Natalie Deo poses for a photo wearing a shirt with a NASA meatball.

A master's student and JPL intern at 19, Natalie Deo has her sights set on a career at the Laboratory, and she's out to prove it's never too early to pursue your dreams.


To hear Natalie Deo explain why she wanted to leave high school at the age of 14 and go straight into higher education is to hear it from the perspective of a precocious teenager wise beyond her years – and her peers.

“I was walking to first period in high school and I saw a couple making out and I was like, ‘I’m getting out of here. I don’t want to see that,’” Deo, now 19 and a summer intern at NASA’s Jet Propulsion Laboratory, deadpans.

Not that she hadn’t thought about fast-tracking it out of high school before that moment, of course. Deo, who grew up in Downey, California, was already familiar with the highly selective Early Entrance Program, or EEP, at Cal State University, Los Angeles that puts gifted students on an accelerated path toward college admission, and she had taken the ACT while in eighth grade. After finishing ninth grade, she was one of a handful of high-school students selected to start her undergraduate studies in electrical engineering at Cal State L.A.

“I was tired of being around people who weren’t as motivated. People were begging me to do their homework or trying to pay me to write their essays,” she says. “While that wasn’t the case with all my peers and some were even really supportive, it was cool to go to college and be around more people who are like-minded.”

Now, Deo is pursuing her master's degree in astronautical engineering at USC while interning at JPL with the team developing the Europa Clipper spacecraft. These days, one could say Deo is constantly surrounded by like-minded folks.

“USC is near home and near JPL, and JPL has been my dream since I knew I wanted to work in space,” Deo says.

Deo wears a black cap and gown with several yellow and black cords and sashes hung around her neck along with a lei with large pink flowers.

Deo at her graduation from California State University, Los Angeles. Image courtesy Natalie Deo | + Expand image

The Early Years

Deo first realized she “really, really loved space” at 13 after winning a telescope from a raffle at the Columbia Memorial Space Center in Downey, and found herself looking up at the Moon every night. Shortly after, she started volunteering at the space center every weekend, helping host field trips and robotics labs for young visiting students (something she still does to this day).

During this time, Deo was introduced to a middle-school STEM engineering class when she was in seventh grade.

“My teacher reached out to me and said, ‘You might enjoy it,’ and I thought, ‘Well, it’s either this or band,’” she says.

Deo tried the class, which introduced basic engineering concepts the first year revolving around design, modeling, and the engineering process. The second year focused on automation and robotics, and put students’ skills to the test in regional competitions.

“Before I realized it, I was spending every day after school working in robotics,” she says.

By the time she entered high school, nothing fascinated her more.

“High school was pretty easy for me and what we were learning didn't intrigue me as much as engineering,” Deo says.

Once Deo decided to formally enter EEP, she had to participate in a rigorous summer academy where students are evaluated by college admissions staff on whether they’re performing at a college level. In Cal State L.A.’s program, approximately 500 to 1,000 students apply each year and only about 20 to 30 students are admitted.

Deo was on a road trip with her mother and grandmother when she got the acceptance call.

“I was screaming, and my mom had to pull over because she was screaming,” Deo says. “My brother and dad were at home, and I called them and they were screaming on the phone. There was a lot of screaming.”

Looking back on her time in the summer academy, Deo marvels at the odds she overcame to gain admission.

“I didn’t realize it during that summer, but I was not like most students there whose parents had PhDs and were established in their fields,” she says. “I had parents who immigrated from Fiji. My mom came [to the U.S.] at 8 and my dad came at 22 without a college education. I grew up in a poor area compared to a lot of these students, and I didn’t have the resources to prepare for college that a lot of other students did. I also have Type 1 diabetes. It was special to me [to be accepted into the program] because here was this girl facing adversities of every kind – and she made it.”

While the decision to leave high school was an easy one, arriving at college left Deo grappling with imposter syndrome.

“The first year, I just took general education classes with my cohort [of EEPs] who help you transition, and I was just having fun with them,” Deo says. “Then it kicked in. I had no idea how college worked – my brother was still a senior in high school at the time. I was seeing all these people who were so smart and who came from very affluent backgrounds and who were into literature and stuff like that. I was never really into that. People just knew things I didn’t know and I thought, ‘Should I know that? Do I belong here?’”

Deo credits therapy, talking to friends, and turning to family as ways she coped with getting through those challenging early months. She also still stayed in touch with her childhood friends and took in the high-school experience while in college.

“I still went to prom, football games, and hung out with my friends all the time,” she says. “I was able to have the best of both worlds.”

JPL Internship, Mentorship, and Beyond

Deo leans against the base of a statue of USC's Trojan mascot.

Deo poses for a picture on the USC campus, where she's pursuing her master's degree in astronautical engineering. Image courtesy Natalie Deo | + Expand image

At JPL, whispers of a 19-year-old summer intern getting her master’s haven’t fazed Deo in the slightest.

“I hosted an intern party the other week, and everyone coming in was like, ‘Are you the one who’s 19 and in grad school?’ And I’m like, ‘Yeah, that’s me, but I’m also Natalie and I have a Lego collection,’ she says with a laugh.

Deo’s intern responsibilities go beyond her years, of course. So far this summer, she’s spent it working on validating and verifying commands being sent to Europa Clipper’s computer system, ensuring the spacecraft’s instruments respond correctly to commands.

While she admits she still struggles with imposter syndrome in the workplace, she’s becoming more and more comfortable as the months go by and she grows closer to her fellow interns.

“The ratio of women to men is much greater here than in my previous internships,” she says. “I see more of myself in the people around me, and that helps me be able to interact with other interns and have them as a support group. I’m hanging out with them every weekend, and I’ve made lifelong friends already.”

Deo is also part of JPL’s Employee Resource Group, or ERG, mentorship program, which paired her up with a secondary mentor – one who supports a mentee outside of the mentorship their manager provides – through JPL's Advisory Council for Women, or ACW.

“This type of mentorship is based on career and academic advice, and to help interns develop their soft skills,” explains Alona Dontsova, who spearheads the program for Human Resources at JPL. “If the manager is concentrating on developing technical skills and how to manage projects, the ERG mentors are helping with networking, looking at their resume, listening to their pitches, or giving them more professional development advice. The ERG mentor is also more focused on teaching interns about the JPL culture.”

Deo’s secondary mentor, Lynn Boyden, is “very glad that the planets aligned that way” for the two of them to be paired up, and is a firm believer that mentoring is a two-way street.

“Learning goes in both directions … and one of the ways we do that is by sharing knowledge across these divides,” she says. “Sometimes there are situations that are beyond an intern’s ability to navigate the institutional practices, and this is where having a mentor with deeper experience in the world of business can be helpful. Also, one of the primary functions of an internship is to help an intern build a professional network, and having another designated person at JPL can only help them extend that network.”

For Deo’s part, she’s thrilled to have someone she can be candid with.

“I can have conversations about JPL that might be intimidating to ask my group supervisor,” she says. “Like, ‘How do I say please hire me without saying please hire me?’”

Deo isn’t shy about her next set of goals, which include being hired through JPL's academic part-time program while she completes her master’s. And while the virtual internship experience has been a challenge for her, “I really enjoy hands-on work,” she says. Deo has felt the rewards of her internship and mentorship every day.

“Honestly, everything has been rewarding: the people, the experiences, and everything I’ve learned,” she says. “I’m motivated by passion and doing what I love, and I’m doing what I love.”


The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: Internships, College Students, Europa Clipper, Europa, Engineering, Intern, Higher Education

  • Celeste Hoang
READ MORE

Photo collage of interns who participated in JPL's HBCU/URM initiative in 2021

Five years in, a JPL initiative forging relationships with students and faculty at historically Black colleges and universities continues expanding its reach, hosting 48 interns this year.


Brandon Ethridge, a flight systems engineer at NASA’s Jet Propulsion Laboratory in Southern California, has had a year to remember. The 24-year-old got engaged, became a father, and is celebrating the one-year anniversary of starting full time at JPL – his self-described dream job.

“Definitely the most eventful year of my life,” Ethridge said.

Brandon Ethridge stands in front of a mural made to look like a blueprint on the Mechanical Design Building at JPL.

Brandon Ethridge poses in front of the Mechanical Design Center at JPL during his internship in 2019. Image credit: NASA/JPL-Caltech/Kim Orr | + Expand image

While he’s been gaining experience testing systems used to build spacecraft, Ethridge has spent minimal time at the Laboratory due to the pandemic. But the North Carolina native already had plenty of first-hand knowledge of JPL thanks to his summer 2019 internship – an opportunity that presented itself at a JPL informational session that spring at his alma mater, North Carolina A&T State University.

“That allowed me the chance to speak one-on-one with Jenny Tieu and Roslyn Soto [JPL Education project managers],” Ethridge said. “They were incredibly generous with their time and provided resume critiques, feedback, and general advice about how to get an opportunity at JPL.”

Since 2017, Tieu has been leading JPL’s Historically Black Colleges and Universities/Underrepresented Minorities, or HBCU/URM, initiative – an effort to increase and foster a more diverse workforce in technical roles at the Laboratory. It’s one of many programs facilitating the more than 550 internship opportunities offered through the Education Office this year.

Now in its fifth year, the program has seen rapid growth; from seven interns in its first year, to 24 interns in 2020. This year, JPL is welcoming 48 students interning remotely from institutions including Howard, North Carolina A&T, Tuskegee, and Prairie View A&M universities, along with underrepresented-minority students from universities including UCLA, USC, UC Riverside, Duke, Cal Poly Pomona, and more.

The initiative includes funding and support to bring in faculty from the schools to take part in research with the students, building in a cohort model that facilitates sustainable interactions with JPL.

“We’re intentional about addressing the culture shock that some of these students may experience,” Tieu said. “With the cohort model, the faculty members can provide guidance to the students while they are navigating new relationships, connections, and a new city.”

Additionally, interns are invited to participate in roundtable conversations in groups where they can share concerns and openly discuss their experiences at JPL. Tieu has also set up virtual meet-ups where students can get to know employees from outside their groups and hear talks from members of JPL’s Black Excellence Strategic Team and past HBCU alumni.

For Ethridge, being in a position to give back to the program was something he prioritized.

“I wanted to repay some of the many kindnesses that were afforded to me,” Ethridge said. “I also feel that I am in a unique position because I just recently went through the process.”

For Howard University junior Kyndall Jones, the draw to JPL came following a fellow student’s acceptance into the program.

Kyndall Jones sits in the cockpit of a plane and looks back at the camera while making the peace sign with her left hand.

Kyndall Jones at the NASA Armstrong Flight Research Center. Image courtesy: Kyndall Jones | + Expand image

“I was so amazed that he had an internship with NASA, and it really sparked my interest,” Jones said. “After doing my research on the program, I submitted my resume and heard back after a few months, landed an interview, and now here I am [virtually]!”

Despite the telework nature of this summer’s internship, Jones said that even from her home in Dayton, Ohio, she has been able to foster connections with JPL employees and gain valuable experience in her role working on software for an Earth-science instrument that will help NASA understand how different types of air pollution, which can cause serious health problems, affect human health.

And thanks to her mentor, Operations Systems Engineer Janelle Wellons, Jones was able to get the type of hands-on NASA experience that’s been hard to come by since the pandemic.

“My mentor Janelle suggested that I come visit Los Angeles for a few days this summer, and I was finally able to visit and explore the city for the first time,” Jones said. “I am also super grateful for her setting up a tour at the NASA Armstrong Flight Research Center where we were able to view, tour, and learn lots of interesting facts about NASA’s historical aircraft.”

Wellons – who splits her time operating instruments aboard several Earth-observing missions – had been involved in previous years’ roundtable discussions with HBCU interns, but this year, she had the opportunity to hire her own interns through the program. Being from the East Coast herself, Wellons remembers having little awareness of JPL as a potential career landing spot while studying at Massachusetts Institute of Technology.

“Getting visibility and actually partnering with these schools to make these internships happen is so important,” Wellons said. “Actively interacting with HBCUs is only going to do good for people we would otherwise potentially never get an application from, and it benefits JPL by broadening the talent pool and diversity of our workforce.”

As for the future, Jones sees the initiative as one step of many for her and fellow interns toward careers in engineering and science.

“I know a lot of Howard students that are interning or have interned with JPL, and the love from our College of Engineering and Architecture is especially high,” Jones said. “The info sessions, resume workshops, and networking workshops that JPL has been able to put on have been great, and the more they can do, the better for students.”

Tieu agrees, adding, "We are happy to see the growth of the initiative but look forward to making further progress. There's so much more we would like to accomplish in the years ahead."

To learn more about the HBCU/URM initiative and apply, see the Maximizing Student Potential in STEM program page. The HBCU/URM initiative resides within this program.

This Q&A is part of an ongoing series highlighting the stories and experiences of students and faculty who came to JPL as part of the laboratory's collaboration with historically black colleges and universities, or HBCUs. › Read more from the series

Explore More

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.

TAGS: HBCU, Internships, College Students, Faculty, Research, Careers, Earth Science, Black History Month, Engineering, Intern, Higher Education

  • Taylor Hill
READ MORE

Becca Foust in the test bed at Caltech

Using a test bed that looks like something out of a sci-fi movie, Becca Foust is exploring ways to bring spacecraft components together in space. Here’s how the NASA Space Technology Research Fellow, who’s earning her Ph.D. at the University of Illinois at Urbana-Champaign, is helping create spacecraft of the future.

What are you working on at JPL?

I like to call it space K’nex, like the toys. We're using a bunch of component satellites and trying to figure out how to bring all of the pieces together and make them fit together in orbit. Then, once they're together, can you pop them apart and make something new? Using many satellites allows for much more versatility than with a conventional single satellite, plus some structures you need are simply too big to fit into the rockets we have today. So this summer, I'm testing my algorithm for assembling satellites on some actual robots in our new test bed.

JPL Interns

Meet JPL Interns

Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.

Tell me about the test bed.

We have five spacecraft simulators that “fly” in a specially designed flat-floor facility. The spacecraft simulators use air bearings to lift the robots off the floor, kind of like a reverse air hockey table. The top part of the spacecraft simulators can move up and down and rotate all around in a similar way to real satellites. All these things combine to let the robots move around using the same components used on real satellites in space. The floor has to be very precisely flat and we have to clean frequently because, if a single hair is on the ground, it will affect the motion of the simulators. We also have two rails with highly articulated robot arms on the side and the back of the room to interact with the simulators as other satellites or as a comet to be mapped.

What happens during the simulations?

Most of what our group does is guidance and control, so telling spacecraft where to go and how to get there. When we're testing those algorithms, it's really important that we know where our spacecraft is because we can't tell it where to go if we don't know where it is. So, in the test bed, our robots are all tracked using a motion capture system. It's sort of like CGI. The system tracks these little reflective dots and tells us very precisely the position and orientation of the object.

So if we're testing a guidance and control algorithm, we will turn on the motion capture system, make sure everything is working, and then we just turn on the robots and press go. Our simulators are autonomous and everything runs on board, so we do a lot of legwork before running experiments to make sure things will run as expected.

What is it that you're looking for during these simulations in the test bed?

Before we had this test bed, we did a ton of simulations on the computer, but it's very different having it work on an actual robot. So we're trying to see that when we run things on the robots, it works the way it did in the simulations. Is it tracking the expected trajectory nicely? Is it computing properly? Is everything working?

Becca Foust in the test bed at Caltech

Image credit: NASA/JPL-Caltech/Evan Kramer + Expand image

We'll probably end up adding some safeguards in case a command goes astray. We'll probably need to make our algorithms be able to handle issues and faults that come up. That's actually one of the problems we're working on with JPL, increasing satellite autonomy by looking at failures that happen within satellites, trying to figure out what they are and recover from them.

What's the goal of your research?

I hope my research leads to smarter, more efficient satellites for in-space construction and assembly. The algorithm that I'm using is very fuel-efficient and it finds trajectories that aren't really being considered and haven’t been tried yet in space. By watching it in our version of space, we can show that these paths can actually be executed in real space. So maybe we can actually start using these more efficient trajectories and then all of our satellites can live longer, go farther and do more.

What's an average day like for you?

I try to work on some mathematical proofs in the morning when I'm still sharp-ish. So I work on that until I get frustrated. After that, I'll wander over to our lab and do some hands-on robotics-type things, like working on the spacecraft simulators and making them work more efficiently. Then, I'll spend a while teaching our undergraduate interns how to use the Robot Operating System, which runs on all of our robots.

What's the most JPL- or NASA-unique experience you've had so far?

I would say meeting people at JPL. There are so many experts in so many different fields. The first summer I was at JPL, there was a presentation on almost exactly my topic. So I got to meet with that speaker, and we set up a meeting time and talked more about it. He had a bunch of really good ideas for my topic and some other people to talk to. One connection sort of leads to another.

If you could go anywhere in space, where would you go and what would you do there?

We're talking imaginary, right? Because I would like to go to space eventually, if I can. I think I would go to – this is probably a really popular answer but – Jupiter’s moon Europa. I’d just want to figure out what on Earth is going on there.


Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Women in STEM, Intern, Internships, Students, STEM, Engineering, Spacecraft, Women at NASA

  • Kim Orr
READ MORE

When the offer letter arrived from NASA’s Jet Propulsion Laboratory, Kiana Williams could hardly believe it. Thousands of science and engineering students apply each year for internships at the lab known for its dare-anything missions to the planets and beyond. Williams never expected it would be her first internship.

“It actually took me about a week to accept that it was a real offer and that I’d actually be coming to intern at NASA/JPL,” she said.

Kiana Williams at NASA's Jet Propulsion Laboratory

Mechanical engineering student Kiana Williams grew up near JPL in Southern California, but she never thought to apply for an internship until JPL's Education Office visited her university in Alabama. Now, a first-time intern, she says she realizes, "Oh, I can do this." Image credit: NASA/JPL-Caltech

This summer, Williams is joining more than 700 undergraduate, graduate and doctoral students for internships at JPL in Pasadena, California. Over 10 weeks, they will design new ways to study stars, investigate icy moons thought to be hospitable to life, and even help choose a landing spot for the next Mars rover.

“I get the opportunity to design an entire space telescope from top to bottom,” said Williams, a senior mechanical engineering student at Tuskegee University in Alabama. “It’s kind of a big task, but at the same time it’s fun, so it makes my day go really quickly.”

One of 10 NASA field centers, JPL is the birthplace of spacecraft and instruments that have explored every planet in the solar system, studied our home planet and looked beyond to discover new worlds. It doesn’t just design and build spacecraft, it also operates them, and collects and studies the science they return.

“It’s the only place in the world where everyone needed to conceive of, design, build, launch and land spacecraft, get the science data and write the papers about that science data are all in one place,” said Matt Golombek, a JPL scientist whose interns over the years have helped choose the landing sites for all five Mars rovers and landers since Pathfinder in 1997.

Scientist Matt Golombek with his summer interns at NASA's Jet Propulsion Laboratory
The self-proclaimed "landing site dude," Matt Golombek brings in a host of geology students each year to help identify landing sites on Mars. He has five students this summer helping with site selections for three upcoming missions, including Mars 2020. He says it's rewarding to see how students' JPL experience has a positive impact on their future no matter what they go on to do. (From left to right: Marshall Trautman, Matt Golombek, Rachel Hausman, Carol Hundal, Shannon Hibbard.) Image credit: NASA/JPL-Caltech

The lab’s internship programs give students studying everything from aerospace engineering to computer science and chemistry the chance to do research with NASA scientists, build spacecraft, and create new technology for future missions.

With more than 20 active spacecraft plus a to-do list that includes missions to Mars, Jupiter’s moon Europa and the asteroid belt, JPL has no shortage of projects ripe for students who are eager for careers in space exploration.

Nirmal Patel at NASA's Jet Propulsion Laboratory

Nirmal Patel says that in addition to the wow-factor of testing parts for a Mars rover, his JPL internship is a chance to meet other engineers and scientists all united in a common goal. "Here, everyone wants to explore. And when you have that common goal, it has a different atmosphere," he said. Image credit: NASA/JPL-Caltech

“It’s just amazing knowing that what we’re doing now will also be replicated on Mars in a few years,” said Nirmal Patel, a mechanical engineering student at the University of Michigan who is testing parts for the Mars 2020 rover. “It’s surreal almost. I’m still a student but I’m getting to have an impact on this project.”

David Dubois, a three-time intern who studies planetary science at the University of Versailles Saint Quentin near Paris, returned to JPL this summer to continue his research on icy moons around Saturn, Jupiter and Neptune. Using data from the Cassini mission (which will end its nearly 13-year mission at Saturn this September) he is modeling the atmosphere of Saturn’s moon Titan to better understand its chemical environment – and maybe discover if it could support life.

He says that in addition to access to one-of-a-kind data directly from spacecraft, JPL offers the opportunity to explore new fields of science and even career paths, if students are open to it.

“Being open is certainly something that I’ve learned from JPL, not being afraid of tackling different problems in different fields,” said Dubois, who is about to publish his first paper as a lead author based on his research at JPL.

David Dubois at NASA's Jet Propulsion Laboratory

When he's not doing research, David Dubois says he focuses much of his time on outreach, which is one of his other passions. This year, he traveled to India with a friend to visit schools and villages and encourage students there to pursue science. "I like to say that I think anybody is a scientist," he said, "as long as you try to provide an answer to questions around you." Image credit: NASA/JPL-Caltech

It’s precisely that exposure to its unique career offerings in science, technology, engineering and math – and a foot in the door – that JPL’s Education Office, which manages the lab’s internship programs, is working to provide to more students.

“Our students are operating right alongside the mentors and participating in the discovery process,” said Adrian Ponce, who manages JPL’s higher education group. “It’s a fantastic opportunity for them, and it’s also a great opportunity for JPL. Our internship programs are designed to bring in students from diverse backgrounds and underrepresented communities who share new ways of thinking and analyzing challenges. Many of them will become the next generation of innovators – and not just at JPL.”

For Williams, who plans to continue toward a master’s degree in design engineering after she graduates in December, her time at JPL is confirmation that she’s on the right path and has the motivation to keep going.

“It makes me feel like school is worth it,” said Williams of her internship experience so far. “All the stress I’m going through at school will be worth it because you can find places that are like JPL, that make your job fun.”

Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Intern, Mars 2020, Europa, Cassini, Titan, Science, Engineering, Missions

  • Kim Orr
READ MORE

JPL engineering Michael Staab (standing) with the last class of interns for NASA's Cassini mission at Saturn

For more than 22 years, since before NASA's Cassini mission even launched, flight controllers have invited summer interns to NASA’s Jet Propulsion Laboratory to help make the mission at Saturn happen. But with the spacecraft's journey ending in September, the current summer interns will be Cassini’s last.

Meet the students and learn what role they're playing in the nearly 13-year mission at Saturn.
› See the full story and image gallery on the Cassini Mission website


Explore JPL’s summer and year-round internship programs and apply at: http://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Cassini Mission, Saturn, Intern

  • NASA/JPL Edu
READ MORE

Marco Dolci did not set out to become a NASA engineer. Instead, like many of Dolci’s pursuits, the career path presented itself on his lifelong quest “to know” – that is, to answer any and every question that crosses his mind. As a boy, his never-ending stampede of questions became too much even for his ever-patient parents, so they presented him with a book, 1001 Questions and Answers on Planet Earth. But rather than satiate his quest for answers, it spurred him to seek more.

Today, Dolci still asks a multitude of questions, but the answers he finds through his own determination and curiosity, which have taken him from studies in linguistics to physics to aerospace engineering to robotics – and across the world, from his hometown of Lodi, Italy to NASA’s Jet Propulsion Laboratory in Pasadena, California.

Dolci first came to the Laboratory in 2013 as part of the JPL Visiting Student Researchers Program, or JVSRP. Having just earned a master’s in physics, Dolci was pursuing a second master’s in aerospace engineering at the Polytechnic University of Milan when he entered and won a scholarship sponsored by the Italian Space Agency and the Italian Scientists and Scholars of North America Foundation. His prize: a paid internship at any North American laboratory. He says JPL was the obvious choice.

Marco Dolci in Joshua Tree

Dolci in California's Joshua Tree National Park. Photo courtesy: Marco Dolci

“I chose JPL because it’s the best place to work on anything related to space,” said Dolci, adding that he only learned later that the laboratory is located in California, a fact that made it all the more desirable. “I just wanted to come here.”

Dolci spent two months working on concepts and proposals for missions designed to study black holes, protoplanetary discs, X-rays and cosmic rays. He became the lead author on a science paper about the latter, and the team was so impressed with his work that Dolci’s internship was extended another 10 months.

After a year, however, Dolci’s visa was up and so was his time in America and at JPL. But his next step was clear: He would find a way to come back. “I was really impressed by JPL, both for the people that I found here, who are open to learn and challenge themselves,” said Dolci. “And the fact that it puts on the table resources that allow great projects.”

So Dolci formulated a plan. First, he entered a PhD program in aerospace engineering at the Polytechnic University of Turin, which in Italy offered the chance to spend part of his studies abroad supported by his university. He also applied for the US Diversity Immigrant Visa program, sometimes called the "green card lottery." With only 50,000 people across the world randomly chosen for green cards each year from about 10 million qualified applicants, it was a long-shot – but luck was on Dolci’s side.

In 2016, Dolci returned to JPL to do research for his PhD under the JVSRP program – but this time with a green card in hand.

For the last year, in concert with his PhD thesis, Dolci has been helping develop technology for a possible future NASA mission to bring samples from Mars back to Earth. In 2020, the agency will send a rover to the surface of Mars, where one of its goals will be to collect samples of Martian rocks and soil that could be returned to Earth in the future. Getting those samples to Earth would require a series of never-attempted feats, each with unique challenges.

Dolci is helping develop a device to transfer the sample from a container launched from Mars to a spacecraft that would carry the samples home. It would all need to happen remotely, in space, without the device jamming or exposing the samples to contaminants.

Having always approached problems from a theoretical perspective, Dolci says the chance to get hands-on with actual hardware has opened his eyes to new career possibilities.

“I think that you can really learn something when you put your hands on it,” said Dolci. “Otherwise, yeah, you know the theory, but there’s an ocean between theory and practice.”

Recently, Dolci’s manager encouraged him to apply for a job at JPL. He used the invitation as a chance to explore a career move – one that would take him beyond theory to start building devices capable of answering questions.

"I'm looking for a unity between science and space technology,” said Dolci, who will start his new job in JPL’s Robotic Vehicles and Manipulators group in November. “Robotics seems to me to be the best place in which these two interests find the common point to be able to provide a technological answer to scientific problems."

Marco Dolci in front of the Space Hab at the California Science Center in Los Angeles

Dolci poses in front of an astronaut workstation called SPACEHAB on display at the California Science Center in Los Angeles. Photo courtesy: Marco Dolci

Dolci admits with a sheepish grin that he still has another big aspiration. In four years, once he becomes a US citizen, he plans to apply to be an astronaut. For now, though, he’s focused on learning all he can, continuing to ask questions and finding new ways to seek answers.

“I consider myself really lucky to be in a place like JPL,” said Dolci. “Working here is a possibility to keep moving up, to become more mature in terms of deciding who I am, what I want to do, where I want to contribute.”

To others looking to follow his trajectory, Dolci says while luck helped push things along, it was the power of determination, his quest “to know” and a support network of family, friends and mentors that made his dreams a reality.

“I would have never made it to JPL without the support of someone who has bet on me,” said Dolci. “Don’t give up on desiring good things. Dare mighty things because we are made for great things.”

Explore JPL internship programs and apply at: http://www.jpl.nasa.gov/edu/intern

The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the reach of NASA's Office of Education, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.

TAGS: Intern, Internships, JVSRP, Mars 2020, Robotics, Science, Engineering, STEM, Mars 2020 Interns, Perseverance

  • Kim Orr
READ MORE