Teachable Moments | August 16, 2024
Exploring the Next Frontier in Our Search for Life With Europa Clipper
Get the inside scoop on the Europa Clipper mission and its journey to explore an icy moon of Jupiter that could have conditions suitable for life. Plus, find ways to bring the excitement of the mission to your students.
In October, NASA's Europa Clipper mission will launch on a journey to investigate one of the next frontiers in our search for life beyond Earth. Its destination: Jupiter's moon Europa. Beneath its icy crust, the small moon is thought to contain a saltwater ocean with more water than all of Earth’s oceans combined. By studying the moon up close with a suite of scientific instruments, Europa Clipper aims to improve our understanding of the conditions on Europa and explore whether the moon could be suitable for life.
Read on to learn why scientists are so interested in this tiny ocean world and get to know the science behind the Europa Clipper mission. Then, follow along with the mission in the classroom using STEM teaching and learning resources.
Why Explore Europa?
In recent years, scientists have discovered likely water worlds throughout our solar system that might harbor conditions suitable for life. But scientists are especially intrigued by Jupiter's moon Europa because it hosts several components that make it one of the most promising for harboring a habitable environment.
Slightly smaller in size than Earth's Moon, Europa is one of Jupiter’s 95 officially recognized moons. Europa was discovered along with Jupiter's three other largest moons more than 400 years ago by astronomer Galileo Galilei, and named by astronomer Simon Marius, who discovered Europa around the same time.
Scientific observations of Europa by previous spacecraft, including the Galileo mission to Jupiter, point to the existence of a subsurface salty ocean. These observations included spectroscopic measurements indicating the surface is mostly water ice; gravitational and moment-of-inertia measurements indicating a layered internal structure, including a water and ice layer near the surface that is 62 miles (100 kilometers) thick; and magnetic field measurements indicating a conductive layer near the surface. A salty ocean would explain these observations.
Though Europa has been studied by the Galileo spacecraft and the more recent Juno spacecraft with a few up-close flybys, Europa Clipper will allow us to build on previous findings to gain new perspectives on the moon with a Europa-dedicated mission.
Europa’s surface is crisscrossed by long, linear fractures, cracks, ridges, and bands. This ice shell is probably 10 to 15 miles (15 to 25 kilometers) thick. Evidence suggests that below Europa’s icy surface there is a saltwater ocean that is about 25 times deeper than Earth's oceans and contains about twice as much water. Scientists are hopeful that the Europa Clipper mission will refine these estimates.
In addition to water, Europa could have other conditions needed for life as we know it, including chemistry, energy, and stability. NASA scientists believe that six essential chemical building blocks for life exist on Europa and have likely existed there since Europa formed. These common elements are carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur.
Chemical energy, similar to that produced by hydrothermal vents found on Earth’s ocean floor, may also exist on Europa’s sea floor. As Europa orbits Jupiter, it gets stretched and released by the tug of gravity from the giant planet. This process, called tidal flexing, creates heat, much in the same way a paperclip that is repeatedly bent back and forth can get hot to the touch. This tidal flexing process could keep the ocean liquid and may also be creating heat that could be released through hydrothermal vents on the ocean floor. On Earth, hydrothermal vents spew forth heated water, minerals, and various chemicals that react with the salty ocean, releasing stored chemical energy.
Radiation surrounding Jupiter is another possible source of fuel for life in an ocean below Europa's surface. Jupiter’s strong radiation bombards Europa, which is bad news for anything attempting to live on the surface. But the radiation splits apart water molecules at the surface. Once the water molecules are split, the hydrogen floats away into space and the oxygen stays behind, making it available to bind to other elements. If the oxygen makes its way to the ocean through cracks or openings, it could react with other chemicals to provide chemical energy for microbial life.
In addition to these potentially life-supporting conditions, observations indicate that the environment on Europa has likely remained constant for four billion years. Environmental stability is important to allow time for life to form and evolve. Such a promising stable environment is ripe for further exploration.
Europa Clipper Science
The Europa Clipper spacecraft will be the largest in NASA’s planetary mission history, measuring 16 feet (five meters) in height. Its giant solar arrays, the largest space-faring solar arrays to date, unfold in space to span the length of a basketball court, more than 100 feet (30.5 meters), and cover 950 square feet (90 square meters). Such an enormous light-collecting area is required because the intensity of the Sun near Jupiter is only 3% of what it is on Earth, and the massive arrays need to capture enough sunlight to power Clipper’s science instruments.
Europa Clipper has a powerful suite of nine science instruments designed to work together to study Europa’s surface features, improve our understanding of the moon’s icy shell, examine the interaction between the ocean and the icy shell, and investigate the ocean’s composition to determine if it has the ingredients to sustain life.
Exploring Europa’s Icy Surface
The spacecraft will collect images and generate surface maps using its onboard cameras and spectrometers which can identify chemical signatures from reflected light. The Europa Imaging System contains wide-angle and narrow-angle cameras, which will produce high-resolution color and stereoscopic images of Europa. These cameras will study Europa's geologic activity and measure surface elevations. The Europa Thermal Emission Imaging System will use infrared light to measure surface texture and characterize warmer regions where the liquid ocean may be closer to the surface. It will also show any visible evidence of water eruptions. The Europa Ultraviolet Spectrograph will use a telescope to collect ultraviolet light to help determine the makeup of Europa's sparse atmospheric gases and surface materials. It will also search for signs of plumes erupting from the surface.
A mass spectrometer and dust analyzer will measure the composition of tiny particles in Europa’s extremely thin atmosphere and surrounding environment. The mass spectrometer, or MASPEX, will analyze gases in Europa’s sparse atmosphere and in any plumes, as well as the chemical makeup of the ocean. The Surface Dust Analyzer will identify the chemistry of solid material ejected from Europa to offer clues about the surface composition and ocean salinity.
Examining Europa’s Icy Shell and Sub-surface Ocean
The spacecraft will search for water under Europa’s surface using radar and will gather magnetic field measurements with a magnetometer. An ice-penetrating radar instrument called REASON will examine the ice structure and thickness. It works by transmitting radio waves that bounce off of features within the ice, like cracks or pockets of water. By measuring the time difference between transmission and return, REASON will learn how far the features are from the spacecraft, and therefore, how deep they are in the ice. This highly specialized and advanced radar can also measure differences in the composition of materials on Europa. It does this by measuring the energy difference between transmitted and returning signals and combining them with distance measurements.
The Europa Clipper Magnetometer works by measuring small changes in Europa’s magnetic signal and how they vary with time and location. Measuring Europa’s magnetic signal could confirm the existence of an ocean and will help determine the ocean’s depth and salinity as well as the thickness of the moon's icy shell.
These instruments work in conjunction with several other instruments to closely study Europa during the flybys and return data for scientists to analyze for years to come. Explore a full list of instruments and learn how they work on the Europa Clipper mission website.
Getting to Europa
To save fuel for its journey to Europa, the spacecraft will follow what’s known as a Mars-Earth Gravity Assist trajectory for its 5.5-year journey. This path will first take the spacecraft near Mars to get a gravity assist – a boost in momentum obtained by tugging on Mars, thereby slightly decreasing Mars’ orbital momentum while transferring that momentum to the spacecraft. Next, Europa Clipper will swing back by Earth for another gravity assist before continuing on to Jupiter for its scheduled arrival in April 2030.
Once it arrives, Europa Clipper will orbit Jupiter in an elongated ellipse that will bring the spacecraft close to Europa about 50 times. The orbit was designed in this way to decrease the impact of Jupiter’s radiation on the spacecraft, which can damage its electronics. Studies show that a spacecraft orbiting Europa may survive for a few months, while one orbiting Jupiter would last for many years. After each close flyby of Europa, the spacecraft will travel outside Jupiter’s radiation belts to downlink data to Earth, uplink new commands, and prepare for the next flyby.
Follow Along
The Europa Clipper spacecraft is scheduled to launch in October 2024 from Kennedy Space Center in Florida. Tune in to watch the launch on NASA TV.
Visit the Europa Clipper mission website for all the latest mission updates, images, and science.
Teach Europa Clipper Science and Engineering
The Europa Clipper mission is a great opportunity to engage students with hands-on learning opportunities that range from imagining alien life forms to finding Jupiter in the night sky to engaging in the same science that led scientists to suspect the existence of Europa’s salty ocean. Explore these lessons and resources to get students excited about the STEM involved in this mission to determine if life-supporting conditions exist on Europa.
For Educators
For Students
Explore More
Activities for Kids
- Build Your Own Spacecraft Paper Model
- Build Your Own Spacecraft Toy Bricks Model
- Print a 3D Model of Europa Clipper
- Downloadable Europa Clipper
- Europa Clipper Mission Posters, Stickers, and More
Websites
Videos
Image Gallery
Articles
TAGS: K-12 Education, Educators, Teachers, Parents, Science, Astrobiology, Jupiter, Europa, Ocean, Teachable Moments
Edu News | August 24, 2022
A Lesson for Every Day of the School Year
With 180 lessons in our online catalog, you can explore Earth and space with us all year long. We show you how with this handy NASA-JPL school year calendar.
We just added the 180th lesson to our online catalog of standards-aligned STEM lessons, which means JPL Education now has a lesson for every day of the school year. To celebrate and help you make the year ahead stellar, we've put together this monthly calendar of upcoming NASA events along with links to our related lessons, Teachable Moments articles, and student projects you can use to engage students in STEM while they explore Earth and space with us all year long.
August
The Voyagers Turn 45
The twin Voyager spacecraft launched in 1977 on a journey to explore the outer planets and beyond – and they're still going. Now more than 12 billion miles (19 billion kilometers) from Earth in a region known as interstellar space, they're the most distant human-made objects in space.
Get a primer on these fascinating spacecraft from Teachable Moments, then use it as a jumping off point for lessons on the scale, size, and structure of our solar system and how we communicate with distant spacecraft.
Lessons & Resources:
- Collection
Voyager Lessons for Educators
Explore the science behind NASA's Voyager spacecraft with this collection of standards-aligned STEM lessons.
- Collection
Voyager Activities for Students
These DIY projects, slideshows, and videos will get students exploring the science behind NASA's Voyager spacecraft.
- Teachable Moments
The Farthest Operating Spacecraft, Voyagers 1 and 2, Still Exploring
The twin spacecraft launched in 1977 on an epic journey through the solar system and beyond offer lessons in what it takes to travel farther than ever before.
- Teachable Moments
Then There Were Two: Voyager 2 Reaches Interstellar Space
Find out how the twin Voyager spacecraft took advantage of a rare planetary alignment to embark on a journey no spacecraft had before – or has since.
September
Rendezvous with an Asteroid
A distant asteroid system 6.8 million miles (11 million kilometers) from Earth was the site of NASA's first attempt at redirecting an asteroid. On September 26, the Double Asteroid Redirection Test, or DART, mission impacted the asteroid Dimorphos in an attempt to alter its speed and path around a larger asteroid known as Didymos. Dimorphos and Didymos do not pose a threat to Earth, which makes them a good proving ground for testing whether a similar technique could be used to defend Earth against potential impacts by hazardous asteroids in the future.
Get a primer on the DART mission and find related resources for the classroom in this article from our Teachable Moments series. Plus, explore our collection of standards-aligned lessons and activities all about asteroids to get students learning about different kinds of space rocks, geology, and meteoroid math.
Lessons & Resources:
- Teachable Moments
The Science Behind NASA's First Attempt at Redirecting an Asteroid
Find out more about the historic first test, which could be used to defend our planet if a hazardous asteroid were discovered. Plus, explore lessons to bring the science and engineering of the mission into the classroom.
- Collection
Asteroids Lessons for Educators
Explore a collection of standards-aligned lessons all about asteroids and craters.
- Collection
Asteroids Actvities for Students
Explore projects, videos, slideshows, and games for students all about asteroids.
A Closer Look at Europa
Just a few days later, on September 29, the Juno spacecraft that had been orbiting Jupiter since 2016 captured the closest views of Jupiter’s moon Europa in more than 20 years. The ice-covered moon is thought to contain a subsurface liquid-water ocean, making it an exciting new frontier in our search for life beyond Earth. NASA's Europa Clipper mission, which is scheduled to launch in 2024 is designed to study the moon in more detail. But until Europa Clipper arrives at the Jovian system in 2030, these observations from Juno are our best chance to get a closer look at this fascinating moon.
Learn more about Europa and why it is interesting to scientists in this talk from our Teaching Space With NASA series featuring a Europa Clipper mission scientist. Then, explore our Ocean Worlds Lesson Collection for ideas on making classroom connections.
Lessons & Resources:
- Collection
Ocean Worlds Lessons for Educators
Explore a collection of standards-aligned STEM lessons all about ocean worlds throughout our solar system.
- Collection
Ocean Worlds Actvities for Students
Learn about the ocean worlds throughout our solar system with these science and engineering activities for students.
- Expert Talk
Teaching Space With NASA – Robotic Oceanographers
Hear from scientists exploring Earth's oceans and learn about how we use robotic explorers to collect data on how our oceans are changing as well as explore ocean worlds beyond Earth.
October
Celebrate Halloween Like a Space Explorer
The month of October is the perfect time to get students exploring our STEM activities with a Halloween twist. Students can learn how to carve a pumpkin like a JPL engineer, take a tour of mysterious locations throughout the solar system, and dig into the geology inside their Halloween candy.
October 31 is also JPL's 86th birthday, which makes October a great time to learn more about JPL history, including the team of female mathematicians known as "human computers" who performed some of the earliest spacecraft-tracking calculations and the Laboratory's role in launching the first U.S. space satellite.
Lessons & Resources:
- Collection
Halloween Actvities for Students
Explore student projects and slideshows that put a Halloween twist on STEM.
- Project for Kids
Pumpkin Stencils
Celebrate the fall season and Halloween by making your very own space-themed pumpkins with these easy-to-use stencils from NASA's Space Place!
- Teachable Moments
When Computers Were Human
Learn about the important but little-known role women played in the early days of space exploration, then try a math lesson inspired by their work.
- Teachable Moments
Explorer 1 Anniversary Marks 60 Years of Science in Space
The fascinating history of America’s first space satellite serves as a launching point for lessons in engineering design, motion and flight, and Earth science.
November
Watch a Total Lunar Eclipse
Look up in the early morning hours of November 8 to watch one of the most stunning spectacles visible from Earth: a total lunar eclipse. This one will be viewable in North and South America, as well as Asia and Australia.
Learn more about lunar eclipses and how to watch them from our Teachable Moments series. Then, get students of all ages outside and observing the Moon with lessons on moon phases and the hows and whys of eclipses. Students can even build a Moon calendar so they always know when and where to look for the next eclipse.
Lessons & Resources:
- Teachable Moments
How to Watch a Total Lunar Eclipse and Get Students Observing the Moon
There’s no better time to learn about the Moon than during a lunar eclipse. Here’s how eclipses work, what to expect, and how to get students engaged.
- Collection
Moon Lessons for Educators
Teach students about the Moon with this collection of standards-aligned activities inspired by real NASA missions and science.
- Collection
Moon Activities for Students
Learn all about the Moon with these projects, slideshows, and videos for students.
Artemis Takes a Giant Leap
NASA is making plans to send astronauts back to the Moon for the first time since 1972 – this time to establish a sustainable presence and prepare for future human missions to Mars. The first major step is Artemis I, which is testing three key components required to send astronauts beyond the Moon: the Orion spacecraft, the Space Launch System, or SLS, rocket and the ground systems at Kennedy Space Center in Florida. The uncrewed Artemis I mission marks the first test of all three components at once.
Get your K-12 students following along with lessons in rocketry and what it takes to live in space. Plus, register to follow along with the mission with resources and updates from NASA's Office of STEM Engagement.
Lessons & Resources:
- Collection
Artemis Lessons for Educators
Get students engaged in NASA's Artemis Program with STEM lessons all about the Moon, rockets, space habitats, and more
- Collection
Artemis Activities for Students
These STEM projects and activities for students will get them exploring the Moon, rockets, space flight and other facets of NASA's Artemis Program.
- Public Event
Join NASA Online for Artemis I
Register to receive updates and resources related to Artemis I – the first in a series of Artemis Program missions designed to establish a sustainable human presence on the Moon and prepare for future human missions to Mars.
- Educator Resources
Artemis Toolkit
Explore Artemis resources for educators and students from NASA's Office of STEM Engagement.
- Teachable Moments
Celebrate the 50th Anniversary of NASA's Apollo Moon Landing
Explore the incredible history of the Apollo missions and find out what's in store for NASA's next mission to the Moon.
December
Satellite Launches on a Mission to Follow the Water
As crucial as water is to human life, did you know that no one has ever completed a global survey of Earth’s surface water? That is about to change with the launch of the SWOT mission. SWOT, which stands for Surface Water Ocean Topography, will use a state-of-the-art radar to measure the elevation of water in major lakes, rivers, wetlands, and reservoirs. It will also provide an unprecedented level of detail on the ocean surface. This data will help scientists track how these bodies of water are changing over time and improve weather and climate models.
Engage your students in learning about Earth’s water budget and how we monitor Earth from space with these lessons. And be sure to check out our Teachable Moments article for more about the SWOT mission and the science of our changing climate.
- Teachable Moments
NASA Mission Takes a Deep Dive Into Earth's Surface Water
Explore how and why the SWOT mission will take stock of Earth's water budget, what it could mean for assessing climate change, and how to bring it all to students.
- Collection
SWOT Lessons for Educators
Explore the science and engineering behind the SWOT mission with this collection of standards-aligned lessons all about water.
- Collection
SWOT Actvities for Students
Explore projects, videos, slideshows, and games for students all about the water cycle and sea level rise.
Prepare for the Science Fair
Before you know it, it'll be science fair time. Avoid the stress of science fair prep by getting students organized and thinking about their projects before the winter recess. Start by watching our video series How to Do a Science Fair Project. A scientist and an engineer from JPL walk your students through all the steps they will need to create an original science fair project by observing the world around them and asking questions. You can also explore our science fair starter pack of lessons and projects to get students generating ideas and thinking like scientists and engineers.
Lessons & Resources:
- Video Series
How to Do a Science Fair Project
Learn all the ins and outs of crafting your very own science fair project.
- Collection
Science Fair Lessons for Educators
Teach students how to craft their own science and engineering fair project with these video tutorials and lessons featuring NASA missions and science.
- Collection
Science Fair Activities for Students
Learn how to design a science and engineering fair project and get inspired with our catalog of student projects featuring NASA missions and science.
January
Explore STEM Careers
January is the time when many of us set goals for the year ahead, so it's the perfect month to get students exploring their career goals and opportunities in STEM. Students can learn more about careers in STEM and hear directly from scientists and engineers working on NASA missions in our Teaching Space video series. Meanwhile, our news page has more on what it takes to be a NASA astronaut and what it's like to be a JPL intern.
For students already in college and pursuing STEM degrees, now is the time to start exploring internship opportunities for the summer. The deadline for JPL summer internships is in March, so it's a good idea to refresh your resume and get your application started now. Learn how to stand out with this article on how to get an internship at JPL – which also includes advice for pre-college students.
Resources:
- Expert Talks
Teaching Space With NASA
Hear from experts and education specialists about the latest missions and science happening at NASA and get your questions answered.
- Articles
Career Guidance
Get advice from scientists, engineers and educators about what it takes to work in science, technology, engineering and mathematics fields and how to get a foot in the door.
- Articles
Meet JPL Interns
These interns are pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.
- Opportunities
JPL Internships and Fellowships
Discover exciting internships and research opportunities at the leading center for robotic exploration of the solar system.
- Opportunities
JPL Jobs: Opportunities for Students
Start here to learn more about internship, fellowship, and postdoc opportunities at JPL and how to apply.
- Opportunities
NASA Internships
Learn about internship opportunities at NASA centers across the U.S., and apply today!
February
Mars Rover Celebrates 2-Year 'Landiversary'
NASA's Perseverance Mars rover celebrates its "landiversary" on February 18, which marks two years since the rover made its nail-biting descent on the Red Planet. The rover continues to explore Jezero Crater using science tools to analyze rocks and soil in search of signs of ancient microbial life. As of this writing, the rover has collected twelve rock core samples that will be sent to Earth by a future mission. Perseverance even witnessed a solar eclipse! Meanwhile, the Ingenuity Mars helicopter, which the rover deployed shortly after landing, has gone on to achieve feats of its own.
The Mission to Mars Student Challenge is a great way to get students of all ages exploring STEM and the Red Planet right along with the Perseverance rover. The challenge includes seven weeks of education content that can be customized for your classroom as well as education plans, expert talks, and resources from NASA.
Lessons & Resources:
- Collection
Mission to Mars Student Challenge
Get K-12 students exploring Mars with NASA scientists, engineers, and the Perseverance rover as they learn all about STEM and design their very own mission to the Red Planet!
- Teachable Moments
NASA's Perseverance Rover Lands on Mars
Learn how, why, and what Perseverance will explore on Mars, plus find out about an exciting opportunity for you and your students to join in the adventure!
March
Take On the Pi Day Challenge
Math teachers, pie-lovers, and pun-aficionados rejoice! March 14 is Pi Day, the annual celebration of the mathematical constant used throughout the STEM world – and especially for space exploration. This year's celebration brings the 10th installment of the NASA Pi Day Challenge, featuring four new illustrated math problems involving pi along with NASA missions and science.
Explore the full collection of pi math lessons, get students learning about how we use pi at NASA, and hear from a JPL engineer on how many decimals of pi we use for space exploration at the links below.
Lessons & Resources:
- Teachable Moments
10 Years of NASA's Pi Day Challenge
Learn more about pi, the history of Pi Day before, and the science behind the 2023 NASA Pi Day Challenge.
- Collection
Pi in the Sky Lessons
Find everything you need to bring the NASA Pi Day Challenge into the classroom, including printable handouts of each illustrated math problem.
- Student Project
NASA Pi Day Challenge
This collection of illustrated math problems gets students using pi like NASA scientists and engineers exploring Earth and space.
- Article
How Many Decimals of Pi Do We Really Need?
While you may have memorized more than 70,000 digits of pi, world record holders, a JPL engineer explains why you really only need a tiny fraction of that for most calculations.
- Article
18 Ways NASA Uses Pi
Whether it's sending spacecraft to other planets, driving rovers on Mars, finding out what planets are made of or how deep alien oceans are, pi takes us far at NASA. Find out how pi helps us explore space.
April
Celebrate Earth Day With NASA
You may not immediately think of Earth science when you think of NASA, but it's a big part of what we do. Earth Day on April 22 is a great time to explore Earth science with NASA, especially as new missions are taking to the skies to study the movements of dust, measure surface water across the planet, and track tiny land movements to better predict natural disasters.
Whether you want to focus on Earth’s surface and geology, climate change, extreme weather, or the water budget, we have an abundance of lessons, student projects and Teachable Moments to guide your way.
Lessons & Resources:
- Collection
Earth Lessons for Educators
Discover a collection of standards-aligned STEM lessons all about Earth and climate change.
- Collection
Earth Activities for Students
Try these science and engineering projects, watch videos, and explore images all about the planet that we call home.
- Teachable Moments
Climate Change Collection
Explore this collection of Teachable Moments articles to get a primer on the latest NASA Earth science missions, plus find related education resources you can deploy right away!
May
Summer Learning Adventures
As the school year comes to a close, send your students off on an adventure of summer learning with our do-it-yourself STEM projects. Additionally, our Learning Space With NASA at Home page and video series is a great resource for parents and families to help direct students' learning during out-of-school time.
Lessons & Resources:
- Student Resources
Summer Activities for Students
Explore Earth and space with these hands-on projects, slideshows, videos, and more for K-12 students.
- Student Resources
Learning Space With NASA
Explore space and science activities you can do with NASA at home. Find video tutorials, DIY projects, slideshows, games and more!
TAGS: K-12 Education, Teachers, Students, Lessons, Resources, Projects, Events, Artemis, Voyager, DART, Asteroids, Europa, Ocean Worlds, Halloween, History, Earth, Climate, SWOT, Lunar Eclipse, Science Fair, Career Advice, Mars, Perseverance, Pi Day, Earth Day, Summer STEM
Meet JPL Interns | July 28, 2022
Interns Explore the Future at NASA-JPL
We talked to a few JPL interns about what they've been working on, how they're taking NASA into the future, and what it all means to them.
Despite the challenges of the past two years, it’s been a busy time for NASA’s Jet Propulsion Laboratory. Among the Lab’s activities have been the launch and landing of a new Mars rover, preparations for sending a spacecraft to explore an ocean world beyond Earth, first light for missions studying our changing climate and the universe beyond, and the development of technology to help address the COVID pandemic.
All the while, JPL interns have continued supporting scientists, engineers, and technologists behind the scenes to make those missions and projects happen.
More than 600 summer interns are taking part in that crucial work – both in-person at the laboratory in Southern California as well as from their homes and dorms across the country. In May, JPL welcomed summer interns back on site for the first time since 2019 while continuing to offer remote internships as projects allow.
We wanted to hear what interns have been up to, how they're contributing to NASA missions and science, and what the experience has meant to them. So we caught up with three students who have helped see the lab through the last year or two – and in one case, seven years. Watch their stories in the video above.
Explore More
-
Apply Now
Discover exciting internships and research opportunities at the leading center for robotic exploration of the solar system.
-
Article: How to Get an Internship at JPL
Here's everything you need to know about the world of JPL internships, the skills that will help you stand out, and how to get on the right trajectory even before college.
- All Audiences
Blog: Meet JPL Interns
Hear stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.
- Join the conversation and find out about the latest opportunities with @NASAJPL_Edu on Twitter, Facebook, and Instagram.
- JPL Lecture Series
- JPL Jobs
- JPL Newsletter
- JPL News
- People of NASA
- NASA Internships
- Careers at NASA
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.
TAGS: Interns, Internships, College Students, Science, Engineering, InSight, Mars, Europa, Ocean Worlds, Enceladus, Saturn, Cassini, Ceres
Meet JPL Interns | September 21, 2021
On the Fast Track to Career in STEM
A master's student and JPL intern at 19, Natalie Deo has her sights set on a career at the Laboratory, and she's out to prove it's never too early to pursue your dreams.
To hear Natalie Deo explain why she wanted to leave high school at the age of 14 and go straight into higher education is to hear it from the perspective of a precocious teenager wise beyond her years – and her peers.
“I was walking to first period in high school and I saw a couple making out and I was like, ‘I’m getting out of here. I don’t want to see that,’” Deo, now 19 and a summer intern at NASA’s Jet Propulsion Laboratory, deadpans.
Not that she hadn’t thought about fast-tracking it out of high school before that moment, of course. Deo, who grew up in Downey, California, was already familiar with the highly selective Early Entrance Program, or EEP, at Cal State University, Los Angeles that puts gifted students on an accelerated path toward college admission, and she had taken the ACT while in eighth grade. After finishing ninth grade, she was one of a handful of high-school students selected to start her undergraduate studies in electrical engineering at Cal State L.A.
“I was tired of being around people who weren’t as motivated. People were begging me to do their homework or trying to pay me to write their essays,” she says. “While that wasn’t the case with all my peers and some were even really supportive, it was cool to go to college and be around more people who are like-minded.”
Now, Deo is pursuing her master's degree in astronautical engineering at USC while interning at JPL with the team developing the Europa Clipper spacecraft. These days, one could say Deo is constantly surrounded by like-minded folks.
“USC is near home and near JPL, and JPL has been my dream since I knew I wanted to work in space,” Deo says.
The Early Years
Deo first realized she “really, really loved space” at 13 after winning a telescope from a raffle at the Columbia Memorial Space Center in Downey, and found herself looking up at the Moon every night. Shortly after, she started volunteering at the space center every weekend, helping host field trips and robotics labs for young visiting students (something she still does to this day).
During this time, Deo was introduced to a middle-school STEM engineering class when she was in seventh grade.
“My teacher reached out to me and said, ‘You might enjoy it,’ and I thought, ‘Well, it’s either this or band,’” she says.
Deo tried the class, which introduced basic engineering concepts the first year revolving around design, modeling, and the engineering process. The second year focused on automation and robotics, and put students’ skills to the test in regional competitions.
“Before I realized it, I was spending every day after school working in robotics,” she says.
By the time she entered high school, nothing fascinated her more.
“High school was pretty easy for me and what we were learning didn't intrigue me as much as engineering,” Deo says.
Once Deo decided to formally enter EEP, she had to participate in a rigorous summer academy where students are evaluated by college admissions staff on whether they’re performing at a college level. In Cal State L.A.’s program, approximately 500 to 1,000 students apply each year and only about 20 to 30 students are admitted.
Deo was on a road trip with her mother and grandmother when she got the acceptance call.
“I was screaming, and my mom had to pull over because she was screaming,” Deo says. “My brother and dad were at home, and I called them and they were screaming on the phone. There was a lot of screaming.”
Looking back on her time in the summer academy, Deo marvels at the odds she overcame to gain admission.
“I didn’t realize it during that summer, but I was not like most students there whose parents had PhDs and were established in their fields,” she says. “I had parents who immigrated from Fiji. My mom came [to the U.S.] at 8 and my dad came at 22 without a college education. I grew up in a poor area compared to a lot of these students, and I didn’t have the resources to prepare for college that a lot of other students did. I also have Type 1 diabetes. It was special to me [to be accepted into the program] because here was this girl facing adversities of every kind – and she made it.”
While the decision to leave high school was an easy one, arriving at college left Deo grappling with imposter syndrome.
“The first year, I just took general education classes with my cohort [of EEPs] who help you transition, and I was just having fun with them,” Deo says. “Then it kicked in. I had no idea how college worked – my brother was still a senior in high school at the time. I was seeing all these people who were so smart and who came from very affluent backgrounds and who were into literature and stuff like that. I was never really into that. People just knew things I didn’t know and I thought, ‘Should I know that? Do I belong here?’”
Deo credits therapy, talking to friends, and turning to family as ways she coped with getting through those challenging early months. She also still stayed in touch with her childhood friends and took in the high-school experience while in college.
“I still went to prom, football games, and hung out with my friends all the time,” she says. “I was able to have the best of both worlds.”
JPL Internship, Mentorship, and Beyond
At JPL, whispers of a 19-year-old summer intern getting her master’s haven’t fazed Deo in the slightest.
“I hosted an intern party the other week, and everyone coming in was like, ‘Are you the one who’s 19 and in grad school?’ And I’m like, ‘Yeah, that’s me, but I’m also Natalie and I have a Lego collection,’ she says with a laugh.
Deo’s intern responsibilities go beyond her years, of course. So far this summer, she’s spent it working on validating and verifying commands being sent to Europa Clipper’s computer system, ensuring the spacecraft’s instruments respond correctly to commands.
While she admits she still struggles with imposter syndrome in the workplace, she’s becoming more and more comfortable as the months go by and she grows closer to her fellow interns.
“The ratio of women to men is much greater here than in my previous internships,” she says. “I see more of myself in the people around me, and that helps me be able to interact with other interns and have them as a support group. I’m hanging out with them every weekend, and I’ve made lifelong friends already.”
Deo is also part of JPL’s Employee Resource Group, or ERG, mentorship program, which paired her up with a secondary mentor – one who supports a mentee outside of the mentorship their manager provides – through JPL's Advisory Council for Women, or ACW.
“This type of mentorship is based on career and academic advice, and to help interns develop their soft skills,” explains Alona Dontsova, who spearheads the program for Human Resources at JPL. “If the manager is concentrating on developing technical skills and how to manage projects, the ERG mentors are helping with networking, looking at their resume, listening to their pitches, or giving them more professional development advice. The ERG mentor is also more focused on teaching interns about the JPL culture.”
Deo’s secondary mentor, Lynn Boyden, is “very glad that the planets aligned that way” for the two of them to be paired up, and is a firm believer that mentoring is a two-way street.
“Learning goes in both directions … and one of the ways we do that is by sharing knowledge across these divides,” she says. “Sometimes there are situations that are beyond an intern’s ability to navigate the institutional practices, and this is where having a mentor with deeper experience in the world of business can be helpful. Also, one of the primary functions of an internship is to help an intern build a professional network, and having another designated person at JPL can only help them extend that network.”
For Deo’s part, she’s thrilled to have someone she can be candid with.
“I can have conversations about JPL that might be intimidating to ask my group supervisor,” she says. “Like, ‘How do I say please hire me without saying please hire me?’”
Deo isn’t shy about her next set of goals, which include being hired through JPL's academic part-time program while she completes her master’s. And while the virtual internship experience has been a challenge for her, “I really enjoy hands-on work,” she says. Deo has felt the rewards of her internship and mentorship every day.
“Honestly, everything has been rewarding: the people, the experiences, and everything I’ve learned,” she says. “I’m motivated by passion and doing what I love, and I’m doing what I love.”
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.
TAGS: Internships, College Students, Europa Clipper, Europa, Engineering, Intern, Higher Education
Meet JPL Interns | July 23, 2020
JPL Interns Are Working From Home While 'Going the Distance' for Space Exploration
Most years, summertime at NASA's Jet Propulsion Laboratory arrives with an influx of more than 800 interns, raring to play a hands-on role in exploring Earth and space with robotic spacecraft.
Perhaps as exciting as adding NASA to their resumes and working alongside the scientists and engineers they have long admired is the chance to explore the laboratory's smorgasbord of science labs, spacecraft assembly facilities, space simulators, the historic mission control center and a place called the Mars Yard, where engineers test drive Mars rovers.
But this year, as the summer internship season approached with most of JPL's more than 6,000 employees still on mandatory telework, the laboratory – and the students who were offered internships at the Southern California center – had a decision to make.
"We asked the students and the mentors [the employees bringing them in] whether their projects could still be achieved remotely and provide the educational component we consider to be so crucial to these experiences," said Adrian Ponce, deputy section manager of JPL's Education Office, which runs the laboratory's STEM internship programs.
The answer was a resounding yes, which meant the laboratory had just a matter of weeks to create virtual alternatives for every aspect of the internship experience, from accessing specialized software for studying Earth and planetary science to testing and fine-tuning the movements of spacecraft in development and preparing others for launch to attending enrichment activities like science talks and team building events.
“We were able to transition almost all of the interns to aspects of their projects that are telework-compatible. Others agreed to a future start date,” said Ponce, adding that just 2% of the students offered internships declined to proceed or had their projects canceled.
Now, JPL's 600-plus summer interns – some who were part-way through internships when the stay-at-home orders went into effect, others who are returning and many who are first-timers – are getting an extended lesson in the against-the-odds attitude on which the laboratory prides itself.
We wanted to hear about their experiences as JPL's first class of remote interns. What are their routines and home offices like in cities across the country? How have their teams adapted to building spacecraft and doing science remotely? Read a collection of their responses below to learn how JPL interns are finding ways to persevere, whether it's using their engineering skills to fashion homemade desks, getting accustomed to testing spacecraft from 2,000 miles away or working alongside siblings, kids, and pets.
"I am working with an astronomer on the NEOWISE project, which is an automated system that detects near-Earth objects, such as asteroids. The goal of my project is to identify any objects missed by the automated system and use modeling to learn more about their characteristics. My average day consists of writing scripts in Python to manipulate the NEOWISE data and visually vet that the objects in the images are asteroids and not noise or stars.
My office setup consists of a table with scattered books, papers, and pencils, a laptop, television, a child in the background asking a million questions while I work, and a bird on my shoulder that watches me at times."
– Jennifer Bragg will be studying optics at the University of Arizona as an incoming graduate student starting this August. She is completing her summer internship from Pahoa, Hawaii.
"I'm helping support the Perseverance Mars rover launch this summer. So far, I have been working remotely, but I'm lucky enough to have the opportunity to go to Pasadena, California, in late July to support the launch from JPL! On launch day, I will be in the testbed, where myself and a few other members of my group will be 'shadowing' the spacecraft. This means that when operators send their commands to the actual spacecraft, when it’s on the launch pad and during its first day or so in space, we'll send the same instructions to the test-bed version. This way, if anything goes wrong, we'll have a high-fidelity simulation ready for debugging.
I have a desk in my bedroom, so my office setup is decent enough. I bought a little whiteboard to write myself notes. As for my average working day, it really depends on what I'm doing. Some days, I'm writing procedures or code, so it's a text editor, a hundred internet tabs, and a messenger to ask my team members questions. Other days, I'm supporting a shift in the test bed, so I'm on a web call with a few other people talking about the test we're doing. Luckily, a large portion of my team's work can be done on our personal computers. The biggest change has been adding the ability to operate the test bed remotely. I'm often amazed that from New York, I can control hardware in California.
I was ecstatic that I was still able to help with the Perseverance Mars rover mission! I spent the second half of 2019 working on launch and cruise testing for the mission, so I'm happy to be able to see it through."
– Radina Yanakieva is an undergraduate student studying aerospace engineering at Georgia Tech and interning from Staten Island, New York.
"Our team is using radar data [from the European Space Agency’s Mars Express spacecraft] to find out what lies beneath the large icy deposits on Mars' south pole. My average day consists of analyzing this radar data on my computer to find and map the topography of an older surface that lies below the ice on Mars’ south pole, while my plants look on approvingly.
I was delighted to be offered the chance to work at JPL again. (This is my fourth JPL internship.) Even though it's better to be 'on lab,' it is an honor to get to learn from the coolest and smartest people in the world."
– Aditya Khuller is a graduate student working toward a Ph.D. in planetary science at Arizona State University and interning from Tempe, Arizona.
"I am working on the Perseverance Mars rover mission [launching this summer]. As a member of the mobility team, I am testing the rover's auto-navigation behaviors. If given a specific location, flight software should be able to return data about where that location is relative to the rover. My project is to create test cases and develop procedures to verify the data returned by the flight software when this feature is used.
My average day starts with me eating breakfast with my mom who is also working from home. Then, I write a brief plan for my day. Next, I meet with my mentor to discuss any problems and/or updates. I spend the rest of my day at my portable workstation working on code to test the rover's behaviors and analyzing the data from the tests. I have a mini desk that I either set up in my bedroom in front of my Georgia Tech Buzz painting or in the dining room.
If I could visit in person, the first thing I would want to see is the Mars rover engineering model "Scarecrow." I would love to visit the Mars Yard [a simulated Mars environment at JPL] and watch Scarecrow run through different tests. It would be so cool to see a physical representation of the things that I've been working on."
– Breanna Ivey is an undergraduate student studying electrical engineering at the Georgia Institute of Technology and interning from Macon, Georgia.
"I am working on the Psyche mission as a member of the Assembly Test and Launch Operations team, also known as ATLO. (We engineers love our acronyms!) Our goal is to assemble and test the Psyche spacecraft to make sure everything works correctly so that the spacecraft will be able to orbit and study its target, a metal asteroid also called Psyche. Scientists theorize that the asteroid is actually the metal core of what was once another planet. By studying it, we hope to learn more about the formation of Earth.
I always start out my virtual work day by giving my dog a hug, grabbing a cup of coffee and heading up to my family's guest bedroom, which has turned into my office for the summer. On the window sill in my office are a number of space-themed Lego sets including the 'Women of NASA' set, which helps me get into the space-exploration mood! Once I have fueled up on coffee, my brain is ready for launch, and I log in to the JPL virtual network to start writing plans for testing Psyche's propulsion systems. While the ATLO team is working remotely, we are focused on writing test plans and procedures so that they can be ready as soon as the Psyche spacecraft is in the lab for testing. We have a continuous stream of video calls set up throughout the week to meet virtually with the teams helping to build the spacecraft."
– Kaelan Oldani is a master's student studying aerospace engineering at the University of Michigan and interning from Ann Arbor, Michigan. She recently accepted a full-time position at JPL and is starting in early 2021.
"NASA's Deep Space Network is a system of antennas positioned around the world – in Australia, Spain, and Goldstone, California – that's used to communicate with spacecraft. My internship is working on a risk assessment of the hydraulic system for the 70-meter antenna at the Goldstone facility. The hydraulic system is what allows the antenna and dish surrounding it to move so it can accurately track spacecraft in flight. The ultimate goal of the work is to make sure the antenna's hydraulic systems meet NASA standards.
My average day starts by getting ready for work (morning routine), accessing my work computer through a virtual interface and talking with my mentor on [our collaboration tool]. Then, I dive into work, researching hydraulic schematics, JPL technical drawings of the antenna, and NASA standards, and adding to a huge spreadsheet that I use to track every component of the antenna's hydraulic system. Currently, I'm tracking every flexible hydraulic fluid hose on the system and figuring out what dangers a failure of the hose could have on personnel and the mission."
– Ricardo Isai Melgar is an undergraduate student studying mechanical engineering at East Los Angeles College and interning from Los Angeles.
"My project this summer is to develop a network of carbon-dioxide sensors to be used aboard the International Space Station for monitoring the levels of carbon dioxide that crewmembers experience.
My 'office setup' is actually just a board across the end of my bed balanced on the other side by a small dresser that I pull into the middle of the room every day so that I can sit and have a hard surface to work on.
At first I wasn't sure if I was interested in doing a virtual engineering internship. How would that even work? But after talking to my family, I decided to accept. Online or in person, getting to work at JPL is still a really cool opportunity."
– Susanna Eschbach is an undergraduate student studying electrical and computer engineering at Northern Illinois University and interning from DeKalb, Illinois.
"I'm planning test procedures for the Europa Clipper mission [which is designed to make flybys of Jupiter's moon Europa]. The end goal is to create a list of tests we can perform that will prove that the spacecraft meets its requirements and works as a whole system.
I was very excited when I got the offer to do a virtual internship at JPL. My internship was originally supposed to be with the Perseverance Mars rover mission, but it required too much in-person work, so I was moved to the Europa Clipper project. While I had been looking forward to working on a project that was going to be launching so soon, Jupiter's moon Europa has always captured my imagination because of the ocean under its surface. It was an added bonus to know I had an internship secured for the summer."
– Izzie Torres is an undergraduate student studying aerospace engineering and management at MIT and interning from Seattle.
"I am investigating potential spacecraft trajectories to reach the water worlds orbiting the outer planets, specifically Jupiter's moon Europa. If you take both Jupiter and Europa into account, their gravitational force fields combine to allow for some incredibly fuel-efficient maneuvers between the two. The ultimate goal is to make it easier for mission designers to use these low-energy trajectories to develop mission plans that use very little fuel.
I'm not a gamer, but I just got a new gaming laptop because it has a nice graphics processing unit, or GPU. During my internship at JPL last summer, we used several GPUs and a supercomputer to make our trajectory computations 10,000 times faster! We plan to use the GPU to speed up my work this summer as well. I have my laptop connected to a second monitor up in the loft of the cabin where my wife and I are staying. We just had a baby two months ago, so I have to make the most of the quiet times when he's napping!"
– Jared Blanchard is a graduate student working toward a Ph.D. in aeronautics and astronautics at Stanford University.
"I'm doing a theory-based project on the topic of nanotechnology under the mentorship of Mohammad Ashtijou and Eric Perez.
I vividly remember being infatuated with NASA as a youth, so much so that my parents ordered me a pamphlet from Space Center Houston with posters and stickers explaining all of the cool things happening across NASA. I will never forget when I was able to visit Space Center Houston on spring break in 2009. It was by far the most amazing thing I have ever witnessed as a youth. When I was offered the internship at JPL, I was excited, challenged, and motivated. There is a great deal of respect that comes with being an NASA intern, and I look forward to furthering my experiences.
But the challenges are prevalent, too. Unfortunately, the internship is completely virtual and there are limitations to my experience. It is hard working at home with the multiple personalities in my family. I love them, but have you attempted to conduct research with a surround system of romantic comedies playing in the living room, war video games blasting grenades, and the sweet voice of your grandmother asking for help getting pans from the top shelf?"
– Yohn I. Ellis Jr. is a graduate student studying electrical engineering at Prairie View A&M University and interning from Houston.
"This summer, I am supporting the proposal for a small satellite mission concept called Cupid’s Arrow. Cupid’s Arrow would be a small probe designed to fly through Venus’ atmosphere and collect samples. The ultimate goal of the project is to understand the “origin story” of Venus' atmosphere and how, despite their comparable sizes, Earth and Venus evolved so differently geologically, with the former being the habitable, friendly planet that we call home and the latter being the hottest planet in our solar system with a mainly carbon dioxide atmosphere.
While ordinary JPL meetings include discussions of space probes, rockets, and visiting other planets, my working day rarely involves leaving my desk. Because all of my work can be done on my computer, I have a pretty simple office setup: a desk, my computer, and a wall full of posters of Earth and the Solar System. An average day is usually a combination of data analysis, reading and learning about Venus, and a number of web meetings. The team has several different time zones represented, so a morning meeting in Pacific time accommodates all of Pacific, Eastern and European time zones that exist within the working hours of the team."
– Mina Cezairli is an undergraduate student studying mechanical engineering at Yale University and is interning from New Haven, Connecticut.
“I'm characterizing the genetic signatures of heat-resistant bacteria. The goal is to improve the techniques we use to sterilize spacecraft to prevent them from contaminating other worlds or bringing contaminants back to Earth. Specifically, I'm working to refine the amount of time spacecraft need to spend getting blasted by dry heat as a sanitation method.
"As someone who has a biology-lab heavy internship, I was quite skeptical of how an online internship would work. There was originally supposed to be lab work, but I think the project took an interesting turn into research and computational biology. It has been a really cool intersection to explore, and I have gained a deeper understanding of the math and analysis involved in addition to the biology concepts."
– Izabella Zamora is an undergraduate student studying biology and computer science at the Massachusetts Institute of Technology and interning from Brimfield, Massachusetts.
"I am working on the engineering operations team for the Perseverance Mars rover. After the rover lands on Mars, it will send daily status updates. Every day, an engineer at JPL will need to make sure that the status update looks healthy so that the rover can continue its mission. I am writing code to make that process a lot faster for the engineers.
When I was offered the internship back in November, I thought I would be working on hardware for the rover. Once the COVID-19 crisis began ramping up and I saw many of my friends' internships get cancelled or shortened, I was worried that the same would happen to me. One day, I got a call letting me know that my previous internship wouldn't be possible but that there was an opportunity to work on a different team. I was so grateful to have the opportunity to retain my internship at JPL and get the chance to work with my mentor, Farah Alibay, who was once a JPL intern herself."
– Leilani Trautman is an undergraduate student studying electrical engineering and computer science at MIT and interning from San Diego, California.
"I am working on electronics for the coronagraph instrument that will fly aboard the Nancy Grace Roman Space Telescope. The Roman Space Telescope will study dark energy, dark matter, and exoplanets [planets outside our solar system]. The science instrument I'm working on will be used to image exoplanets. It's also serving as a technology demonstration to advance future coronagraphs [which are instruments designed to observe objects close to bright stars].
I was both nervous and excited to have a virtual internship. I’m a returning intern, continuing my work on the coronagraph instrument. I absolutely love my work and my project at JPL, so I was really looking forward to another internship. Since I’m working with the same group, I was relieved that I already knew my team, but nervous about how I would connect with my team, ask questions, and meet other 'JPLers.' But I think my team is just as effective working virtually as we were when working 'on lab.' My mentor and I have even figured out how to test hardware virtually by video calling the engineer in the lab and connecting remotely into the lab computer."
– Kathryn Chamberlin is an undergraduate student studying electrical engineering at Arizona State University and interning from Phoenix.
"I am working on the flight system for the Perseverance Mars rover. The first half of my internship was spent learning the rules of the road for the entire flight system. My first task was updating command-line Python scripts, which help unpack the data that is received from the rover. After that, I moved on to testing a part of the flight software that manages which mechanisms and instruments the spacecraft can use at a certain time. I have been so grateful to contribute to the Perseverance Mars rover project, especially during the summer that it launches!
I have always been one to be happy with all the opportunities I am granted, but I do have to say it was hard to come to the realization that I would not be able to step foot on the JPL campus. However, I was truly grateful to receive this opportunity, and I have been so delighted to see the JPL spirit translate to the online video chats and communication channels. It's definitely the amazing people who make JPL into the place that everybody admires. Most important, I would like to thank my mentor, Jessica Samuels, for taking the time to meet with me every day and show me the true compassion and inspiration of the engineers at JPL."
– Daniel Stover is an undergraduate student studying electrical and computer engineering at Virginia Tech and interning from Leesburg, Virginia.
"I'm working on a project called the Multi-Angle Imager for Aerosols, or MAIA. It's an instrument that will go into lower Earth orbit and collect images of particulate matter to learn about air pollution and its effects on health. I'm programming some of the software used to control the instrument's electronics. I'm also testing the simulated interface used to communicate with the instrument.
I was ecstatic to still have my internship! I'm very blessed to be able to do all my work remotely. It has sometimes proven to be a challenge when I find myself more than four layers deep in virtual environments. And it can be confusing to program hardware on the West Coast with software that I wrote all the way over here on the East Coast. However, I've learned so much and am surprised by and grateful for the meaningful relationships I've already built."
– Sophia Yoo is an incoming graduate student studying electrical and computer engineering at Princeton University and is interning from Souderton, Pennsylvania.
"My summer research project is focused on using machine-learning algorithms to make predictions about the density of electrons in Earth’s ionosphere [a region of the planet's upper atmosphere]. Our work seeks to allow scientists to forecast this electron density, as it has important impacts on things such as GPS positioning and aircraft navigation.
Despite the strangeness of working remotely, I have learned a ton about the research process and what it is like to be part of a real research team. Working alongside my mentors to adapt to the unique challenges of working remotely has also been educational. In research, and in life, there will always be new and unforeseen problems and challenges. This extreme circumstance is valuable in that it teaches us interns the importance of creative problem solving, adaptability, and making the most out of the situation we are given."
– Natalie Maus is an undergraduate student studying astrophysics and computer science at Colby College and interning from Evergreen, Colorado.
"I have two projects at JPL. My first project focuses on the Europa Clipper mission [designed to make flybys of Jupiter's moon Europa]. I study how the complex topography on the icy moon influences the temperature of the surface. This work is crucial to detect 'hot spots,' which are areas the mission (and future missions) aim to study because they might correspond to regions that could support life! My other work consists of studying frost on Mars and whether it indicates the presence of water-ice below the surface.
JPL and NASA interns are connected through social networks, and it's impressive to see the diversity. Some talks are given by 'JPLers' who make themselves available to answer questions. When I came to JPL, I expected to meet superheroes. This wish has been entirely fulfilled. Working remotely doesn't mean working alone. On the contrary, I think it increases our connections and solidarity."
– Lucas Lange is an undergraduate student studying aerospace engineering and planetary science at ISAE-SUPAERO [aerospace institute in France] and interning from Pasadena, California.
Explore JPL’s summer and year-round internship programs and apply at: jpl.nasa.gov/intern
Career opportunities in STEM and beyond can be found online at jpl.jobs. Learn more about careers and life at JPL on LinkedIn and by following @nasajplcareers on Instagram.
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of STEM Engagement’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
TAGS: Higher Education, Internships, STEM, College Students, Virtual Internships, Telework, Mars 2020 interns, Mars 2020, Perseverance, DSN, Deep Space Network, Mars, Asteroids, NEOWISE, Science, Technology, Engineering, Computer Science, Psyche, International Space Station, ISS, Europa, Jupiter, Europa Clipper, trajectory, nanotechnology, Cupid's Arrow, Proposal, Venus, Planetary Protection, Biology, Nancy Grace Roman Space Telescope, Dark Matter, Exoplanets, Multi-Angle Imager for Aerosols, MAIA, Earth, Earth science, air pollution, Hispanic Heritage Month, Black History Month, Asian Pacific American Heritage Month, Earth Science, Earth, Climate Change, Sea Level Rise
Meet JPL Interns | August 16, 2018
Getting New Perspectives on a Potential Ocean World
There’s no telling what the first spacecraft to land on Jupiter’s ice-covered moon Europa could encounter – but this summer, JPL intern Maya Yanez is trying to find out. As part of a team designing the potential Europa Lander, a mission concept that would explore the Jovian moon to search for biosignatures of past or present life, Yanez is combing through images, models, analogs, anything she can find to characterize a spot that’s “less than a quarter of a pixel on the highest-resolution image we have of Europa.” We caught up with Yanez, an undergraduate student at the University of Colorado at Boulder, to find out what inspired her to get involved in space exploration and ask about her career ambition to discover alien life.
Meet JPL Interns
Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.
What are you working on at JPL?
I'm working on what may be a robot that we would land on Europa's icy surface. Europa is a moon of Jupiter that has this thick ice shell that we estimate is 25 kilometers [15.5 miles] thick, and there’s evidence that underneath that is a huge global ocean. If we're going to find life beyond Earth, it's probably going to be wherever there's water. So this mission concept would be to put a lander on Europa to try to figure out if there are signs of life there. I’m looking at an area on Europa about two square meters [about 7 feet] and about a meter [3 feet] deep. For perspective, we've only explored a few kilometers into our own Earth's surface. What I'm doing is trying to figure out what we might expect is going on in that little tiny area on Europa. What light is interacting with it, what processes might be going on, what little micrometeorites are hitting the surface, what's the ice block distribution? I'm looking at places like Mars, the Moon and Earth to try to put constraints and understanding around what types of variation we might see on Europa and what might be going on underneath the surface.
What's an average day like for you?
A lot of it is looking up papers and trying to get an idea of what information exists about Europa. My first couple of weeks here, I read this thing that we call the "Big Europa Book.” It's a 700-page textbook that covers basically all of our knowledge of Europa.
One of the other things that I've been working on is a geologic map, trying to look at what geologic variation exists in a couple of meters on Europa because we don't know. It's kind of crazy to think that when Viking [the first Mars lander] landed, we had no clue what another surface would look like except for the Moon. We had no idea. And then we got those first amazing images and it looked kind of like Earth, except Europa probably won't look like Earth because it's not rock; it's all ice. So even though we're trying, we still have nothing to compare it to.
If it gets selected as an official mission, a Europa lander would come after NASA’s Europa Clipper spacecraft. How might data from Europa Clipper contribute to what you're working on now?
Europa Clipper could be really beneficial in that it's going to do more than 40 flybys where it goes around Europa in a bunch of different ways and at different proximities. It’s going to curve into the moon’s atmosphere and get really close to the surface, about 25 kilometers [15.5 miles] close to the surface. Right now, some of the best data we have is from hundreds of kilometers away, so the images Europa Clipper will take will be pretty nicely resolved. If you look at the current highest resolution image of Europa as compared to one from Voyager [which flew by Jupiter and its moons in 1979], the amount of detail that changes, the amount of cracks and complexity you can see on the surface is huge. So having more images like that can be really beneficial to figure out where we can land and where we should land.
Before this project, you spent a summer at JPL studying the chemistry of icy worlds, such as Pluto. What’s it been like working on such different projects and getting experience in fields outside your major, like chemistry and geology?
[Laughs] Yeah, one day I'll get back to astronomy. That's one of the things I love about JPL. Overall, I'd say what I want to do is astrobiology because I want to find life in the solar system. I mean, everyone does. It would be really cool to find out that there are aliens. But one of the great things about astrobiology is it takes chemistry, physics, geology, astronomy and all of these different sciences that you don't always mix together. And that's kind of why I like JPL. So much of the work involves an interdisciplinary approach.
What's the most JPL- or NASA-unique experience you've had so far?
I have one from last summer and one from this summer.
I really want to find life out in space. I'm curious about bacteria and microbes and how they react in space, but it's not something I've ever really done work in. A couple of weeks ago, I got to see astronaut Kathleen Rubins give a talk, meet her afterward and take a picture with her. She was the first person to sequence DNA in space. I would have never met someone like that if it weren’t for my internship at JPL. I wouldn't have been able to go up to her and say, “This is really cool! I'd love to talk to you more and get your email” – and get an astronaut's email! Who would ever expect that?
And then last year, I had something happen that was completely unexpected. I was sitting alone in the lab, running an experiment and, throughout the summer, we had a couple of different tours come through. A scientist asked if he could bring in a tour. It was two high-school-age kids and, presumably, their moms. I showed them around and explained what my experiment was doing. It was great. It was a really good time. They left and a couple hours later, Mike Malaska, the scientist who was leading the tour, came back and said, “Thank you so much for doing that tour. Do you know the story of that one? I said no. He said, “Well the boy, he has cancer. This is his Make-a-Wish.” His Make-a-Wish was to tour JPL. I had never felt so grateful to be given the opportunity that I was given, to realize that someone’s wish before they may or may not die is to visit the place that I'm lucky enough to intern at. It was a very touching moment. It really made me happy to be at JPL.
What was your own personal inspiration for going into astronomy?
I was the nerdy kid. I had a telescope, but I also had a microscope. So it was destined. But in middle school, I started to get this emphasis on life sciences. I'd always really liked biology so I sort of clung to it. We never really talked about space, so I just kind of forgot about it. But my senior year, I took this really cool class in astrobiology taught by an amazing teacher, who I still talk to. After the first week in her class, I was like, I have to do this. At the end of the academic year, that same teacher took me to JPL and gave me a private tour with some of the other scientists. I actually met Morgan Cable, the mentor I worked with last summer and this summer, on that tour. It was definitely a combination of being in this really great class and having that perspective change, realizing that we’ve learned a lot about life on our own planet, but there's so much to learn about finding it elsewhere.
Did you know about JPL before that?
No. I'm the first generation in my family to go to college, so I'm the one who teaches science to everyone else. I didn't even think science was a career because, when you're a kid, you don't often interact with a lot with scientists. So I didn't realize what JPL was or how cool it was until that tour put everything into perspective. I wasn't a space kid, but I found my own path, and it worked.
For National Intern Day on July 26, NASA held a special town hall for interns with Administrator Jim Bridenstine. Your question about how the agency prioritizes the search for extraterrestrial life was selected as a finalist to appear during the broadcast. What made you want to ask that particular question?
So it was a little self-serving [laughs]. Part of it is that it’s central to my career path, but I also want to run for office one day at some level, and I think it's important that there's this collaboration between science and politics. Without it, science doesn't get funded and politicians aren’t as well informed.
How do you feel you're contributing to NASA/JPL missions and science?
What I'm doing requires a lot of reading and putting things together and knowing rocks and putting scales into perspective, so it's not particularly specialized work. But the end goal of my project will be a table that says here's what processes are happening on Europa, here's what depth they govern and here's what it means if biosignatures are caught in these processes. I'm also going to be remaking an old graphic, including more information and trying to better synthesize everything that we know about Europa. Those two products will continue to be used by anyone who’s thinking about landing on Europa, for anyone who’s thinking about what surface processes govern Europa. Those two products that I'm producing are going to be the best summaries that we have of what's going on there.
OK, so now for the fun question: If you could travel to any place in space, where would you go and what would you do there?
Europa. Obviously [laughs]. Or [Saturn’s moon] Titan. Titan is pretty cool, but it scares me a little bit because there's definitely no oxygen. There's not a lot of oxygen on Europa, but what's there is oxygen. I would probably go to Europa and find some way to get through those 25 kilometers of ice, hit that ocean and see what's going on.
Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
TAGS: Women in STEM, Internships, Interns, College, Students, STEM, Science, Engineering, Europa, Europa Clipper, Europa Lander, Ocean Worlds, Hispanic Heritage Month
Meet JPL Interns | July 24, 2018
Preparing to See the Unseen on Jupiter's Moon Europa
A radar on NASA’s Europa Clipper spacecraft will be key to finding out if Jupiter's moon Europa is indeed an ocean world, so JPL intern Zachary Luppen is creating ways to test it to perfection. We caught up with Luppen, an astronomy and physics major from the University of Iowa, to find out how he’s helping the team peer below the icy moon’s surface and to hear about his recent brushes with space stardom.
What are you working on at JPL?
I'm working on the integration, testing and automation of the REASON instrument for the Europa Clipper mission. REASON is a radar instrument that will look within the icy crust of Jupiter’s moon Europa to look for water pockets, characterize the moon’s surface and see if we can confirm that there’s an ocean below its surface.
How does the radar work and why is it important for the mission?
The radar performs what’s called interferometry by sending out and receiving signals that create measurable interference patterns. Based on what signal bounces back, we can figure out the composition of the crust.
The radar probably first and foremost is trying to answer whether the moon has an ocean, and will probably help with determining a landing site for a potential future lander. So the Europa Clipper orbiter is sort of this preliminary study for eventually putting something on the surface. The REASON instrument is going to study a large portion of the moon’s surface and look for a landing spot, possibly where the ice is thinnest so we will not have to drill too deep to find water.
Why is NASA especially interested in Europa as a destination to explore?
Europa is a very interesting moon because it's way out at Jupiter, so it's far away from the Sun, and yet, scientists have data to support the notion that it might have liquid water. What allows it to have this water below its icy crust and how deep is that water? How thick is the icy crust? And if we were to drill into the crust, is there the potential to find life below it? Europa very quickly becomes a moon that can transform society on Earth, if we happened to find extraterrestrial life there.
What’s an average day like for you?
A lot of the work that I do involves programming in a language called Python. The transmitter boards, which are used to generate the signals that would propagate downwards toward Europa, are currently being built at the University of Iowa, and once we get them here at JPL, we're going to have to test them nonstop, see how we can break them, see how we can improve them. Whatever we need to do to make sure we operate perfectly during the mission. A lot of my work involves writing the software that's going to be doing this testing. Other than that, I've been writing programs called GUIs, graphical user interfaces, to interact with the instruments without having to actually touch them. So if you’re not able to go into the cleanroom during testing, then you can just use your computer to type commands.
How did you get involved in the project?
I’m a student at the University of Iowa and our team has been working on the transmitter boards for the past couple of years. I was dying to get involved in spacecraft and by the end of my sophomore year, I finally had the opportunity to do so because I got a grant from the university to pay for research. I started off simply cleaning rooms and putting away parts, which was pretty menial, however, I did learn what the parts were and how to quickly blow them up if you don't use them properly. Then I worked my way up to kitting parts, which is organizing them for our soldering technician. This doesn't sound like a rigorous job, but it's the first task that needs to be done to make a circuit board, and if it's not done properly, nothing else matters because the circuit boards won’t work. So I just kept working on that throughout my junior year and now I'm out here interning.
Meet JPL Interns
Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.
Your question was chosen to be broadcast as part of a downlink for NASA interns with astronauts on the International Space Station. What does it mean to know that your question is going to space?
Words that I spoke are going to be shown to astronauts. Pixels showing me and audio from my mouth will be appearing on the International Space Station, so I'm almost riding on the station. In a sense, my dream of going to space is another step toward coming true
Have you had any other JPL or NASA unique experience of note?
I got to meet astronaut Kate Rubins when she visited JPL recently. That was the first time that I'd ever met an astronaut. And I was just like, oh my gosh, I was shaking. Someone told me I could go up and shake her hand and I was like, really, I'm allowed to do that?! And I did. And then I got her autograph afterward.
How do you feel you're contributing to NASA/JPL missions and science?
The programming work I’m doing is contributing directly to the testing phase of the Europa mission, which is cool in itself. But also just trying to make as many people aware as possible that the science is going on, that it's worth doing and worth finding out, especially if we were to find life on Europa. That changes humanity forever!
If you could travel to any place in space, where would you go and what would you do there?
Oh my god. The planetary system around the star TRAPPIST-1 is fascinating. The ISS is fascinating. Mars is Mars. Europa is Europa. This is a hard question. I guess, in order to further science, I’d go to Europa. If I could just go to Europa and see if there's life, well then, we’d answer one of the biggest questions ever asked.
Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
TAGS: Interns, Internships, Higher Education, College, Opportunities, STEM, engineering, Europa Clipper, Europa, Ocean Worlds
Meet JPL Interns | July 24, 2018
Diving Deep on the Science of Alien Oceans
Kathy Vega went from teaching STEM to doing it first-hand. Now, as an intern at NASA’s Jet Propulsion Laboratory, she's building an experiment to simulate ocean worlds. We recently caught up with Vega, a University of Colorado at Boulder engineering physics major, to find out what inspired her to switch careers and how her project is furthering the search for life beyond Earth.
What are you working on at JPL?
In our solar system, there are these icy worlds. Most of them are moons around large gas planets. For example, Europa is an icy moon that orbits Jupiter. There's also Titan and Enceladus orbiting Saturn. From prior missions, such as Galileo and Cassini, we've been able to see that these moons are covered with ice and most likely harbor oceans below that ice, which makes us wonder if these places are habitable for life. My project is supporting the setup of an experiment to simulate possible ocean compositions that would exist on these worlds under different temperatures and different pressures. Working in collaboration with J. Michael Brown’s group at the University of Washington in Seattle, this experiment is helping create a library of measurements that have not been collected before. Eventually, it may help us prepare for the development of landers to go to Europa, Enceladus and Titan and collect seismic measurements that we can compare to our simulated ones.
Meet JPL Interns
Read stories from interns pushing the boundaries of space exploration and science at the leading center for robotic exploration of the solar system.
What's a typical day like for you?
Right now, I'm in experiment-design mode. I've been ordering parts for the experiment and speaking with engineering companies. This experiment is already being run at UW in Seattle, but we're attempting to run it at colder temperatures to do a wider range of simulations, which haven’t been done before and will be particularly relevant to Jupiter’s moon Ganymede and Saturn’s moon Titan. I've been working with another intern, and we've been meeting with cryogenic specialists and experiment-design specialists at JPL to design a way to make our current experiment reach colder temperatures.
I also run a lot of simulations with Matlab software. There's a model that my principal investigator developed called Planet Profile that allows the user to input different temperature ranges and composition profiles for a planetary body. It then outputs the density and sound-velocity measurements that we would expect in that environment.
What's the most JPL- or NASA-unique experience you've had so far?
The Europa Clipper mission, [which will orbit Jupiter’s moon Europa to learn more about it and prepare for a future lander], is in development right now. A major planning meeting for the mission was held at JPL, and I got to sit in and watch these world-renowned scientists, who I think are like rock stars, talk science. There were all of these people having an open-forum discussion and, gosh, it was so cool. I felt like I was there with the people who are planning the future.
You already have a degree in political science. What made you want to go back to school for STEM?
When I was in high school, I was in Mathletes, but I was also in Mock Trial. I took AP physics, AP chemistry, AP calculus, but also AP civics and AP history. I remember in my junior year, I thought, I love math. Maybe I could be an astronaut one day. Space is so cool. Then AP physics happened. I didn't fail or anything, but after that, I just felt like maybe it's not for me.
There were also a lot of critical things happening with politics around that time. Immigration was a really hot topic and walkouts were happening at L.A high schools. My family is from El Salvador, and I'm a first-generation college student, so I felt very motivated to study political science and be involved in issues that were happening first-hand in the world and affected my family and people I knew. So I went to Berkeley and got a degree in political science.
After that, I really wanted to get involved with service and just make a difference in the world, so I joined Teach for America. I taught math and I started a robotics club. It was through the robotics club and teaching my students about space and engineering that I really got excited again. I started pressing my siblings and my cousins to go into science. And one day, one of my cousins said, "If space is so cool, Kathy, why aren't you studying it?" I realized, yeah, what happened to that? I really loved that. So I decided to take classes at a local community college and did well. And now I’m at the University of Colorado at Boulder getting a second degree in engineering physics.
Do you ever feel pulled back in the direction of politics?
No [laughs]. Politics is a messy ordeal. I do my part as a citizen, but I like to think that thinking toward the future in science is where my efforts are best used right now.
How do you feel your background in political science has served you in engineering?
Going into engineering and science, I was very conscious of the fact that women and especially women of color are underrepresented in these fields. I think that having the background in political science, having the experiences working with communities gives me the ability to have thoughtful conversations with people about diversity.
How do you think you're contributing to NASA/JPL missions and science?
With this experiment, I've been able to leverage my creative side. I feel like I'm laying the foundation for these missions to explore other moons and worlds.
If you could travel to any place in space, where would you go and what would you do there?
There’s a star called Vega, and it might have its own planetary system. It's so far that we have no idea what's in that potential system or if there could be terrestrial planets. I'd want to explore that.
Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
TAGS: Women in STEM, Interns, Internships, College, Higher Education, STEM, Europa, Europa Clipper, Europa Lander, Science, Ocean Worlds, Hispanic Heritage Month, Women at NASA
Meet JPL Interns | July 19, 2017
Summer Interns Build Missions, Do Stellar Science at NASA/JPL
When the offer letter arrived from NASA’s Jet Propulsion Laboratory, Kiana Williams could hardly believe it. Thousands of science and engineering students apply each year for internships at the lab known for its dare-anything missions to the planets and beyond. Williams never expected it would be her first internship.
“It actually took me about a week to accept that it was a real offer and that I’d actually be coming to intern at NASA/JPL,” she said.
Mechanical engineering student Kiana Williams grew up near JPL in Southern California, but she never thought to apply for an internship until JPL's Education Office visited her university in Alabama. Now, a first-time intern, she says she realizes, "Oh, I can do this." Image credit: NASA/JPL-Caltech
This summer, Williams is joining more than 700 undergraduate, graduate and doctoral students for internships at JPL in Pasadena, California. Over 10 weeks, they will design new ways to study stars, investigate icy moons thought to be hospitable to life, and even help choose a landing spot for the next Mars rover.
“I get the opportunity to design an entire space telescope from top to bottom,” said Williams, a senior mechanical engineering student at Tuskegee University in Alabama. “It’s kind of a big task, but at the same time it’s fun, so it makes my day go really quickly.”
One of 10 NASA field centers, JPL is the birthplace of spacecraft and instruments that have explored every planet in the solar system, studied our home planet and looked beyond to discover new worlds. It doesn’t just design and build spacecraft, it also operates them, and collects and studies the science they return.
“It’s the only place in the world where everyone needed to conceive of, design, build, launch and land spacecraft, get the science data and write the papers about that science data are all in one place,” said Matt Golombek, a JPL scientist whose interns over the years have helped choose the landing sites for all five Mars rovers and landers since Pathfinder in 1997.
The lab’s internship programs give students studying everything from aerospace engineering to computer science and chemistry the chance to do research with NASA scientists, build spacecraft, and create new technology for future missions.
With more than 20 active spacecraft plus a to-do list that includes missions to Mars, Jupiter’s moon Europa and the asteroid belt, JPL has no shortage of projects ripe for students who are eager for careers in space exploration.
Nirmal Patel says that in addition to the wow-factor of testing parts for a Mars rover, his JPL internship is a chance to meet other engineers and scientists all united in a common goal. "Here, everyone wants to explore. And when you have that common goal, it has a different atmosphere," he said. Image credit: NASA/JPL-Caltech
“It’s just amazing knowing that what we’re doing now will also be replicated on Mars in a few years,” said Nirmal Patel, a mechanical engineering student at the University of Michigan who is testing parts for the Mars 2020 rover. “It’s surreal almost. I’m still a student but I’m getting to have an impact on this project.”
David Dubois, a three-time intern who studies planetary science at the University of Versailles Saint Quentin near Paris, returned to JPL this summer to continue his research on icy moons around Saturn, Jupiter and Neptune. Using data from the Cassini mission (which will end its nearly 13-year mission at Saturn this September) he is modeling the atmosphere of Saturn’s moon Titan to better understand its chemical environment – and maybe discover if it could support life.
He says that in addition to access to one-of-a-kind data directly from spacecraft, JPL offers the opportunity to explore new fields of science and even career paths, if students are open to it.
“Being open is certainly something that I’ve learned from JPL, not being afraid of tackling different problems in different fields,” said Dubois, who is about to publish his first paper as a lead author based on his research at JPL.
When he's not doing research, David Dubois says he focuses much of his time on outreach, which is one of his other passions. This year, he traveled to India with a friend to visit schools and villages and encourage students there to pursue science. "I like to say that I think anybody is a scientist," he said, "as long as you try to provide an answer to questions around you." Image credit: NASA/JPL-Caltech
It’s precisely that exposure to its unique career offerings in science, technology, engineering and math – and a foot in the door – that JPL’s Education Office, which manages the lab’s internship programs, is working to provide to more students.
“Our students are operating right alongside the mentors and participating in the discovery process,” said Adrian Ponce, who manages JPL’s higher education group. “It’s a fantastic opportunity for them, and it’s also a great opportunity for JPL. Our internship programs are designed to bring in students from diverse backgrounds and underrepresented communities who share new ways of thinking and analyzing challenges. Many of them will become the next generation of innovators – and not just at JPL.”
For Williams, who plans to continue toward a master’s degree in design engineering after she graduates in December, her time at JPL is confirmation that she’s on the right path and has the motivation to keep going.
“It makes me feel like school is worth it,” said Williams of her internship experience so far. “All the stress I’m going through at school will be worth it because you can find places that are like JPL, that make your job fun.”
Explore JPL’s summer and year-round internship programs and apply at: https://www.jpl.nasa.gov/edu/intern
The laboratory’s STEM internship and fellowship programs are managed by the JPL Education Office. Extending the NASA Office of Education’s reach, JPL Education seeks to create the next generation of scientists, engineers, technologists and space explorers by supporting educators and bringing the excitement of NASA missions and science to learners of all ages.
TAGS: Intern, Mars 2020, Europa, Cassini, Titan, Science, Engineering, Missions