments will coincide with finals.

Perhaps most surprising, say the students, was their realization that their expertise is valued by a team that’s well-versed in Mars landings.

“Imposter syndrome is real,” says Hausmann. But the team’s internships are serving as the perfect antidote.

“I had this fear that I don’t know if I’m going to be more in the way and more pestering or if I’m actually going to be helpful,” says Lethcoe, a student at Cal State University, Northridge, who was first exposed to the mapping software used by the team during her time in the U.S. Army. “It turns out that the [InSight geology] team lead gave me really nice reviews.”

Berger interjects to add supportive emphasis to Lethcoe’s statement – a common occurrence among the three women who have shared the same small office for more than a year now. “He said he absolutely needed her and she could not go away.”

Lethcoe laughs. “[My co-mentor] texted me to let me know, ‘You earned this,” and I tried not to take screenshots and send them to all my friends and my mom. They definitely make it known how much we’re appreciated.”

Adds Berger, “I think JPL really teaches you to have confidence in what you know.”

More than the mapping skills and research experience they’ve picked up during their time at JPL, it’s that confidence that they’re most eager to take back to school with them and impart to other young women interested in STEM careers.

Berger gave a talk about imposter syndrome at her school, Occidental College in Los Angeles, earlier this month. And Hausmann, a student at Oregon State University, says her efforts to encourage and coach young women are the most important contribution she’s making as a JPL intern.

“My mom didn’t go to college. My dad left us when we were in high school. And so I didn’t really focus on my career,” says Hausmann. “I just want to help young women get in [to research and internships] early because I got in kind of late. I think that’s so important, just as important as the work we’re doing.”

The Next Frontier

When your internship or your job is to help land spacecraft and deploy instruments on Mars, the question, “Where do we go from here?” is literal and figurative. While the next year or so will be perhaps one of the busiest Golombek’s team has ever known, his future as the landing-site dude is uncertain.

“If what you do is select landing sites for a living, it’s kind of an odd thing because you can only work at one place,” says Golombek. “You need to have a spacecraft that needs a landing site selected for it. And for the past 20 years, there have been spacecraft that we’ve been landing on Mars. So I’m kind of out of business now because Mars 2020 is the last for the time being – there are no new [NASA Mars] landing sites that are being conceived of.”

At the mention of possible lander missions to other worlds, Golombek shrugs and his near-constant grin sinks into a thin horizon. “Don’t know,” he says. “I’m kind of a Martian, and I’ll probably stick with Mars.”

Maybe it’s a torch best carried by his intern alums, many of whom have gone from their internships to careers at JPL or other NASA centers. While Lethcoe, Berger and Hausmann are still enmeshed in their education – Lethcoe is in her junior year, Berger is taking a gap year before applying to graduate programs, and Hausmann is applying to Ph.D. programs in January – their experiences are sure to have a profound impact on their future. In many ways, they already have.

Could they be the landing-site dudes of the future? Maybe someday.

But for now, they’re focused on the challenges of the immediate future, helping NASA take the next steps in its exploration of Mars. And for that, “They’re super well trained,” Golombek says, “and just perfect for the job.”


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Interns, Internships, Higher Education, College, Geology, Science, Rovers, Landers, Mars, InSight, Mars 2020

  • Kim Orr
READ MORE

Allison Ayad in her workspace at JPL

The Starshade project aims to do pretty much what the name suggests: suppress the light from distant stars so scientists can learn more about the planets that surround them – including whether they’re likely to support life. In practice, it requires building a giant, precisely shaped structure that can unfurl from a relatively tiny package and fly in perfect sequence with a space telescope. Interns have been key to making the idea a reality. The team has brought in more than 40 interns in the past seven years. We already caught up with three-time Starshade intern Christopher Esquer-Rosas, who is using his origami skills to help a full-scale model of the giant sunflower-shaped structure unfurl. Meanwhile, intern Allison Ayad, a mechanical engineering student at Pasadena City College, is creating a working miniature model to narrow in on the design. Fellow intern Evan Kramer met up with Ayad to find out how she’s contributing to the project and how she’s bringing what she’s learning back to school.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

What are you working on at JPL?

I'm working on a project called Starshade, which is a 26-meter diameter, flower-shaped structure we want to send to space to help us get images of exoplanets, [planets outside our solar system]. With these images, we could learn more about exoplanets and see if they could potentially harbor life.

So Starshade is a sort of spacecraft?

Yeah, it is! Starshade would fly out and position itself between a space telescope and a star. Its shape would suppress the light from the star so the spacecraft could get direct images of the exoplanets around it. It's similar to when you try to take a picture outside, and the Sun washes out the image. If you block the light from the Sun, then you can see everything in more detail. That's pretty much what Starshade would do.

What’s a typical day like for you?

Every day is very different. What I am working on is making a mini, fully deployable Starshade for interactive purposes, so we can show all the different stages of deployment. It will sort of be the first of its kind.

When I come in, I usually do work on my computer with [software] like Solidworks. Then, I do a lot of rapid prototyping with the use of 3D printers and laser cutters to test out all the little, moving components that are going into the real model.

I spend some of my time helping with the big structure that's out here. [She points to the warehouse-like space where the team is assembling a full-scale version of Starshade, which is about the size of a baseball diamond fully unfurled.] But most of the time, I'm working on the mini one. At least once a day, I’ll talk with my mentor, David Webb, about the ideas that I have on how to make things work. We'll bounce ideas off each other, then I'll have stuff to think about for the next day.

Allison Ayad stands under the support structure for a full-scale model of Starshade

Ayad stands under the support structure for the full-scale model of Starshade. Image credit: NASA/JPL-Caltech/Evan Kramer | + Expand image

What's been the most JPL- or NASA-unique experience you've had so far?

I’ve been here for a year and a half now, and I think the Starshade lab is the coolest at JPL, but I'm a little bit biased. It's really cool because we have a bunch of prototypes everywhere, so you get to see what Starshade would look like in real life. And there are a bunch of interactive models that you can play with to see all the different deployment stages.

How do you think you're contributing to NASA/JPL missions and science?

The full Starshade isn’t really finished being designed yet, so a lot of the problems that [the team that is building the full-scale model] is facing, I'm also facing with the mini one. The ideas that I'm thinking through could potentially help with the real flight-model design.

How has the work you’ve done here influenced you back at school?

When I first started interning here, I actually didn't have a lot of the core class requirements [for my major] done. So a lot of the terms and concepts that people were using at JPL were still new to me. Then when I took the classes, all [the lessons from my internship] came back, and I was like, whoa, I already kind of learned this stuff and got a hands-on approach to it. I'm a very hands-on learner, so having that previous experience and then learning more of the math behind it helped with that learning process.

If you could travel to any place in space, where would you go? And what would you do there?

I’d like to go to Mars just because we're so close to doing it. It'd be cool to see what's there. I personally think there's a really good chance there was once life on Mars. If I could go and see for myself, that would be pretty awesome.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Internships, Interns, Students, College, STEM, Opportunities, Starshade, Exoplanets, Engineering

  • Evan Kramer
READ MORE

Jasmine Cameron poses in the viewing gallery of the In-Situ Instruments Laboratory at JPL

There is still a lot of mystery around what exactly causes aurora, the swirling spectacles of light that grace Earth’s southern and northern high-latitude skies. So, this summer, Jasmine Cameron, a JPL intern and computer science major at Howard University, helped push aurora science further by developing an algorithm to detect the phenomena in video taken from a weather balloon. Fellow intern Evan Kramer caught up with Cameron to ask how learning about aurora might help the average person and what it’s like to work with NASA scientists and engineers.

What are you working on at JPL?

My project is in computer science. What we’re trying to do is image aurora, so your northern and southern lights, during the day time. A near-infrared camera goes up on a weather balloon and takes a video of the sky at up to 30 frames per second. It stores the collected data and sends back video containing auroras. What we want to do is develop an efficient, real-time algorithm based on machine learning technology that can identify frames with aurora in them so that we can collect science data about these phenomena. Our algorithm needs to give the scientists as many true-positives, or useful images with auroras in them, as possible so they can better understand what they are. It also needs to fit on the computer aboard the balloon so that it will be power efficient and high performance.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

How might understanding aurora help the average person one day?

Auroras are the result of a complicated interaction between the Sun and Earth. This interaction is a fundamental cosmic process that will affect space weather, which in turn will affect our daily life in terms of radiation exposure, satellite and radio communication, power systems, and so on. Studying aurora could help us better understand and forecast space weather.

What’s a typical day like for you?

I come in and check my email to see if my mentor has sent me any new data to process. Then I’ll get to work on algorithms I think would work as a detection system for identifying the presence of aurora in images. There are a lot of different machine-learning algorithms out there that we can test.

How does the algorithm work?

The algorithm is based on machine learning technology. You create a model with unknown parameters. You then take the data and set it up between training data and testing data. Your training data is a bunch of base images with aurora in them and defined parameters used to detect aurora. Then, you develop the algorithm to look for those parameters in your test data, and it will conclude if there is an aurora or not in each of the test images. Then, you use a validation directory with only true-positives to compare the images in your test data that were identified as having aurora in them to actual aurora images to see how well your algorithm is working. My job is to see what algorithm works the best in identifying aurora in the test images.

Jasmine Cameron sits at her computer at JPL

Image credit: NASA/JPL-Caltech/Evan Kramer | + Expand image

Did you have to do any research or special preparation before you started on the project?

Yes, I had to read a lot, especially about the motivations behind why we’re doing this work and how we’re going to accomplish our goals. I had to read the technical documentation about different algorithms and different systems that are used to process the images and identify aurora. There’s definitely a lot of reading involved every day, and I frequently ask the people I work with questions.

What’s the most JPL- or NASA-unique experience you’ve had so far?

I got to see different hardware and test beds and even mission control where they control the Deep Space Network, [a system of antennas around the world that are used to communicate with spacecraft]. That was really cool.

What about the people here? What’s the environment like at JPL?

Everybody is kind of a nerd. Usually when I’m talking about my internship experience to friends back home, I have to edit out things I’d normally say because most of them would find it boring, but here I’m frequently asked what I work on in a genuine way. I know I can always ask anyone anything about their project and for help on my own project. It’s a great environment and I’m learning a lot.

How do you feel you’re contributing to NASA/JPL missions and science?

Just being able to do this type of work on aurora detection – it has never been done before. Being able to contribute to making data collection and analysis more efficient makes scientists’ lives a lot easier and helps us learn more about these phenomena.

If you could travel to any place in space, where would you go and what would you do there?

A black hole, just to see what happens. I’d want to see how destructive it is and how dark it is.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Internships, Interns, College, Students, Opportunities, Science, Careers

  • Evan Kramer
READ MORE

Ryan Loper holds a optical test-bed component he designed during his internship at JPL.

Update: Sept. 4, 2018 – Ryan Loper was offered and accepted a full-time position with the team he's interned with for the past two summers. He'll start his new role at the laboratory after he graduates in September 2019!


During his seven years in the Marine Corps, traveling around the world, Ryan Loper saw how much an education could change a person’s life. When his service ended, he enrolled in community college, just to, “take a couple of classes and see,” he said – until it ended up changing the course of his life as well. Now a student at Stanford, a two-time JPL intern, and an alumnus of and volunteer for the NASA Community College Aerospace Scholars (NCAS) program, Loper is helping build a test bed for a next-generation space telescope. We caught up with him to find out how he made the transition from military to student life and what he hopes his future at JPL will bring.

What are you working on at JPL?

I'm working on an optical test bed, where we’re trying to make a telescope similar to one we would put in space, but a much smaller size.

What's the ultimate goal of the project?

We’re preparing for the next-generation space telescope. We want to get to what they call “first light,” where you get light to come through the telescope and detect it. Eventually, the team wants to take [the telescope] out and observe a star with it and be able to make measurements.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

What's a typical day like for you?

They're almost never the same. Just about every day, we have a morning meeting with the principal investigator, the systems engineer for the project and two other interns working on the same project. We talk about where we got yesterday, what our plan is for the day and things we might have to consider going forward. We're producing drawings now on some of the test-bed parts. We're trying to find the right design. Then, as much as I can, I try to get out onto the lab and meet new people and reconnect with some of the people who I met during my internship last year.

You were in the Marines before going to college. Can you tell me a bit about that experience and how it shaped your career path?

Yes. I did very poorly in high school. I didn't have anybody in my family who went to college, and I didn't see the benefit of an education. So two weeks after I graduated, I went to boot camp with the Marine Corps. I spent seven years in the Marines, where I got to travel a lot and go to different parts of the world. I saw how much a lack of an education could hurt an entire group of people. I also saw how a little bit of an education could give someone more opportunities than they ever had. I also happened to have really good mentors while I was in the Marines who pushed me to learn more than what was required. It instilled this hunger for knowledge that's really helped me be successful as a student and ultimately lead to me being able to start at community college and transfer to Stanford to finish my undergraduate degree. It’s also what makes me really enjoy JPL, because it's that same type of mentality here. There are a lot of really cool things going on here, but it's not like we just sit back and watch the cool stuff happen. We're doing the stuff no one has done before, and we’re continuing to learn and iterate.

It’s often challenging for veterans to take that next step after they return from their service. What challenges did you face and how did you overcome them?

It's really difficult when you're first leaving the service because you've been surrounded by a lot of like-minded people in the sense that you have a mission and you're executing that mission to the best of your team's ability. I didn't struggle with this because I happened to go to a community college that had a great veteran population, but some friends of mine who went to different schools felt like there wasn't that camaraderie. I think that's the biggest thing that hinders us when we come out. We're used to that sense of camaraderie and then we go to a place where that's not there, and it leaves you feeling alone.

Ryan Loper with his wife and kids.

Loper poses for a photo with his wife and kids on a trip to Yosemite National Park. Photo courtesy of Ryan Loper. | + Expand image

Some of the situations that you face and see while you're deployed in the military are not what the normal 18-,19-, 20-year-old sees, so it makes it hard to talk to others. I had a lot of trouble with that. I was very antisocial when I first came out of the service, so I did a lot of counseling through [Veterans Affairs]. My wife has been a huge help and has been very patient with me working through it. [It was also helpful] having a good group of friends who are veterans, who I got together and studied with. I think the biggest thing you can do is try to find other veterans or just people you can have in your corner because it does get difficult.

Did you pick the community college you went to because it had a large veteran population?

No. When I first got out, I wasn't sure I was going to go to college. I figured I would take one or two classes [at a community college] and see how it went. My wife went to get information and sign me up and told me there's this whole veterans resource center and that I should go meet this guy Jordan. The first time I went, I was just super uncomfortable. I was there for five or 10 minutes, and I left. I think I made it halfway through the semester and the classes started to get really difficult. So, I finally went back and met Jordan and the community there and right away got involved. I ended up becoming the vice president of our student veterans organization during my time there. But I didn't choose the school because they have a good veteran population. The location and timing just worked out really well.

What made you decide that you wanted to study STEM?

Growing up, I always got in trouble for tinkering. I grew up on a tiny farm. We didn't have any money, but we always had broken stuff lying around. So I would take stuff apart and try to put it together with other things. And then I've always been interested in space and military aircraft. I worked on military aircraft for part of my career. I've just always had that desire to poke my head into things and figure out how they work and take things apart. So STEM kind of seemed like the right thing to get into. It gives me an ability to dig into math and physics, which I enjoy, but also poke around with the creative side of things.

https://www.jpl.nasa.gov/edu/images/news/ryanloper_action-web.jpg

Image credit: NASA/JPL-Caltech/Kim Orr | + Expand image

When you started at community college and took those first couple courses, were they STEM-related?

Since I'd been out of school for so long, I had to take a test to see where I would start. I started in trigonometry, which is low on the totem pole for engineering majors, but I had an amazing trig professor, Professor Marquez. He walked into this trig-prep class and said, “Don't think of trig as a subject you have to learn in math, think of it as a superpower.” He taught us to think, not to repeat. So later on, it made other classes much easier.

This is your second internship at JPL, and before that, you were here as part of the NASA Community College Aerospace Scholars, or NCAS, workshop. Can you talk a little bit about that and why you've continued to come back to JPL?

I have a friend, Dave, who's also here [as an intern]. He was at the community college I went to. He told me how he was coming to JPL for this program called NCAS. I went online and signed up for it. I did the online class and got invited to come to JPL [for the NCAS onsite workshop]. During the workshop, I fell in love with everything that we got exposed to: the missions that NASA was doing and what JPL was working on. We had guest speakers come in and interns talk about their experiences at JPL. It wasn't necessarily that I thought, that’s the job I want to do. It was, those are the people who I want to work with.

Ryan Loper poses in front of a light sculpture at JPL with other NCAS participants

Loper (left) first came to JPL as part of the NCAS workshop for community college students. Image credit: NASA/JPL-Caltech/Lyle Tavernier | + Expand image

After that program, I stayed in contact with my mentor, Otto Polanco. He offered me an opportunity to come to JPL that following summer. I thought, I'll probably go there to do all the stuff that he doesn't want to do, like Excel sheets and trade studies. But then, I showed up, and I was basically handed the keys to the Ferrari and told to go drive. It was the first time with a work experience, especially an internship, where I came in and it was like, “Here's an engineering problem, go figure it out.” I loved it.

I was also invited that summer to be a student aid for NCAS at JPL, so I got to be behind the scenes and see all of the work that the JPL Education Office puts into the program. They do a fantastic job and it makes it that much more special for all the students.

What's been the most unique JPL or NASA experience you've had during your time here?

The most unique is being surrounded by people whose work you're reading [in school] and who are guiding what industry is doing – but they're approachable. Like yesterday, I sat with Adam Steltzner, who lead the entry, descent and landing for the Mars rover Curiosity. I had read his book, and last summer, I ran into him and briefly introduced myself and asked if he wanted to meet. He met me for coffee, and then he met me again this year and we got to catch up.

For me, a big thing that I'm considering is the work-life balance because I have a wife and two children. At JPL, you have that opportunity to do really amazing things and work with amazing people and get to be a husband and a father. And you don't have to sacrifice that to do something amazing. That's been unique to me – to find a place that has the culture fit that I've been looking for.

How do you feel you're contributing overall to NASA/JPL missions and science?

Hopefully, the project that I’m working on will help ensure success for the next space-based telescope. I feel as though I get to be part of the future, the next generation of space explorers and what we're going to find out there.

What's your ultimate career goal?

To be an NCAS mentor. That would mean I'd have to be a full-time JPL employee in a position where I'd be able to dedicate some of my time to support the next group of NCAS students, who are going to become interns and then come to JPL full time.

Last question: If you could go anywhere in space, where would you go and what would you do there?

Ooh, if I could go anywhere in space? I would want to go to the farthest point in space from Earth and look back to realize how insignificant it is and how much I take for granted.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Interns, Internships, Veterans, College, STEM, STEM Education

  • Kim Orr
READ MORE

Interns and their mentors celebrated a successful summer at a mentor-appreciation event held at JPL.

When the new crop of summer interns started showing up at NASA’s Jet Propulsion Laboratory in Pasadena, California, this past June, they joined the more than 2,000-plus students placed across NASA’s 10 field centers, instantly becoming part of the NASA family.

“They may not be together geographically, but these interns are getting this unique experience all over the country,” said Katherine Brown, public affairs officer for education at NASA Headquarters.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

But between the challenging workloads, exciting education opportunities and inspiring culture at JPL, interns who come to the laboratory often see only one piece of the NASA puzzle. Intern and University of Colorado Boulder astrophysics student Maya Yanez has spent the past two summers at JPL – one working on describing potential radical chemistry on Kuiper Belt objects, and one helping to identify potential landing sites on Jupiter’s moon Europa.

“You get the chance to be a little sprocket in this massive machine of making things happen at JPL, but then you can kind of lose sight of the fact that JPL is one component of NASA, and there are hundreds of interns at other centers doing comparable things,” Yanez said.

This year, NASA Headquarters’ internship and communications coordinator Christine Linsinbigler saw opportunities to bring the centers together. She organized an agency-wide live feed of NASA Administrator Jim Bridenstine’s intern town hall at Goddard Space Flight Center on July 26, and an ISS downlink Q&A – where interns got to pre-record questions for astronauts to answer live from the space station – on July 30.

“With National Intern Day on July 26, we were able to roll the events into one big intern week,” Linsinbigler said.

Answers from the Administrator

This was the first year a NASA administrator conducted a NASA-wide town hall, where interns from all of the centers could submit questions in short videos. Yanez was selected to live-tweet Bridenstine’s responses from the JPL Education Office’s @NASAJPL_Edu handle so students, JPLers and members of the public could see some of the responses.

“The administrators’ town hall was really important because, for the first time, I had an opportunity as an undergrad to ask about our future and the future of space funding,” said Yanez, who also hopes to one day run for office. “This is a person who has power over our future. I think it’s important to keep that communication between science and politics.”

JPL intern Maya Yanez live tweets from the JPL Watch Party for NASA's Internships Town Hall with Administrator Jim Bridenstine

Yanez hosted a takeover of the @NASAJPL_Edu Twitter account during the NASA Internships Town Hall with Administrator Jim Bridenstine. Credit: NASA/JPL-Caltech/Kim Orr | + Expand image

Yanez was also appreciative of the administrator’s openness to discuss inclusion and diversity in the field, and how NASA plans to maintain its current programs.

“I’m half Mexican, a female in STEM, a first-generation college student, and low income, so I check off a lot of those representative boxes,” Yanez said. “It was nice that he spent as much time on that question as he did. He talked about how it mattered to him and how it should matter to all of us.”

At NASA Headquarters, inclusion and diversity within NASA starts with the intern program, which saw its largest and most diverse applicant pool of interns this summer. Brown said it followed a concerted effort of making the public aware that an internship at JPL, Langley or Johnson is more than just for STEM students – there are opportunities in communications, human resources, education and other fields that are all relevant to how the agency runs.

“We’ve showcased interns on our social media, we held a Reddit ‘Ask Me Anything’ Q&A with Johnson Space Center Flight Director Allison Bollinger, and we’re hoping that including more events like the administrator town hall and ISS downlink will continue to attract a diverse group to NASA,” Brown said.

Questions to Space

When JPL intern Zachary Luppen heard about the ISS downlink – and that he would have a chance to ask an astronaut a question – he already had pages of questions lined up.

An intern takes a photo at the ISS Downlink watch party at JPL

A watch party was held at JPL for an ISS downlink with NASA astronaut Ricky Arnold. Image credit: NASA/JPL-Caltech/Lyle Tavernier | + Expand image

Zachary Luppen stands in an anechoic chamber at JPL

Zachary Luppen stands in an anechoic chamber at JPL. Image credit: NASA/JPL-Caltech/Kim Orr | + Expand image

Christopher Jia-Kuan Yen poses with his mentor, Abigail Fraeman, during a mentor appreciation event held at JPL

Christopher Jia-Kuan Yen poses with his mentor, Abigail Fraeman, during a mentor appreciation event held at JPL. Image credit: NASA/JPL-Caltech/Lyle Tavernier | + Expand image

“I had always wanted to ask an astronaut something, but I didn’t know how to go about doing it,” said Luppen, who is entering his senior year as an astronomy physics major at the University of Iowa. “I really want to go into space, and here I suddenly have this opportunity to throw a question at an astronaut and get it answered.”

The pre-recorded video questions from interns across NASA centers were played during the ISS downlink on July 30, and JPL interns gathered to hear astronaut Ricky Arnold’s responses. Luppen asked Arnold if there were any specific pointers he could give NASA interns who want to be astronauts themselves, and go to the ISS, the Moon or even Mars.

“The temptation is to specialize early, and it’s great to find your passion and pursue it, but don’t lose sight of the bigger picture,” Arnold said. “NASA is looking for people with very diverse backgrounds, who have done a lot of different things in different environments with different people.”

Luppen said the ISS downlink was special, as it was one of many “bucket list” items he was able to check off during his summer at JPL, but the work he conducted at the laboratory was more important to his future. Over his 10 weeks at JPL, Luppen worked on test procedures for the dual-frequency radar instrument (REASON) slated to ride aboard NASA’s Europa Clipper spacecraft. That allowed him to connect with a group of employees who are really doing what he wants to do.

“At Iowa, we’re building parts of the Europa [Clipper mission] there too, but we’re not working on spacecraft to the degree that JPL is,” Luppen said. “I’m here with like-minded people, fantastic scientists and engineers who are working on these projects, and it’s just great to finally be at a center where it’s so productive. It’s almost like chaos, but it’s so cool. I mean, how many missions did we have launch this summer? So, it’s just like, we’re so busy, and I’m getting to be a part of it this summer.”

Intern Christopher Jia-Kuan Yen, a senior geology-chemistry student at Brown University, spent his summer working with Deputy Project Scientist Abigail Fraeman on remote sensing and imaging instruments aboard the Mars Reconnaissance Orbiter. As for the question he asked of astronaut Ricky Arnold, it was – of course – imagery based.

“I wanted to know, based on what he’s seen from the windows of the ISS, where he would most like to visit on Earth,” Yen said.

Arnold responded that the list seems to get longer every day he’s on the station, but the mountains of Peru, Chile and Argentina have caught his eye. “I guess I’ll have to head down there and check it out someday,” Yen said with a smile. In retrospect, Yen viewed the ISS Downlink as one more example of how special interning at JPL can be.

“There are just so many things going on here,” he said. “Between the work you’re doing, the lectures – I mean, we had the Mars helicopter team present to us – and the events like the ISS Downlink, I don’t think you’re getting opportunities like those at your university internship.”

This summer, 400 JPL employees participated as mentors, providing guidance to the 700 interns working in various fields across the laboratory.

To learn more about this year’s interns, visit:


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Interns, Internships, Student Programs, STEM, STEM Education, College Students

  • Taylor Hill
READ MORE

JPL intern Maya Yanez stands in front of the Jupiter display in the lab's museum

There’s no telling what the first spacecraft to land on Jupiter’s ice-covered moon Europa could encounter – but this summer, JPL intern Maya Yanez is trying to find out. As part of a team designing the potential Europa Lander, a mission concept that would explore the Jovian moon to search for biosignatures of past or present life, Yanez is combing through images, models, analogs, anything she can find to characterize a spot that’s “less than a quarter of a pixel on the highest-resolution image we have of Europa.” We caught up with Yanez, an undergraduate student at the University of Colorado at Boulder, to find out what inspired her to get involved in space exploration and ask about her career ambition to discover alien life.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

What are you working on at JPL?

I'm working on what may be a robot that we would land on Europa's icy surface. Europa is a moon of Jupiter that has this thick ice shell that we estimate is 25 kilometers [15.5 miles] thick, and there’s evidence that underneath that is a huge global ocean. If we're going to find life beyond Earth, it's probably going to be wherever there's water. So this mission concept would be to put a lander on Europa to try to figure out if there are signs of life there. I’m looking at an area on Europa about two square meters [about 7 feet] and about a meter [3 feet] deep. For perspective, we've only explored a few kilometers into our own Earth's surface. What I'm doing is trying to figure out what we might expect is going on in that little tiny area on Europa. What light is interacting with it, what processes might be going on, what little micrometeorites are hitting the surface, what's the ice block distribution? I'm looking at places like Mars, the Moon and Earth to try to put constraints and understanding around what types of variation we might see on Europa and what might be going on underneath the surface.

What's an average day like for you?

A lot of it is looking up papers and trying to get an idea of what information exists about Europa. My first couple of weeks here, I read this thing that we call the "Big Europa Book.” It's a 700-page textbook that covers basically all of our knowledge of Europa.

One of the other things that I've been working on is a geologic map, trying to look at what geologic variation exists in a couple of meters on Europa because we don't know. It's kind of crazy to think that when Viking [the first Mars lander] landed, we had no clue what another surface would look like except for the Moon. We had no idea. And then we got those first amazing images and it looked kind of like Earth, except Europa probably won't look like Earth because it's not rock; it's all ice. So even though we're trying, we still have nothing to compare it to.

If it gets selected as an official mission, a Europa lander would come after NASA’s Europa Clipper spacecraft. How might data from Europa Clipper contribute to what you're working on now?

Image of Europa acquired by Voyager 2 on July 9, 1979.

This image of Jupiter's moon Europa was acquired by NASA's Voyager 2 spacecraft on July 9, 1979, from a distance of about 240,000 kilometers (150,600 miles). Credit: NASA/JPL-Caltech | › Full image and caption

Highest resolution image of Europa

This image is the most detailed view of Europa, obtained by NASA's Galileo mission on Dec. 16, 1997, at a distance of 560 kilometers (335 miles) from the surface. Credit: NASA/JPL-Caltech | › Full image and caption

Europa Clipper could be really beneficial in that it's going to do more than 40 flybys where it goes around Europa in a bunch of different ways and at different proximities. It’s going to curve into the moon’s atmosphere and get really close to the surface, about 25 kilometers [15.5 miles] close to the surface. Right now, some of the best data we have is from hundreds of kilometers away, so the images Europa Clipper will take will be pretty nicely resolved. If you look at the current highest resolution image of Europa as compared to one from Voyager [which flew by Jupiter and its moons in 1979], the amount of detail that changes, the amount of cracks and complexity you can see on the surface is huge. So having more images like that can be really beneficial to figure out where we can land and where we should land.

Before this project, you spent a summer at JPL studying the chemistry of icy worlds, such as Pluto. What’s it been like working on such different projects and getting experience in fields outside your major, like chemistry and geology?

[Laughs] Yeah, one day I'll get back to astronomy. That's one of the things I love about JPL. Overall, I'd say what I want to do is astrobiology because I want to find life in the solar system. I mean, everyone does. It would be really cool to find out that there are aliens. But one of the great things about astrobiology is it takes chemistry, physics, geology, astronomy and all of these different sciences that you don't always mix together. And that's kind of why I like JPL. So much of the work involves an interdisciplinary approach.

What's the most JPL- or NASA-unique experience you've had so far?

I have one from last summer and one from this summer.

I really want to find life out in space. I'm curious about bacteria and microbes and how they react in space, but it's not something I've ever really done work in. A couple of weeks ago, I got to see astronaut Kathleen Rubins give a talk, meet her afterward and take a picture with her. She was the first person to sequence DNA in space. I would have never met someone like that if it weren’t for my internship at JPL. I wouldn't have been able to go up to her and say, “This is really cool! I'd love to talk to you more and get your email” – and get an astronaut's email! Who would ever expect that?

And then last year, I had something happen that was completely unexpected. I was sitting alone in the lab, running an experiment and, throughout the summer, we had a couple of different tours come through. A scientist asked if he could bring in a tour. It was two high-school-age kids and, presumably, their moms. I showed them around and explained what my experiment was doing. It was great. It was a really good time. They left and a couple hours later, Mike Malaska, the scientist who was leading the tour, came back and said, “Thank you so much for doing that tour. Do you know the story of that one? I said no. He said, “Well the boy, he has cancer. This is his Make-a-Wish.” His Make-a-Wish was to tour JPL. I had never felt so grateful to be given the opportunity that I was given, to realize that someone’s wish before they may or may not die is to visit the place that I'm lucky enough to intern at. It was a very touching moment. It really made me happy to be at JPL.

What was your own personal inspiration for going into astronomy?

I was the nerdy kid. I had a telescope, but I also had a microscope. So it was destined. But in middle school, I started to get this emphasis on life sciences. I'd always really liked biology so I sort of clung to it. We never really talked about space, so I just kind of forgot about it. But my senior year, I took this really cool class in astrobiology taught by an amazing teacher, who I still talk to. After the first week in her class, I was like, I have to do this. At the end of the academic year, that same teacher took me to JPL and gave me a private tour with some of the other scientists. I actually met Morgan Cable, the mentor I worked with last summer and this summer, on that tour. It was definitely a combination of being in this really great class and having that perspective change, realizing that we’ve learned a lot about life on our own planet, but there's so much to learn about finding it elsewhere.

Did you know about JPL before that?

No. I'm the first generation in my family to go to college, so I'm the one who teaches science to everyone else. I didn't even think science was a career because, when you're a kid, you don't often interact with a lot with scientists. So I didn't realize what JPL was or how cool it was until that tour put everything into perspective. I wasn't a space kid, but I found my own path, and it worked.

JPL intern Maya Yanez live tweets from the JPL Watch Party for NASA's Internships Town Hall with Administrator Jim Bridenstine

Yanez hosted a takeover of the @NASAJPL_Edu Twitter account during the NASA Internships Town Hall with Administrator Jim Bridenstine. Credit: NASA/JPL-Caltech/Kim Orr | + Expand image

For National Intern Day on July 26, NASA held a special town hall for interns with Administrator Jim Bridenstine. Your question about how the agency prioritizes the search for extraterrestrial life was selected as a finalist to appear during the broadcast. What made you want to ask that particular question?

So it was a little self-serving [laughs]. Part of it is that it’s central to my career path, but I also want to run for office one day at some level, and I think it's important that there's this collaboration between science and politics. Without it, science doesn't get funded and politicians aren’t as well informed.

How do you feel you're contributing to NASA/JPL missions and science?

What I'm doing requires a lot of reading and putting things together and knowing rocks and putting scales into perspective, so it's not particularly specialized work. But the end goal of my project will be a table that says here's what processes are happening on Europa, here's what depth they govern and here's what it means if biosignatures are caught in these processes. I'm also going to be remaking an old graphic, including more information and trying to better synthesize everything that we know about Europa. Those two products will continue to be used by anyone who’s thinking about landing on Europa, for anyone who’s thinking about what surface processes govern Europa. Those two products that I'm producing are going to be the best summaries that we have of what's going on there.

OK, so now for the fun question: If you could travel to any place in space, where would you go and what would you do there?

Europa. Obviously [laughs]. Or [Saturn’s moon] Titan. Titan is pretty cool, but it scares me a little bit because there's definitely no oxygen. There's not a lot of oxygen on Europa, but what's there is oxygen. I would probably go to Europa and find some way to get through those 25 kilometers of ice, hit that ocean and see what's going on.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Internships, Interns, College, Students, STEM, Science, Engineering, Europa, Europa Clipper, Europa Lander

  • Kim Orr
READ MORE

JPL intern Tre'Shunda James stands in front of NASA's "Visions of the Future" posters

Since we can’t yet travel to planets outside our solar system, JPL intern Tre’Shunda James creates models of them right here on Earth. We caught up with the Occidental College physics and chemistry major to learn how she’s pointing the way toward potentially habitable worlds while helping lead the way toward diversity in her field.

What are you working on at JPL?

My project this summer is studying exoplanet atmospheres and the chemical components that are present in those atmospheres. I'm running a bunch of simulations, or models, using a computer code that my JPL mentor, Renyu Hu, published back when he was in grad school. I change a few things, run the models, look at the results, compile them and analyze what they can tell me about oxygen, which is a possible sign of life on these exoplanets [planets outside our solar system]. So in that way, it's really pushing the field forward in terms of finding out if life could exist on similar planets.

What’s the ultimate goal of the project?

The parameters we put into the model are to simulate a terrestrial, habitable exoplanet. Scientists have discovered exoplanets that are terrestrial, but we don't yet know if there's life on them. So this model is a theoretical basis that we can apply to many exoplanets that are discovered to see if they could support life. We just submitted the paper on our findings a couple weeks ago.

What's an average day like for you?

Right before we submitted the paper, we were working nonstop on that. It was the hardest I’ve worked in such a short time. But it was very rewarding. It was the first time I’ve been an author on a science paper, so it was pretty cool. I learned a lot.

Typically, I'd come in and look at my code. Sometimes it would run a couple hours and it would be done or it would run a couple days, so I was always anxious to see where it was when I get to my desk. If it was done running, I’d take the results, make graphs, make figures and analyze what I could. And if wasn’t done, I'd usually just start a new simulation.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

How do you feel you're contributing to NASA/JPL missions and science?

I feel that with the publication, I will contribute a lot, especially because we're scratching surfaces that have never been explored before.

I also feel that I’m contributing as an African American, female engineer doing work in planetary science. I was looking up women in planetary science, specifically African American women, and the only one I could find passed away in 2015. So I feel as though just being here, exploring this field, is pushing the boundaries, and I'm excited about that.

How did you find out about the JPL internship?

I'm a member of a group called COSMOS, Creating Opportunities in Science and Math for Occidental Students. They put me in contact with the SIRI program in the JPL Education Office last year. Before that, I didn’t even know that JPL existed.

What's been your impression of JPL?

It's kind of like school. It's like going to school with your professors. It’s pretty cool, the collaborative environment.

OK, now for the fun question: If you could travel anywhere in space, where would you go and what would you do there?

I would like to go to Saturn, mostly because I think it's beautiful, and it's one of the first planets that I ever learned about. What would I do there? I don't know exactly. It’s funny because I never really had a real interest in space until I started interning here. So everything is still kind of new to me, and I'm just learning about new missions and worlds every day.

What about any of the exoplanets that you're studying? Would you want to go check out any of them?

One thing we're looking to do is study the atmospheres of [the seven planets found orbiting the star TRAPPIST-1]. That would be really cool, especially because it's so close and it's one of the most recent planet-system discoveries. The Exoplanet Travel Bureau posters make it hard not to want to visit these places.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Internships, Interns, Exoplanets, Science, College

  • Kim Orr
READ MORE

JPL intern Zachary Luppen stands in an anechoic chamber

A radar on NASA’s Europa Clipper spacecraft will be key to finding out if Jupiter's moon Europa is indeed an ocean world, so JPL intern Zachary Luppen is creating ways to test it to perfection. We caught up with Luppen, an astronomy and physics major from the University of Iowa, to find out how he’s helping the team peer below the icy moon’s surface and to hear about his recent brushes with space stardom.

What are you working on at JPL?

I'm working on the integration, testing and automation of the REASON instrument for the Europa Clipper mission. REASON is a radar instrument that will look within the icy crust of Jupiter’s moon Europa to look for water pockets, characterize the moon’s surface and see if we can confirm that there’s an ocean below its surface.

How does the radar work and why is it important for the mission?

The radar performs what’s called interferometry by sending out and receiving signals that create measurable interference patterns. Based on what signal bounces back, we can figure out the composition of the crust.

The radar probably first and foremost is trying to answer whether the moon has an ocean, and will probably help with determining a landing site for a potential future lander. So the Europa Clipper orbiter is sort of this preliminary study for eventually putting something on the surface. The REASON instrument is going to study a large portion of the moon’s surface and look for a landing spot, possibly where the ice is thinnest so we will not have to drill too deep to find water.

Why is NASA especially interested in Europa as a destination to explore?

Europa is a very interesting moon because it's way out at Jupiter, so it's far away from the Sun, and yet, scientists have data to support the notion that it might have liquid water. What allows it to have this water below its icy crust and how deep is that water? How thick is the icy crust? And if we were to drill into the crust, is there the potential to find life below it? Europa very quickly becomes a moon that can transform society on Earth, if we happened to find extraterrestrial life there.

| Watch on YouTube

What’s an average day like for you?

A lot of the work that I do involves programming in a language called Python. The transmitter boards, which are used to generate the signals that would propagate downwards toward Europa, are currently being built at the University of Iowa, and once we get them here at JPL, we're going to have to test them nonstop, see how we can break them, see how we can improve them. Whatever we need to do to make sure we operate perfectly during the mission. A lot of my work involves writing the software that's going to be doing this testing. Other than that, I've been writing programs called GUIs, graphical user interfaces, to interact with the instruments without having to actually touch them. So if you’re not able to go into the cleanroom during testing, then you can just use your computer to type commands.

How did you get involved in the project?

I’m a student at the University of Iowa and our team has been working on the transmitter boards for the past couple of years. I was dying to get involved in spacecraft and by the end of my sophomore year, I finally had the opportunity to do so because I got a grant from the university to pay for research. I started off simply cleaning rooms and putting away parts, which was pretty menial, however, I did learn what the parts were and how to quickly blow them up if you don't use them properly. Then I worked my way up to kitting parts, which is organizing them for our soldering technician. This doesn't sound like a rigorous job, but it's the first task that needs to be done to make a circuit board, and if it's not done properly, nothing else matters because the circuit boards won’t work. So I just kept working on that throughout my junior year and now I'm out here interning.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

Your question was chosen to be broadcast as part of a downlink for NASA interns with astronauts on the International Space Station. What does it mean to know that your question is going to space?

Words that I spoke are going to be shown to astronauts. Pixels showing me and audio from my mouth will be appearing on the International Space Station, so I'm almost riding on the station. In a sense, my dream of going to space is another step toward coming true

Have you had any other JPL or NASA unique experience of note?

I got to meet astronaut Kate Rubins when she visited JPL recently. That was the first time that I'd ever met an astronaut. And I was just like, oh my gosh, I was shaking. Someone told me I could go up and shake her hand and I was like, really, I'm allowed to do that?! And I did. And then I got her autograph afterward.

How do you feel you're contributing to NASA/JPL missions and science?

The programming work I’m doing is contributing directly to the testing phase of the Europa mission, which is cool in itself. But also just trying to make as many people aware as possible that the science is going on, that it's worth doing and worth finding out, especially if we were to find life on Europa. That changes humanity forever!

If you could travel to any place in space, where would you go and what would you do there?

Oh my god. The planetary system around the star TRAPPIST-1 is fascinating. The ISS is fascinating. Mars is Mars. Europa is Europa. This is a hard question. I guess, in order to further science, I’d go to Europa. If I could just go to Europa and see if there's life, well then, we’d answer one of the biggest questions ever asked.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Interns, Internships, Higher Education, College, Opportunities, STEM, engineering, Europa Clipper, Europa, Ocean Worlds

  • Kim Orr
READ MORE

JPL intern Kathy Vega poses with a model of Jupiter's moon Europa

Kathy Vega went from teaching STEM to doing it first-hand. Now, as an intern at NASA’s Jet Propulsion Laboratory, she's building an experiment to simulate ocean worlds. We recently caught up with Vega, a University of Colorado at Boulder engineering physics major, to find out what inspired her to switch careers and how her project is furthering the search for life beyond Earth.

What are you working on at JPL?

In our solar system, there are these icy worlds. Most of them are moons around large gas planets. For example, Europa is an icy moon that orbits Jupiter. There's also Titan and Enceladus orbiting Saturn. From prior missions, such as Galileo and Cassini, we've been able to see that these moons are covered with ice and most likely harbor oceans below that ice, which makes us wonder if these places are habitable for life. My project is supporting the setup of an experiment to simulate possible ocean compositions that would exist on these worlds under different temperatures and different pressures. Working in collaboration with J. Michael Brown’s group at the University of Washington in Seattle, this experiment is helping create a library of measurements that have not been collected before. Eventually, it may help us prepare for the development of landers to go to Europa, Enceladus and Titan and collect seismic measurements that we can compare to our simulated ones.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

What's a typical day like for you?

Right now, I'm in experiment-design mode. I've been ordering parts for the experiment and speaking with engineering companies. This experiment is already being run at UW in Seattle, but we're attempting to run it at colder temperatures to do a wider range of simulations, which haven’t been done before and will be particularly relevant to Jupiter’s moon Ganymede and Saturn’s moon Titan. I've been working with another intern, and we've been meeting with cryogenic specialists and experiment-design specialists at JPL to design a way to make our current experiment reach colder temperatures.

I also run a lot of simulations with Matlab software. There's a model that my principal investigator developed called Planet Profile that allows the user to input different temperature ranges and composition profiles for a planetary body. It then outputs the density and sound-velocity measurements that we would expect in that environment.

What's the most JPL- or NASA-unique experience you've had so far?

The Europa Clipper mission, [which will orbit Jupiter’s moon Europa to learn more about it and prepare for a future lander], is in development right now. A major planning meeting for the mission was held at JPL, and I got to sit in and watch these world-renowned scientists, who I think are like rock stars, talk science. There were all of these people having an open-forum discussion and, gosh, it was so cool. I felt like I was there with the people who are planning the future.

You already have a degree in political science. What made you want to go back to school for STEM?

When I was in high school, I was in Mathletes, but I was also in Mock Trial. I took AP physics, AP chemistry, AP calculus, but also AP civics and AP history. I remember in my junior year, I thought, I love math. Maybe I could be an astronaut one day. Space is so cool. Then AP physics happened. I didn't fail or anything, but after that, I just felt like maybe it's not for me.

JPL intern Kathy Vega inspects the experiment she's helping create

Credit: NASA/JPL-Caltech/Kim Orr | + Expand image

There were also a lot of critical things happening with politics around that time. Immigration was a really hot topic and walkouts were happening at L.A high schools. My family is from El Salvador, and I'm a first-generation college student, so I felt very motivated to study political science and be involved in issues that were happening first-hand in the world and affected my family and people I knew. So I went to Berkeley and got a degree in political science.

After that, I really wanted to get involved with service and just make a difference in the world, so I joined Teach for America. I taught math and I started a robotics club. It was through the robotics club and teaching my students about space and engineering that I really got excited again. I started pressing my siblings and my cousins to go into science. And one day, one of my cousins said, "If space is so cool, Kathy, why aren't you studying it?" I realized, yeah, what happened to that? I really loved that. So I decided to take classes at a local community college and did well. And now I’m at the University of Colorado at Boulder getting a second degree in engineering physics.

Do you ever feel pulled back in the direction of politics?

No [laughs]. Politics is a messy ordeal. I do my part as a citizen, but I like to think that thinking toward the future in science is where my efforts are best used right now.

How do you feel your background in political science has served you in engineering?

Going into engineering and science, I was very conscious of the fact that women and especially women of color are underrepresented in these fields. I think that having the background in political science, having the experiences working with communities gives me the ability to have thoughtful conversations with people about diversity.

How do you think you're contributing to NASA/JPL missions and science?

With this experiment, I've been able to leverage my creative side. I feel like I'm laying the foundation for these missions to explore other moons and worlds.

If you could travel to any place in space, where would you go and what would you do there?

There’s a star called Vega, and it might have its own planetary system. It's so far that we have no idea what's in that potential system or if there could be terrestrial planets. I'd want to explore that.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Interns, Internships, College, Higher Education, STEM, Europa, Europa Clipper, Europa Lander, Science

  • Kim Orr
READ MORE