In the News

This summer, a global dust storm encircled Mars, blocking much of the vital solar energy that NASA’s Opportunity rover needs to survive. After months of listening for a signal, the agency has declared that the longest-lived rover to explore Mars has come to the end of its mission. Originally slated for a three-month mission, the Opportunity rover lived a whopping 14.5 years on Mars. Opportunity beat the odds many times while exploring the Red Planet, returning an abundance of scientific data that paved the way for future exploration.

Scientists and engineers are celebrating this unprecedented mission success, still analyzing data collected during the past decade and a half and applying lessons learned to the design of future spacecraft. For teachers, this historic mission provides lessons in engineering design, troubleshooting and scientific discovery.

How They Did It

Launched in 2003 and landed in early 2004, the twin Mars Exploration Rovers, Spirit and Opportunity, were the second spacecraft of their kind to land on our neighboring planet.

Preceded by the small Sojourner rover in 1997, Spirit and Opportunity were substantially larger, weighing about 400 pounds, or 185 kilograms, on Earth (150 pounds, or 70 kilograms, on Mars) and standing about 5 feet tall. The solar-powered rovers were designed for a mission lasting 90 sols, or Mars days, during which they would look for evidence of water on the seemingly barren planet.

Dust in the Wind

Scientists and engineers always hope a spacecraft will outlive its designed lifetime, and the Mars Exploration Rovers did not disappoint. Engineers at NASA’s Jet Propulsion Laboratory in Pasadena, California, expected the lifetime of these sun-powered robots to be limited by dust accumulating on the rovers’ solar panels. As expected, power input to the rovers slowly decreased as dust settled on the panels and blocked some of the incoming sunlight. However, the panels were “cleaned” accidentally when seasonal winds blew off the dust. Several times during the mission, power levels were restored to pre-dusty conditions. Because of these events, the rovers were able to continue their exploration much longer than expected with enough power to continue running all of their instruments.

Side-by-side images of Opportunity on Mars, showing dust on its solar panels and then relatively clean solar panels

A self-portrait of NASA's Mars Exploration Rover Opportunity taken in late March 2014 (right) shows that much of the dust on the rover's solar arrays was removed since a similar portrait from January 2014 (left). Image Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ. | › Full image and caption

Terrestrial Twin

To troubleshoot and overcome challenges during the rovers’ long mission, engineers would perform tests on a duplicate model of the spacecraft, which remained on Earth for just this purpose. One such instance was in 2005, when Opportunity got stuck in the sand. Its right front wheel dug into loose sand, reaching to just below its axle. Engineers and scientists worked for five weeks to free Opportunity, first using images and spectroscopy obtained by the rover’s instruments to recreate the sand trap on Earth and then placing the test rover in the exact same position as Opportunity. The team eventually found a way to get the test rover out of the sand trap. Engineers tested their commands repeatedly with consistent results, giving them confidence in their solution. The same commands were relayed to Opportunity through NASA’s Deep Space Network, and the patient rover turned its stuck wheel just the right amount and backed out of the trap that had ensnared it for over a month, enabling the mission to continue.

Engineers test moves on a model of the Opportunity rover in the In-Situ Instrument Laboratory at JPL

Inside the In-Situ Instrument Laboratory at JPL, rover engineers check how a test rover moves in material chosen to simulate some difficult Mars driving conditions. | › Full image and caption

A few years later, in 2009, Spirit wasn’t as lucky. Having already sustained some wheel problems, Spirit got stuck on a slope in a position that would not be favorable for the Martian winter. Engineers were not able to free Spirit before winter took hold, denying the rover adequate sunlight for power. Its mission officially ended in 2011. Meanwhile, despite a troubled shoulder joint on its robotic arm that first started showing wear in 2006, Opportunity continued exploring the Red Planet. It wasn’t until a dust storm completely enveloped Mars in the summer of 2018 that Opportunity finally succumbed to the elements.

The Final Act

animation showing a dust storm moving across Mars

This set of images from NASA’s Mars Reconnaissance Orbiter (MRO) shows a giant dust storm building up on Mars in 2018, with rovers on the surface indicated as icons. Image credit: NASA/JPL-Caltech/MSSS | › Full image and caption

simulated views of the sun as the 2018 dust storm darkened from Opportunity's perspective on Mars

This series of images shows simulated views of a darkening Martian sky blotting out the Sun from NASA’s Opportunity rover’s point of view in the 2018 global dust storm. Each frame corresponds to a tau value, or measure of opacity: 1, 3, 5, 7, 9, 11. Image credit: NASA/JPL-Caltech/TAMU | › Full image and caption

Dust storm season on Mars can be treacherous for solar-powered rovers because if they are in the path of the dust storm, their access to sunlight can be obstructed for months on end, longer than their batteries can sustain them. Though several dust storms occurred on Mars during the reign of the Mars Exploration Rovers, 2018 brought a large, thick dust storm that covered the entire globe and shrouded Opportunity’s access to sunlight for four months. Only the caldera of Olympus Mons, the largest known volcano in the solar system, peeked out above the dust.

The transparency or “thickness” of the dust in Mars’ atmosphere is denoted by the Greek letter tau. The higher the tau, the less sunlight is available to charge a surface spacecraft’s batteries. An average tau for Opportunity’s location is 0.5. The tau at the peak of the 2018 dust storm was 10.8. This thick dust was imaged and measured by the Curiosity Mars rover on the opposite side of the planet. (Curiosity is powered by a radioisotope thermoelectric generator.)

Since the last communication with Opportunity on June 10, 2018, NASA has sent more than 1,000 commands to the rover that have gone unanswered. Each of these commands was an attempt to get Opportunity to send back a signal saying it was alive. A last-ditch effort to reset the rover’s mission clock was met with silence.

Why It’s Important

The Mars Exploration Rovers were designed to give a human-height perspective of Mars, using panoramic cameras approximately 5 feet off the surface, while their science instruments investigated Mars’ surface geology for signs of water. Spirit and Opportunity returned more than 340,000 raw images conveying the beauty of Mars and leading to scientific discoveries. The rovers brought Mars into classrooms and living rooms around the world. From curious geologic formations to dune fields, dust devils and even their own tracks on the surface of the Red Planet, the rovers showed us Mars in a way we had never seen it before.

tracks on Mars with a patch of white soil showing

This mosaic shows an area of disturbed soil made by the Spirit rover's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. Image credit: NASA/JPL-Caltech/Cornell | › Full image and caption

Mineral vein on the surface of Mars

This color view of a mineral vein was taken by the Mars rover Opportunity on Nov. 7, 2011. Image credit: NASA/JPL-Caltech/Cornell/ASU | › Full image and caption

The rovers discovered that Mars was once a warmer, wetter world than it is today and was potentially able to support microbial life. Opportunity landed in a crater and almost immediately discovered deposits of hematite, which is a mineral known to typically form in the presence of water. During its travels across the Mars surface, Spirit found rocks rich in magnesium and iron carbonates that likely formed when Mars was warm and wet, and sustained a near-neutral pH environment hospitable to life. At one point, while dragging its malfunctioning wheel, Spirit excavated 90 percent pure silica lurking just below the sandy surface. On Earth, this sort of silica usually exists in hot springs or hot steam vents, where life as we know it often finds a happy home. Later in its mission, near the rim of Endeavor crater, Opportunity found bright-colored veins of gypsum in the rocks. These veins likely formed when water flowed through underground fractures in the rocks, leaving calcium behind. All of these discoveries lead scientists to believe that Mars was once more hospitable to life than it is today, and they laid the groundwork for future exploration.

Imagery from the Mars Reconnaissance Orbiter and Mars Odyssey, both orbiting the Red Planet, has been combined with surface views and data from the Mars Exploration Rovers for an unprecedented understanding of the planet’s geology and environment.

Not only did Spirit and Opportunity add to our understanding of Mars, but also the rovers set the stage for future exploration. Following in their tracks, the Curiosity rover landed in 2012 and is still active, investigating the planet’s surface chemistry and geology, and confirming the presence of past water. Launching in 2020 is the next Mars rover, currently named Mars 2020. Mars 2020 will be able to analyze soil samples for signs of past microbial life. It will carry a drill that can collect samples of interesting rocks and soils, and set them aside in a cache on the surface of Mars. In the future, those samples could be retrieved and returned to Earth by another mission. Mars 2020 will also do preliminary research for future human missions to the Red Planet, including testing a method of producing oxygen from Mars’ atmosphere.

It’s thanks to three generations of surface-exploring rovers coupled with the knowledge obtained by orbiters and stationary landers that we have a deeper understanding of the Red Planet’s geologic history and can continue to explore Mars in new and exciting ways.

Teach It

Use these standards-aligned lessons and related activities to get students doing engineering, troubleshooting and scientific discovery just like NASA scientists and engineers!

Explore More

Try these related resources for students from NASA’s Space Place

TAGS: K-12 Education, Teachers, Educators, Students, Opportunity, Mars rover, Rovers, Mars, Lessons, Activities, Missions

  • Ota Lutz
READ MORE

The supermoon lunar eclipse captured as it moved over NASA’s Glenn Research Center on September 27, 2015.

In the News

Looking up at the Moon can create a sense of awe at any time, but those who do so on the evening of January 20 will be treated to the only total lunar eclipse of 2019. Visible for its entirety in North and South America, this eclipse is being referred to by some as a super blood moon – “super” because the Moon will be closest to Earth in its orbit during the full moon (more on supermoons here) and “blood" because the total lunar eclipse will turn the Moon a reddish hue (more on that below). This is a great opportunity for students to observe the Moon – and for teachers to make connections to in-class science content.

How It Works

Eclipses can occur when the Sun, the Moon and Earth align. Lunar eclipses can happen only during a full moon, when the Moon and the Sun are on opposite sides of Earth. At that point, the Moon can move into the shadow cast by Earth, resulting in a lunar eclipse. However, most of the time, the Moon’s slightly tilted orbit brings it above or below Earth’s shadow.

Watch on YouTube

The time period when the Moon, Earth and the Sun are lined up and on the same plane – allowing for the Moon to pass through Earth’s shadow – is called an eclipse season. Eclipse seasons last about 34 days and occur just shy of every six months. When a full moon occurs during an eclipse season, the Moon travels through Earth’s shadow, creating a lunar eclipse.

Graphic showing the alignment of the Sun, Earth and Moon when a full moon occurs during an eclipse season versus a non-eclipse season

When a full moon occurs during an eclipse season, the Moon travels through Earth's shadow, creating a lunar eclipse. Credit: NASA/JPL-Caltech | + Enlarge image

Unlike solar eclipses, which require special glasses to view and can be seen only for a few short minutes in a very limited area, a total lunar eclipse can be seen for about an hour by anyone on the nighttime side of Earth – as long as skies are clear.

What to Expect

The Moon passes through two distinct parts of Earth’s shadow during a lunar eclipse. The outer part of the cone-shaped shadow is called the penumbra. The penumbra is less dark than the inner part of the shadow because it’s penetrated by some sunlight. (You have probably noticed that some shadows on the ground are darker than others, depending on how much outside light enters the shadow; the same is true for the outer part of Earth’s shadow.) The inner part of the shadow, known as the umbra, is much darker because Earth blocks additional sunlight from entering the umbra.

At 6:36 p.m. PST (9:36 p.m. EST) on January 20, the edge of the Moon will begin entering the penumbra. The Moon will dim very slightly for the next 57 minutes as it moves deeper into the penumbra. Because this part of Earth’s shadow is not fully dark, you may notice only some dim shading (if anything at all) on the Moon near the end of this part of the eclipse.

Graphic showing the positions of the Moon, Earth and Sun during a partial lunar eclipse

During a total lunar eclipse, the Moon first enters into the penumbra, or the outer part of Earth's shadow, where the shadow is still penetrated by some sunlight. Credit: NASA | + Enlarge image

At 7:33 p.m. PST (10:33 p.m. EST), the edge of the Moon will begin entering the umbra. As the Moon moves into the darker shadow, significant darkening of the Moon will be noticeable. Some say that during this part of the eclipse, the Moon looks as if it has had a bite taken out of it. That “bite” gets bigger and bigger as the Moon moves deeper into the shadow.

The Moon as seen during a partial lunar eclipse

As the Moon starts to enter into the umbra, the inner and darker part of Earth's shadow, it appears as if a bite has been taken out of the Moon. This "bite" will grow until the Moon has entered fully into the umbra. Credit: NASA | + Enlarge image

At 8:41 p.m. PST (11:41 p.m. EST), the Moon will be completely inside the umbra, marking the beginning of the total lunar eclipse. The moment of greatest eclipse, when the Moon is halfway through the umbra, occurs at 9:12 p.m. PST (12:12 a.m. EST).

Graphic showing the Moon inside the umbra

The total lunar eclipse starts once the moon is completely inside the umbra. And the moment of greatest eclipse happens with the Moon is halfway through the umbra as shown in this graphic. Credit: NASA | + Enlarge image

As the Moon moves completely into the umbra, something interesting happens: The Moon begins to turn reddish-orange. The reason for this phenomenon? Earth’s atmosphere. As sunlight passes through it, the small molecules that make up our atmosphere scatter blue light, which is why the sky appears blue. This leaves behind mostly red light that bends, or refracts, into Earth’s shadow. We can see the red light during an eclipse as it falls onto the Moon in Earth’s shadow. This same effect is what gives sunrises and sunsets a reddish-orange color.

The Moon as seen during a total lunar eclipse at the point of greatest eclipse

As the Moon moves completely into the umbra, it turns a reddish-orange color. Credit: NASA | + Enlarge image

A variety of factors affect the appearance of the Moon during a total lunar eclipse. Clouds, dust, ash, photochemical droplets and organic material in the atmosphere can change how much light is refracted into the umbra. Additionally, the January 2019 lunar eclipse takes place when the full moon is at or near the closest point in its orbit to Earth – a time popularly known as a supermoon. This means the Moon is deeper inside the umbra shadow and therefore may appear darker. The potential for variation provides a great opportunity for students to observe and classify the lunar eclipse based on its brightness. Details can be found in the “Teach It” section below.

At 9:43 p.m. PST (12:43 a.m. EST), the edge of the Moon will begin exiting the umbra and moving into the opposite side of the penumbra. This marks the end of the total lunar eclipse.

At 10:50 p.m. PST (1:50 a.m. EST), the Moon will be completely outside the umbra. It will continue moving out of the penumbra until the eclipse ends at 11:48 p.m (2:48 a.m. EST).

What if it’s cloudy where you live? Winter eclipses always bring with them the risk of poor viewing conditions. If your view of the Moon is obscured by the weather, explore options for watching the eclipse online, such as the Time and Date live stream.

Why It’s Important

Lunar eclipses have long played an important role in understanding Earth and its motions in space.

In ancient Greece, Aristotle noted that the shadows on the Moon during lunar eclipses were round, regardless of where an observer saw them. He realized that only if Earth were a spheroid would its shadows be round – a revelation that he and others had many centuries before the first ships sailed around the world.

Earth wobbles on its axis like a spinning top that’s about to fall over, a phenomenon called precession. Earth completes one wobble, or precession cycle, over the course of 26,000 years. Greek astronomer Hipparchus made this discovery by comparing the position of stars relative to the Sun during a lunar eclipse to those recorded hundreds of years earlier. A lunar eclipse allowed him to see the stars and know exactly where the Sun was for comparison – directly opposite the Moon. If Earth didn’t wobble, the stars would appear to be in the same place they were hundreds of years earlier. When Hipparchus saw that the stars’ positions had indeed moved, he knew that Earth must wobble on its axis!

Lunar eclipses are also used for modern-day science investigations. Astronomers have used ancient eclipse records and compared them with computer simulations. These comparisons helped scientists determine the rate at which Earth’s rotation is slowing.

Teach It

Ask students to observe the lunar eclipse and evaluate the Moon’s brightness using the Danjon Scale of Lunar Eclipse Brightness. The Danjon scale illustrates the range of colors and brightness the Moon can take on during a total lunar eclipse, and it’s a tool observers can use to characterize the appearance of an eclipse. View the lesson guide below. After the eclipse, have students compare and justify their evaluations of the eclipse.

Use these standards-aligned lessons and related activities to get your students excited about the eclipse, Moon phases and Moon observations:

TAGS: Lunar Eclipse, Moon, Teachers, Educators, K-12 Education, Astronomy

  • Lyle Tavernier
READ MORE

This illustration shows the position of NASA's Voyager 1 and Voyager 2 probes, outside of the heliosphere, a protective bubble created by the Sun that extends well past the orbit of Pluto.

In the News

The Voyager 2 spacecraft, launched in 1977, has reached interstellar space, a region beyond the heliosphere – the protective bubble of particles and magnetic fields created by the Sun – where the only other human-made object is its twin, Voyager 1.

The achievement means new opportunities for scientists to study this mysterious region. And for educators, it’s a chance to get students exploring the scale and anatomy of our solar system, plus the engineering and math required for such an epic journey.

How They Did It

Launched just 16 days apart, Voyager 1 and Voyager 2 were designed to take advantage of a rare alignment of the outer planets that only occurs once every 176 years. Their trajectory took them by the outer planets, where they captured never-before-seen images. They were also able to steal a little momentum from Jupiter and Saturn that helped send them on a path toward interstellar space. This “gravity assist” gave the spacecraft a velocity boost without expending any fuel. Though both spacecraft were destined for interstellar space, they followed slightly different trajectories.

Illustration of the trajectories of Voyager 1 and 2

An illustration of the trajectories of Voyager 1 and Voyager 2. Image credit: NASA/JPL-Caltech | + Expand image

Voyager 1 followed a path that enabled it to fly by Jupiter in 1979, discovering the gas giant’s rings. It continued on for a 1980 close encounter with Saturn’s moon Titan before a gravity assist from Saturn hurled it above the plane of the solar system and out toward interstellar space. After Voyager 2 visited Jupiter in 1979 and Saturn in 1981, it continued on to encounter Uranus in 1986, where it obtained another assist. Its last planetary visit before heading out of the solar system was Neptune in 1989, where the gas giant’s gravity sent the probe in a southward direction toward interstellar space. Since the end of its prime mission at Neptune, Voyager 2 has been using its onboard instruments to continue sensing the environment around it, communicating data back to scientists on Earth. It was this data that scientists used to determine Voyager 2 had entered interstellar space.

How We Know

Interstellar space, the region between the stars, is beyond the influence of the solar wind, charged particles emanating from the Sun, and before the influence of the stellar wind of another star. One hint that Voyager 2 was nearing interstellar space came in late August when the Cosmic Ray Subsystem, an instrument that measures cosmic rays coming from the Sun and galactic cosmic rays coming from outside our solar system, measured an increase in galactic cosmic rays hitting the spacecraft. Then on November 5, the instrument detected a sharp decrease in high energy particles from the Sun. That downward trend continued over the following weeks.

The data from the cosmic ray instrument provided strong evidence that Voyager 2 had entered interstellar space because its twin had returned similar data when it crossed the boundary of the heliosheath. But the most compelling evidence came from its Plasma Science Experiment – an instrument that had stopped working on Voyager 1 in 1980. Until recently, the space surrounding Voyager 2 was filled mostly with plasma flowing out from our Sun. This outflow, called the solar wind, creates a bubble, the heliosphere, that envelopes all the planets in our solar system. Voyager 2’s Plasma Science Experiment can detect the speed, density, temperature, pressure and flux of that solar wind. On the same day that the spacecraft’s cosmic ray instrument detected a steep decline in the number of solar energetic particles, the plasma science instrument observed a decline in the speed of the solar wind. Since that date, the plasma instrument has observed no solar wind flow in the environment around Voyager 2, which makes mission scientists confident the probe has entered interstellar space.

graph showing data from the cosmic ray and plasma science instruments on Voyager 2

This animated graph shows data returned from Voyager 2's cosmic ray and plasma science instruments, which provided the evidence that the spacecraft had entered interstellar space. Image credit: NASA/JPL-Caltech/GSFC | + Expand image

Though the spacecraft have left the heliosphere, Voyager 1 and Voyager 2 have not yet left the solar system, and won't be leaving anytime soon. The boundary of the solar system is considered to be beyond the outer edge of the Oort Cloud, a collection of small objects that are still under the influence of the Sun's gravity. The width of the Oort Cloud is not known precisely, but it is estimated to begin at about 1,000 astronomical units from the Sun and extend to about 100,000 AU. (One astronomical unit, or AU, is the distance from the Sun to Earth.) It will take about 300 years for Voyager 2 to reach the inner edge of the Oort Cloud and possibly 30,000 years to fly beyond it. By that time, both Voyager spacecraft will be completely out of the hydrazine fuel used to point them toward Earth (to send and receive data) and their power sources will have decayed beyond their usable lifetime.

Why It’s Important

Since the Voyager spacecraft launched more than 40 years ago, no other NASA missions have encountered as many planets (some of which had never been visited) and continued making science observations from such great distances. Other spacecraft, such as New Horizons and Pioneer 10 and 11, will eventually make it to interstellar space, but we will have no data from them to confirm their arrival or explore the region because their instruments already have or will have shut off by then.

Watch on YouTube

Interstellar space is a region that’s still mysterious because until 2012, when Voyager 1 arrived there, no spacecraft had visited it. Now, data from Voyager 2 will help add to scientists’ growing understanding of the region. Scientists are hoping to continue using Voyager 2’s plasma science instrument to study the properties of the ionized gases, or plasma, that exist in the interstellar medium by making direct measurements of the plasma density and temperature. This new data may shed more light on the evolution of our solar neighborhood and will most certainly provide a window into the exciting unexplored region of interstellar space, improving our understanding of space and our place in it.

As power wanes on Voyager 2, scientists will have to make tough choices about which instruments to keep turned on. Further complicating the situation is the freezing cold temperature at which the spacecraft is currently operating – perilously close to the freezing point of its hydrazine fuel. But for as long as both Voyager spacecraft are able to maintain power and communication, we will continue to learn about the uncharted territory of interstellar space.

Teach It

Use these standards-aligned lessons and related activities to get students doing math and science with a real-world (and space!) connection.

Explore More

TAGS: Teachers, Educators, Science, Engineering, Technology, Solar System, Voyager, Spacecraft, Educator Resources, Lessons, Activities

  • Ota Lutz
READ MORE

Illustration of InSight landing on Mars

Tom Hoffman, InSight Project Manager, NASA JPL, left, and Sue Smrekar, InSight deputy principal investigator, NASA JPL, react after receiving confirmation InSight is safe on the surface of Mars

This is the first image taken by NASA's InSight lander on the surface of Mars.

The Instrument Deployment Camera (IDC), located on the robotic arm of NASA's InSight lander, took this picture of the Martian surface on Nov. 26

UPDATE: Nov. 27, 2018 – The InSight spacecraft successfully touched down on Mars just before noon on Nov. 26, 2018, marking the eighth time NASA has succeeded in landing a spacecraft on the Red Planet. This story has been updated to reflect the current mission status. For more mission updates, follow along on the InSight Mission Blog, JPL News, as well as Facebook and Twitter (@NASAInSight, @NASAJPL and @NASA).


NASA's newest Mars mission, the InSight lander, touched down on the Red Planet just before noon PST on Nov. 26. But there's more work ahead before the mission can get a look into the inner workings of Mars. Get your classroom ready to partake in all the excitement of NASA’s InSight mission with this educator game plan. We’ve got everything you need to engage students in NASA's ongoing exploration of Mars!

Day Before Landing

Landing Day (Nov. 26)

Next Day

  • Review the Teachable Moment to find out what needs to happen before InSight’s science operations can begin. Then create an instructional plan with these lessons, activities and resources that get students engaged in the science and engineering behind the mission.
  • Check out InSight’s first images from Mars, here. (This is also where you can find raw images from InSight throughout the life of the mission.)

Over the Next Month


Explore More

Follow Along

Resources and Activities

Feature Stories and Podcasts

Websites and Interactives

TAGS: InSight, Mars Landing, Educators, K-12, Elementary School, Middle School, High School, Lessons and Activities, Educator Resources, Mars

  • NASA/JPL Edu
READ MORE

Image showing the difference in size and brightness between a full moon at apogee and a full moon at perigee, also called a "supermoon"

The term “supermoon” has been popping up a lot in the news and on social media over the past few years. But what are supermoons, why do they occur and how can they be used as an educational tool. Plus, are they really that super?

There’s a good chance you’ll hear even more about supermoons in the new year. There will be two supermoons in a row in January 2018! Now is a great time to learn about these celestial events and get students exploring more about Earth’s only natural satellite.

Moon and Supermoon Lessons from NASA/JPL Edu

Lessons About the Moon

Explore our collection of standards-aligned lessons for grades 1-12.

How it Works

As the Moon orbits Earth, it goes through phases, which are determined by its position relative to Earth and the Sun. When the Moon lines up on the opposite side of Earth from the Sun, we see a full moon. The new moon phase occurs when the Moon and the Sun are lined up on the same side of Earth.

The Moon doesn’t orbit in a perfect circle. Instead, it travels in an ellipse that brings the Moon closer to and farther from Earth in its orbit. The farthest point in this ellipse is called the apogee and is about 405,500 kilometers from Earth on average. Its closest point is the perigee, which is an average distance of about 363,300 kilometers from Earth. During every 27-day orbit around Earth, the Moon reaches both its apogee and perigee.

Full moons can occur at any point along the Moon’s elliptical path, but when a full moon occurs at or near the perigee, it looks slightly larger and brighter than a typical full moon. That’s what the term “supermoon" refers to.

What makes a supermoon super? Watch this short animation to find out. Credit: NASA/JPL-Caltech

Because supermoon is not an official astronomical term, there is no definition about just how close to perigee the full moon has to be in order to be called “super." Generally, supermoon is used to refer to a full moon 90 percent or closer to perigee. (When the term supermoon was originally coined, it was also used to describe a new moon in the same position, but since the new moon isn’t easily visible from Earth, it’s rarely used in that context anymore.)

A more accurate and scientific term is “perigee syzygy.” Syzygy is the alignment of three celestial bodies, in this case the Sun, Moon and Earth. But that doesn’t quite roll off the tongue as easily as supermoon.

Why It’s Important

Moon and Supermoon Lessons from NASA/JPL Edu

Make a Moon Phases Calendar

Use this Moon "decoder wheel" to see where and where to view the Moon all year!

As the largest and brightest object in the night sky, the Moon is a popular focal point for many amateur and professional astronomers pointing their telescopes to the sky, and the source of inspiration for everyone from aspiring space scientists to engineers to artists.

The supermoon is a great opportunity for teachers to connect concepts being taught in the classroom to something students will undoubtedly be hearing about. Students can practice writing skills in a Moon journal, study Moon phases and apply their math skills to observing the supermoon. (Click here for related activities from JPL’s Education Office.)

Incorrect and misleading information about the Moon (and supermoons) can lead to confusion and frustration. It’s important to help students understand what to expect and be able to identify inaccurate info.

What to Expect

Size

As with anything that moves closer to the person viewing it, the supermoon will appear bigger than an average full moon. At its largest, it can appear 14% larger in diameter than the smallest full moon. Keep in mind that a 14% increase in the apparent size of something that can be covered with a fingernail on an outstretched arm won’t seem significantly bigger. Unlike side-by-side comparisons made in science and everyday life, students will not have seen the full moon for at least 30 days, and won’t see another for at least 30 more days. Comparing a supermoon with a typical full moon from memory is very difficult.

A nearly full Moon sets as the space shuttle Discovery sits atop Launch pad 39A at the Kennedy Space Center in Cape Canaveral, Florida, Wednesday, March 11, 2009. Photo Credit: (NASA/Bill Ingalls

While they make for great photographs, images like this one that rely on a special photographic technique aren't an accurate representation of what the supermoon will look like to the naked eye. Credit: NASA/Bill Ingalls | Full image and caption on Flickr

Graphic showing the position of the moon at apogee and perigee

A supermoon looks bigger than a "micromoon" (when the full moon is at apogee) because it's about 40,000 kilometers closer to Earth on average. Credit: NASA/JPL-Caltech

Graphic showing the position of the moon at apogee and perigee

It's nearly impossible to compare the apparent size of the supermoon with a micromoon from memory, but when seen side-by-side as in this graphic, it becomes clear. Credit: NASA/JPL-Caltech

Leading up to a supermoon, there are often misleading images on popular media. A technique that involves using a long telephoto lens to take photographs of the Moon next to buildings or other objects makes the Moon look huge compared with its surroundings. This effect can make for great photographs, but it has nothing to do with the supermoon. In fact, these photos can be taken during any Moon phase, but they will likely be used in stories promoting the supermoon.

There are also images that have been edited to inaccurately dramatize the size of the supermoon. Both of these can lead students, and adults, taking pictures with their cell phone to think that they’ve done something wrong or just aren’t cut out for observing the sky, which isn’t true!

Your students may have noticed that when they see a full moon low on the horizon, it appears huge and then seems to shrink as it rises into the night sky. This can happen during any full moon. Known as the Moon Illusion, it has nothing to do with a supermoon. In fact, scientists still aren’t sure what causes the Moon Illusion.

Brightness

The full moon is bright and the supermoon is even brighter! Sunlight reflecting off the Moon during its full phase is bright enough to cast shadows on the ground. During a supermoon, that brightness can increase up to 30 percent as a result of the Moon being closer to Earth, a phenomenon explained by the inverse square law. (Introduce students to the inverse square law with this space-related math lesson for 6th- through 8th-graders.) As with the size of the Moon, students may not remember just how bright the last full moon was or easily be able to compare it. Powerful city lights can also diminish how bright a supermoon seems. Viewing it away from bright overhead street lights or outside the city can help viewers appreciate the increase in brightness.

What Not to Expect

A supermoon will not cause extreme flooding, earthquakes, fires, volcanic eruptions, severe weather, nor tsunamis, despite what incorrect and non-scientific speculators might suggest. Encourage your students to be good scientists and research this for themselves.

Teach It

The excitement and buzz surrounding a supermoon is a great opportunity to teach a variety of Moon topics with these lessons from JPL’s Education Office:

  • *NEW* Observing the Moon (Grades K-6) – Students identify the Moon’s location in the sky and record their observations over the course of the moon-phase cycle in a journal.
  • *NEW* Measuring the Supermoon (Grades 5-12) – Students take measurements of the Moon during its full phase over multiple Moon cycles to compare and contrast results.
  • *NEW* Moon Phases Calendar and Calculator – Like a decoder wheel for the Moon, this calendar will show you where and when to see the Moon and every moon phase throughout the year!
  • *NEW* Look at the Moon! Journaling Project – Draw what you see in a Moon Journal and see if you can predict the moon phase that comes next.
  • Moon Phases (Grades 1-6) – Students learn about the phases of the Moon by acting them out. In 30 minutes, they will act out one complete Moon cycle.
  • Whip Up a Moon-Like Crater (Grades 1-6) – Whip up a Moon-like crater with baking ingredients as a demonstration for students.
  • Modeling the Earth-Moon System (Grades 6-8) – Using an assortment of playground and toy balls, students will measure diameter, calculate distance and scale, and build a model of the Earth-Moon system.

Explore More


For the record: This story originally stated a supermoon would be visible in January and February 2018. The two supermoons of 2018 are both in January.

TAGS: Supermoon, Moon Phases, Moon, Earth's Moon, What's Up, Astronomy, K-12, Educators

  • Lyle Tavernier
READ MORE

Update – Aug. 17, 2017: Two new lessons ("Measuring Solar Energy During an Eclipse" and "Modeling the Earth-Moon System") were added to the Teach It section below.


In the News

A satellite image of the Moon's shadow on Earth during a total solar eclipse

The Moon casts a shadow on Earth during a total solar eclipse over Europe in this image taken by a French astronaut on the Mir Space Station. Credit: CNES

This month marks the first time in 38 years that one of nature’s most awe-inspiring sights, a total solar eclipse, will be visible from the continental United States. And unlike the 1979 eclipse, the one on August 21 can be seen from coast to coast – something that hasn’t happened since 1918.

Millions of people are expected to travel to the 14 states that are in the path of totality – where the Moon will completely cover the disk of the Sun – while hundreds of millions more in every other state of the U.S. will be able to see a partial eclipse.

Whether you live in or are traveling to the path of totality, or will be able to step outside and view the partial eclipse from the comfort of your own home or school, the eclipse provides both an inspiring reason to look to the sky and opportunities to engage in scientific observations and discovery.

Animation of the Aug. 21, 2017 eclipse – Pi in the Sky 4 math problem

Teach It

Use these standards-aligned lessons and related activities to get your students excited about the eclipse and the science that will be conducted during the eclipse.

› Get started!

How it Works

Eclipses occur as the result of an alignment between the Sun, the Moon and Earth. Solar eclipses can only happen during the new moon phase, when the Moon’s orbit brings it between Earth and the Sun. At this time, the shadow cast by the moon could land on Earth, resulting in an eclipse. But most of the time, because the moon’s orbit is slightly titled, the moon’s shadow falls above or below Earth.

The time period when the Moon, Earth and the Sun are lined up and on the same plane is called an eclipse season. Eclipse seasons last about 34 days and occur just shy of every six months. A new moon during an eclipse season will cause the Moon’s shadow to fall on Earth, creating a solar eclipse.

graphic showing eclipse seasons
An eclipse season is the time period when the Moon, Earth and the Sun are lined up on the same plane. A new moon during an eclipse season will cause the Moon's shadow to fall on Earth, creating a solar eclipse. Image credit: NASA/JPL-Caltech

In addition to the proper alignment required for an eclipse, the distance between Earth, the Moon and the Sun also plays an important role. Even though the Moon is much smaller than the Sun (about 400 times smaller in diameter), the Sun and Moon appear about the same size from Earth because the Sun is about 400 times farther away than the Moon. If the Moon were farther from Earth, it would appear smaller and not cover the disk of the Sun. Similarly, if the Sun were closer to Earth, it would appear larger and the Moon would not completely cover it.

Why It’s Important

Total solar eclipses provide a unique opportunity for scientists to study the Sun and Earth from land, air and space, and allow the public to engage in citizen science!

Total eclipse image taken March 20, 2015 in Svalbard, Norway. Credit: S. Habbal, M. Druckmüller and P. Aniol

The sun's outer atmosphere (corona) and thin lower atmosphere (chromosphere) can be seen streaming out from the covered disk of the sun during a solar eclipse on March 20, 2015. Credit: S. Habbal, M. Druckmüller and P. Aniol

On a typical day, the bright surface of the Sun, called the photosphere, is the only part of the Sun we can see. During a total solar eclipse, the photosphere is completely blocked by the Moon, leaving the outer atmosphere of the Sun (corona) and the thin lower atmosphere (chromosphere) visible. Studying these regions of the Sun’s atmosphere can help scientists understand solar radiation, why the corona is hotter than the photosphere, and the process by which the Sun sends a steady stream of material and radiation into space.

Scientists measure incoming solar radiation on Earth, also known as insolation, to better understand Earth’s radiation budget – the energy emitted, reflected and absorbed by Earth. Just as clouds block sunlight and reduce insolation, the eclipse will block sunlight, providing a great opportunity to study how increased cloud cover can impact weather and climate. (Learn more about insolation during the 2017 eclipse here.)

Citizen scientists can get involved in collecting data and participating in the scientific process, too, through NASA’s Global Learning and Observations to Benefit the Environment, or GLOBE, program. During the eclipse, citizen scientists in the path of totality and in partial eclipse areas can measure temperature and cloud cover data and report it using the GLOBE Observer app to help further the study of how eclipses affect Earth’s atmosphere.

You can learn more about the many ways scientists are using the eclipse to improve their understanding of Earth, the Moon and the Sun here.

How to View It

Important! Do not look directly at the Sun or view the partial eclipse without certified eclipse glasses or a solar filter. For more information on safe eclipse viewing, visit the NASA Eclipse website.

When following proper safety guidelines, witnessing an eclipse is an unparalleled experience. Many “eclipse chasers” have been known to travel the world to see total eclipses.

The start time of the partial eclipse, when the edge of the Moon first crosses in front of the disk of the Sun, will depend on your location. You can click on your location in this interactive eclipse map to create a pin, which will show you the start and end time for the eclipse in Universal Time. (To convert from Universal Time to your local time, subtract four hours for EDT, five hours for CDT, six hours for MDT, or seven hours for PDT.) Clicking on your location pin will also show you the percent of Sun that will be eclipsed in your area if you’re outside the path of totality.

Aug 2017 eclipse map
This graphic shows the path of the Moon and Sun across the US during the Aug. 21, 2017 eclipse. The gray line represents the path of totality, while the Sun and Moon graphics flowing from top to bottom represent the percent of coverage for areas outside the path of totality. Image credit: NASA

If you are inside the approximately 70-mile-wide strip known as the path of totality, where the shadow of the Moon, or umbra, will fall on Earth, the total eclipse will be visible starting about an hour to 1.5 hours after the partial eclipse begins.

Only when the eclipse is at totality – and the viewer is in the path of totality – can eclipse glasses be removed. Look at the eclipse for anywhere from a few seconds to more than 2.5 minutes to see the Sun’s corona and chromosphere, as well as the darkened near side of the Moon facing Earth. As before, your viewing location during the eclipse will determine how long you can see the eclipse in totality.

graphic showing when its safe to remove your eclipse glasses if you are in the path of totality
Viewers should wear eclipse glasses or use a pinhole camera for the entirety of the partial eclipse. Those in the path of totality can remove their glasses only when the eclipse is in totality, which may last from a few seconds to more than 2.5 minutes depending on your location. Image credit: NASA

After totality ends, a partial eclipse will continue for an hour to 1.5 hours, ending when the edge of the Moon moves off of the disk of the Sun. Remember, wear eclipse glasses or use a pinhole camera for the entirety of the partial eclipse. Do not directly view the partial eclipse.

Animation of the pinhole camera project from NASA-JPL Education

Make a Pinhole Camera

Find out how to make your very own pinhole camera to safely view the eclipse in action.

› Get started!

To get an idea of what the eclipse will look like from your location and explore the positions of the Moon, Sun and Earth throughout the eclipse, see this interactive simulation.

For more information about the start of the partial eclipse, the start and duration of totality, and the percentage of the Sun eclipsed outside the path of totality, find your location on this interactive eclipse map.

NASA Television will host a live broadcast beginning at 9 a.m. PDT on Aug. 21 showing the path of totality and featuring views from agency research aircraft, high-altitude balloons, satellites and specially-modified telescopes. Find out how and where to watch, here

Teach It

Use these standards-aligned lessons and related activities to get your students excited about the eclipse and the science that will be conducted during the eclipse.

  • Epic Eclipse – Students use the mathematical constant pi to approximate the area of land covered by the Moon’s shadow during the eclipse.
  • Pinhole Camera – Learn how to make your very own pinhole camera to safely see a solar eclipse in action from anywhere the eclipse is visible, partial or full!
  • Moon Phases - Students learn about the phases of the Moon by acting them out. In 30 minutes, they will act out one complete, 30-day, Moon cycle.
  • NEW! Measuring Solar Energy During an Eclipse – Students use mobile devices to measure the impact a solar eclipse has on the energy received at Earth’s surface.
  • NEW! Modeling the Earth-Moon System – Students learn about scale models and distance by creating a classroom-size Earth-Moon system.
  • NASA GLOBE Observer – Students can become citizen scientists and collect data for NASA’s GLOBE Program using this app available for iOS and Android devices (eclipse update available starting August 18, 2017).

Explore More

TAGS: Eclipse, Solar Eclipse, Science, Pinhole Camera, K-12, Students, Educators

  • Lyle Tavernier
READ MORE

Mars Exploration Educator Workshop at JPL in Pasadena, California

You may already know about the online lessons and activities available from the Education Office at NASA’s Jet Propulsion Laboratory. (If not, check them out here.) But did you know that JPL and all NASA centers nationwide have an education specialist focused specifically on professional development for teachers – including how to use those online lessons in the classroom? It’s part of a program called the Educator Professional Development Collaborative, or EPDC, a free service for any K-12 classroom educator in the country.

During the 2016-2017 school year, the EPDC at JPL participated in more than 120 school events focusing on teacher professional development, including implementing Next Generation Science Standards, helping schools initiate science fairs and community events, and assisting with student presentations. That number includes more than 5,000 teachers and students who worked with the EPDC on initiatives designed to get NASA science and engineering into the hands of future space explorers.

As the EPDC coordinator for JPL, I schedule and help shape these events for schools and teacher preparation programs in Southern California, coordinating and consulting with educators to help them bring standards-aligned NASA STEM content into the classroom. My work and the ways in which I support educators can take many shapes. Teachers often ask me to visit during regularly scheduled professional development or early dismissal days. These represent the most common events, wherein schools choose topics or themes to focus on and the time is spent practicing hands-on activities for students. This year, teachers and schools have come up with new and especially creative formats, scheduling onsite tours and workshops at JPL for their teaching staff, or even having NASA scientists dial in to their classrooms to talk with students.

JPL's EPDC Coordinator, Brandon Rodriguez, leads an educator workshop

The EPDC helps educators bring NASA STEM content into the classroom through workshops, webinars and more. Image credit: NASA/JPL-Caltech

One school in particular took its program to another level with the help of the EPDC at JPL by building a grade-wide, multi-week mission to Mars. For their annual cross-curricular project, teachers at the San Fernando Institute for Applied Media in Los Angeles were hoping to create a more expansive offering that incorporated the Next Generation Science Standards, or NGSS. I met with teachers over several days to suggest activities and strategies that would meet their goal of getting students engaged in space science across numerous subject areas.

Students were tasked to explore the history of space exploration and the pioneers who led the charge. Using NASA lessons like those found on the JPL Education website, the students built conceptual models of Mars missions, including calculating the budget associated with such a trek. They then constructed robotic rovers capable of traversing a simulated Martian surface and the tools needed to interact with the local environment.

But what really set the program apart was its focus on collaboration. The school thought beyond the content of the lesson itself, making NASA badges for each student and having them refer to each other as “doctor.” Students designed their own team name and logo. They also used Web-based apps to capture pictures and videos of their work during each class and posted them online, allowing groups to digitally follow the revisions and lessons learned by their classmates. As a year-end culminating event, students presented their work in front of their classmates, and I was fortunate to be in attendance to celebrate the hard work of the teachers and students.

Mars mission project at the San Fernando Institute for Applied Media in Los Angeles
Working with the EPDC at JPL, educators at the San Fernando Institute for Applied Media in Los Angeles designed a multi-week project that had students create a mission to Mars. The project included testing samples of "Martian soil" for signs of microbial life (top left) and creating a hydraulic arm to interact with a simulated Mars surface (top center). Image credit: NASA/JPL-Caltech

In Chicago, Burley Elementary staff reached out to me via our distance learning program to revise an existing lesson for an elementary-level special education audience. Working together, the staff and I created a project using JPL’s NGSS-aligned Touchdown lesson to demonstrate the value of the engineering design process, revision and collaboration.

Students at Burley Elementary School in Chicago work on JPL's Touchdown lesson

Students at Burley Elementry in Chicago design lunar landers as part of JPL's NGSS-aligned Touchdown lesson. Burley Elementary teachers worked with the EPDC at JPL to modify the lesson for their students. Image credit: NASA/JPL-Caltech

At the onset of the project, students were tasked to develop a spacecraft capable of landing astronauts safely on a distant planet. Each day concluded with students testing their designs and documenting the changes they made. Again, student groups captured their revisions digitally, praising others and crediting them for ideas that influenced their work. As a result, student groups learned the value of collaboration over competition.

From the educator’s point of view, the evolution of students’ designs also provided a narrative for assessment: Each student group had three designs constructed along with written and recorded diaries discussing the changes they made. The rubric included analysis of their own trials as well as the peer designs that shaped their future trials, creating in-depth student storyboards.

In both of these cases, the educators’ creativity, expertise and interest in creating novel opportunities for professional development and student engagement helped elevate the quality of the EPDC’s offerings and expand the scope of JPL’s STEM lessons. I’ve since been able to incorporate the ideas and strategies created during these projects into other workshops and lessons, sharing them with an even wider group of educators and classrooms. While not every collaboration between the EPDC and educators need be multi-day endeavors, even when done on a small scale, they can have a big impact.

Looking to bring NASA science into your classroom or need help customizing lessons for your students and staff? The EPDC at JPL serves educators in the greater Los Angeles area. Contact JPL education specialist Brandon Rodriguez at brandon.rodriguez@jpl.nasa.gov. Note: Due to the popularity of EPDC programs, JPL may not be able to fulfill all requests.

Outside the Southern California area? The EPDC operates in all 50 states. To find an EPDC specialist near you, see https://www.txstate-epdc.net/nasa-centers/.

The Educator Professional Development Collaborative (EPDC) is managed by Texas State University as part of the NASA Office of Education. A free service for K-12 educators nationwide, the EPDC connects educators with the classroom tools and resources they need to foster students’ passion for careers in STEM and produce the next generation of scientists and engineers.

TAGS: Professional Development, Workshops, Teachers, Educators, STEM, Science, Engineering, EPDC

  • Brandon Rodriguez
READ MORE

Amelito Enriquez with a student

Growing up in the Philippines, Amelito Enriquez knew nothing of high expectations. He wasn't expected to be the first student in his high school's history to go to a university - especially for a degree in engineering. He wasn't expected to receive the highest grade point average in the engineering department's history -- he wasn't even expected to be more than a "C" student. He wasn't expected to continue his education in the United States and become one of the country's most inspirational educators. And he wasn't expected to receive a presidential honor for his career-long commitment to helping underprivileged youth succeed.

"I like proving people wrong," said Enriquez, a professor of engineering and mathematics at Cañada College in Redwood City, Calif., who recently received the Presidential Award for Excellence in Science, Mathematics, and Engineering Mentoring. Over the years, he certainly has.

It was sixteen years ago that Enriquez first discovered his calling. "After grad school, I started applying for teaching jobs at four-year institutions," said Enriquez.  "Being from the Philippines, I didn't know about community colleges. When I realized what they were, I thought, this is me. I knew I could really make a difference at a community college." Turning down multiple offers at four-year institutions, Enriquez began his career at Cañada College in 1995 and never looked back - except when his mentor periodically phoned him to see if he'd reconsider the university route. He wouldn't.

Enriquez's students start very much like he did. They come from disadvantaged backgrounds where expectations are at a minimum, if not nonexistent. "The students I work with score high enough to be accepted into community college," said Enriquez. "But their math and science scores are below average. A lot of them are at the high school algebra level."

Inspiring these students to go from barely getting by to reaching way beyond anyone's expectations is Enriquez's passion, and he achieves it through a variety of grants and programs. One such program - which Enriquez says has given his students the rare opportunity to get hands-on research experience - is NASA's Curriculum Improvements Partnership Award for the Integration of Research, or CIPAIR. CIPAIR brings minority college students and their teachers to NASA centers for research projects aimed at improving curriculums for future generations of students. Through their experiences with the NASA program, Enriquez and his students have so far contributed to more than a dozen curriculum improvements at Cañada College, adding activities and lessons on launching satellites, designing a Mars rover and more.

"As a result of CIPAIR, our students are more confident about succeeding in a four-year school," said Enriquez. "And almost all of them are now considering advanced degrees." 

In early December, Enriquez flew to Washington D.C. to accept his mentorship award from President Barack Obama. While Enriquez considers it a great honor to be recognized for his hard work, he says that in a way, he already feels rewarded. "As part of the application process, my students had to write letters about why I should be recognized," he said. "A lot of students wrote in. Just reading those letters was really more of an honor than I could ask for."

It's also proof that inspiration goes a long way. "That's the best thing a teacher can give to a student," said Enriquez. "It's inspiration. It's to get kids to do something bigger than themselves."

TAGS: Community College, Educators, Fellowships, Cañada College

  • Kim Orr
READ MORE

In summer 2011, more than 5,000 students and 600 educators took part in the NASA Jet Propulsion Laboratory's Summer of Innovation program.

TAGS: Summer of Innovation, Educators, Informal Education

  • NASA/JPL Edu
READ MORE