In the News

A pair of Earth orbiters designed to keep track of the planet's water resources and evolving water cycle is scheduled to launch this month – no earlier than May 22, 2018. The Gravity Recovery and Climate Experiment Follow-On mission, or GRACE-FO, will pick up where its predecessor, GRACE, left off when it completed its 15-year mission in 2017. By measuring changes in Earth’s gravity, the mission will track water movement around the globe, identifying risks such as droughts and floods and revealing how land ice and sea level are evolving. The GRACE-FO mission is a great way to get students asking, and answering, questions about how we know what we know about some of the major components of Earth’s water cycle: ice sheets, glaciers, sea level, and ground-water resources.

How It Works

animated heat map of co2 concentrations on Earth

Earth Science Lessons

Explore a collection of standards-aligned lessons for grades K-12 all about our home planet.

The GRACE-FO mission, a partnership between NASA and the German Research Centre for Geosciences (GFZ), will measure small variations in Earth’s mass to track how and where water is moving across the planet. This is no easy task, as water can be solid, liquid or gas; it can be in plain sight (as in a lake or glacier); it can be in the atmosphere or hidden underground; and it’s always on the move. But one thing all this water has in common, regardless of what state of matter it is in or where it is located, is mass.

Everything that has mass exerts a gravitational force. It is this gravitational force that GRACE-FO measures to track the whereabouts of water on Earth. Most of Earth's gravitational force, more than 99 percent, does not change from one month to the next because it is exerted by Earth’s solid surface and interior. GRACE-FO is sensitive enough to measure the tiny amount that does change – mostly as a result of the movement of water within the Earth system.

GRACE-FO works by flying two spacecraft in tandem around Earth – one spacecraft trailing the other at a distance of about 137 miles (220 kilometers). By pointing their microwave ranging instruments at each other, the satellites can measure tiny changes in the distance between them – within one micron (the diameter of a blood cell) – caused by changes in Earth’s gravitational field. Scientists can then use those measurements to create a map of Earth’s global gravitational field and calculate local mass variations.

As the forward spacecraft travels over a region that has more or less mass than the surrounding areas, such as a mountain or low valley, the gravitational attraction of that mass will cause the spacecraft to speed up or slow down, slightly increasing or decreasing the relative distance between it and its trailing companion. As a result of this effect, GRACE-FO will be able to track water as it moves into or out of a region, changing the region’s mass and, therefore, its gravity. In fact, the previous GRACE spacecraft measured a weakening gravity field over several years in Central California, enabling an estimate of aquifer depletion, and in Greenland, providing accurate measurements of ice melt over more than 15 years.

Find out more about how the mission works in the video below, from JPL's "Crazy Engineering" video series:

Why It’s Important

Tracking changes in our water resources and the water cycle is important for everyone. The water cycle is one of the fundamental processes on Earth that sustains life and shapes our planet, moving water between Earth's oceans, atmosphere and land. Over thousands of years, we have developed our civilizations around that cycle, placing cities and agriculture near rivers and the sea, building reservoirs and canals to bring water to where it is needed, and drilling wells to pump water from the ground. We depend on this cycle for the water resources that we need, and as those resources change, communities and livelihoods are affected. For example, too much water in an area causes dangerous floods that can destroy property, crops and infrastructure. Too little water causes shortages, which require us to reduce how much water we use. GRACE-FO will provide monthly data that will help us study those precious water resources.

Graphic showing the amount of water in aquifers across Earth as measured by GRACE

A map of groundwater storage trends for Earth's 37 largest aquifers using GRACE data shows depletion and replenishment in millimeters of water per year. Twenty-one aquifers have exceeded sustainability tipping points and are being depleted, and 13 of these are considered significantly distressed, threatening regional water security and resilience. Image credit: NASA/JPL-Caltech

Changes to Earth’s water over multiple years are an important indicator of how Earth is responding in a changing climate. Monitoring changes in ice sheets and glaciers, surface and underground water storage, the amount of water in large lakes and rivers, as well as changes in sea level and ocean currents, provides a global view of how Earth’s water cycle and energy balance are evolving. As our climate changes and our local water resources shift, we need accurate observations and continuous measurements like those from GRACE and GRACE Follow-On to be able to respond and plan.

As a result of the GRACE mission, we have a much more accurate picture of how our global water resources are evolving in both the short and long term. GRACE-FO will continue the legacy of GRACE, yielding up-to-date water and surface mass information and allowing us to identify trends over the coming years.

Teach It

Have students interpret GRACE data for themselves:
Get students learning about global water resources:
Teach students to read, interpret and compare “heat map” representations of Earth science data:

Explore More

Try these related resources for students from NASA's Space Place:

TAGS: Earth Science, Teach, In the News, GRACE, Climate Change, Water, Water Cycle

  • Ota Lutz
READ MORE

Collage of student artwork from the classroom of teacher Lina Khosrovian

The Education Office at NASA’s Jet Propulsion Laboratory is always working to bring exciting scientific content to K-12 classrooms. Educators can access many of these free resources, classroom materials and activities online – and we’re adding more all the time. The inspiration for these products often comes from the work being done at JPL and NASA, but sometimes it’s the teachers we work with whose creative ideas inspire the lessons we share with our community of STEM educators. This blog is an effort to capture those creative ideas and highlight the teachers behind them.


Teacher Lina Khosrovian in her classroom

Ms. Khosrovian teaches third grade at Stonehurst Magnet Elementary in Los Angeles County.

Lina Khosrovian is a first-year teacher at Stonehurst Magnet Elementary, a STEAM magnet school in Los Angeles County. She teaches third-grade students subjects including language arts, math, science and social studies. Ms. Khosrovian recently reached out about how she added her own creative spin to the JPL lesson Art and the Cosmic Connection to have it reflect her multidisciplinary classroom.

What inspires you to teach?

I am in my first year of teaching, and I could not be more driven and excited to teach my students about all the wonders of life. I am a learner myself, and I strive to discover new and moving ways to instill knowledge upon my students.

I consider myself extremely lucky to be teaching at Stonehurst, where we have a passion for teaching STEAM to our students. I especially appreciate the students’ enthusiasm for learning science.

What challenges do you face engaging or addressing the needs of your students?

I have found that the key to effectively and successfully teaching students is to teach what they admire, are curious or fascinated about or have an appreciation for. I always ask my students about their interests and what they would like to learn. This inspires my lessons and tends to each students’ individual interest in learning.

How did you incorporate a JPL Education lesson into your classroom?

Art and the Cosmic Connection Lesson from NASA/JPL Edu

Art and the Cosmic Connection

In this lesson for grades K-12, students use art to describe and recognize the geology on planetary surfaces.

Brandon Rodriguez, an educator professional development specialist at NASA’s Jet Propulsion Laboratory, visited our school and presented a lesson called Art and the Cosmic Connection.

After showing us images of planets, Mr. Rodriguez handed out paper, chalk, crayons and markers, and instructed us to draw our own imaginary planet. Listening to his awe-inspiring lecture, I began to think about the beautiful garden at our school and wondered how I could incorporate it into a similar activity with my students. I decided that I would have my students create their own planet inspired by the school garden.

First, my students and I began to learn about different planets together, discussing the possible history of each unique world. We conversed and wrote about our theories. Then each student drew and wrote about their own, imaginary planet. Some students drew icy planets and said that the ice had melted when the planet was close to the Sun. Other students explained that the uniqueness of their planet was due to the presence of life and water.

With our knowledge, ideas and imagination, we grabbed paper bags to collect soil, sticks, hay, leaves, rocks and other natural items from the garden. Back in the classroom, each student began to construct 3-D versions of their drawings with the materials they collected. Their work was beautifully presented, with soil representing land, leaves representing life, blue paint representing water, and mixtures representing unknown and unique creations – plus some silver paint to make it all more “cosmic.”

How did it help you meet your objectives? How did students react to the lesson?

This lesson allowed my students to engage with the world around them and understand that planets have a uniqueness and a history that is quite remarkable. The lesson gave students a chance to discover more about their own planet and express their connection to it.

I sincerely value the JPL Education lessons, activities and resources, as they are quite beneficial to teachers. Each activity and lesson provides the opportunity for students to learn and wonder. And when you’re inspired to wonder, the possibilities are endless – and so is the fun!


Have a great idea for implementing NASA research in your class or looking to bring NASA science into your classroom? The Educator Professional Development Collaborative, or EPDC, can help. The EPDC at JPL serves educators in the greater Los Angeles area.

Contact JPL education specialist Brandon Rodriguez at brandon.rodriguez@jpl.nasa.gov. Note: Due to the popularity of EPDC programs, JPL may not be able to fulfill all requests.

Outside the Southern California area? The EPDC operates in all 50 states. Find an EPDC specialist near you.

The EPDC is managed by Texas State University as part of the NASA Office of Education. A free service for K-12 educators nationwide, the EPDC connects educators with the classroom tools and resources they need to foster students’ passion for careers in STEM and produce the next generation of scientists and engineers.

TAGS: Art, Language Arts, Earth Science, Classroom Activities, NASA in the Classroom

  • Brandon Rodriguez
READ MORE

Students plot changes in Earth's gravitational field using data from NASA's GRACE mission.

In the Education Office at NASA’s Jet Propulsion Laboratory, we’re always working to bring exciting scientific content to K-12 classrooms. Educators can access many of these free resources, classroom materials and activities online, and we’re adding more all the time. The inspiration for these products often comes from the work being done at JPL and NASA, but sometimes it’s the teachers we work with whose creative ideas inspire the lessons we share with our community of STEM educators. Our new column, Teacher Feature, is an effort to capture those creative ideas and highlight the teachers behind them.


Classroom Activity: Earth Science Data Visualizations – How to Read a Heat Map

Featured Lesson: How to Read a Heat Map

Students learn to read, interpret and compare “heat maps” representing Earth science data.

LoriAnn Pawlik recently shared her NASA-inspired lesson during a professional development workshop hosted by the agency.

LoriAnn teaches STEM to grades K-5 at Penn Elementary School in Prince William County, Virginia, which focuses on students learning English, as well as those with learning disorders and autism. When she recently came across a lesson on the NASA/JPL Edu website, she saw an opportunity to bring real-world NASA data to her students.

How do you use NASA in the classroom?

Using the lesson “How to Read a Heat Map” as a jumping-off point, LoriAnn had her students first dive into the practice of reading and interpreting graphs. From here, she extended the lesson with an exploration of NASA satellites and the data they collect, focusing on the Gravity Recovery And Climate Experiment, or GRACE mission, to tie in with a community science night on water science.

GRACE was launched in 2002 to track changes in the distribution of liquid water, ice and land masses on Earth by measuring changes in the planet’s gravity field every 30 days. Circling Earth 16 times each day, GRACE spent more than 15 years collecting data – all of which is available online – before its science mission ended last October. The mission provided students the perfect context to study climate and water through authentic NASA data.

Students plot changes in Earth's gravitational field using data from NASA's GRACE mission.
Students plot changes in Earth's gravitational field using data from NASA's GRACE mission.
Students plot changes in Earth's gravitational field using data from NASA's GRACE mission.

LoriAnn's students plotted changes in Earth's gravitational field using data from NASA's GRACE mission.

How did students react to the lesson?

LoriAnn set the stage for her students by explaining to them that they would be providing their data to NASA scientists.

“I told them that I was working on a project for a scientist from NASA-JPL and that we needed their help,” she said via email. “By the time I gave them the background and showed a brief GRACE video, they were all in – excited, eager enthusiastic! It helped that each table, or ‘engineering group,’ was responsible for a different U.S. state.”

As a result, students were able to plot the changes in gravitational fields for multiple locations over several years.

What are other ways you use NASA lessons or resources?

By extending the lesson, LoriAnn gave her students a sense of authentic ownership of the data and practice in real scientific analysis. But it wasn’t her first time uniting NASA science with her school curriculum:

“I'd been working with our second-graders on field studies of habitats,” LoriAnn explained. “We observed, journaled and tracked the migration of monarch butterflies, discussed what happened to habitats of living things since Hurricane Harvey and Hurricane Irma were just going through, and then I used the [NASA Mars Exploration website] to have students extend the findings to space habitats.”


Have a great idea for implementing NASA research in your class or looking to bring NASA science into your classroom? The Educator Professional Development Collaborative, or EPDC, can help. The EPDC at JPL serves educators in the greater Los Angeles area. Contact JPL education specialist Brandon Rodriguez at brandon.rodriguez@jpl.nasa.gov. Note: Due to the popularity of EPDC programs, JPL may not be able to fulfill all requests.

Outside the Southern California area? The EPDC operates in all 50 states. Find an EPDC specialist near you.

The EPDC is managed by Texas State University as part of the NASA Office of Education. A free service for K-12 educators nationwide, the EPDC connects educators with the classroom tools and resources they need to foster students’ passion for careers in STEM and produce the next generation of scientists and engineers.

TAGS: Teaching, K-12, NASA in the Classroom, Graphing, Activities, Science, Earth Science, Climate Change

  • Brandon Rodriguez
READ MORE

Adopt the Planet campaign from NASA Earth

In the News

Earth Day, the day set aside each year to celebrate our planet and bring attention to the natural world, is on April 22, 2017. More than one billion people are expected to participate in Earth Day events around the globe that will draw attention to what we know about Earth, how it is changing and how we can be kind to our home planet.

One of the ways that NASA participates – not just on Earth Day, but also year-round – is by collecting and analyzing science data from sensors on Earth and satellites. These data allow us to monitor the health of our planet and better understand how and why it is changing.

Visualizing global data trends – Earth Science – NASA/JPL Education

Earth Day Resources for Educators

Explore our collection of standards-aligned Earth science lessons – plus this new lesson about reading NASA data visualizations and heat maps.

› Explore Earth science lessons from NASA!

This year, to highlight the importance of these data, NASA is inviting people to “adopt” a portion of Earth’s surface and obtain a snapshot of some of the satellite data available for their adopted location. Even though you’ll have no legal or ownership rights to this region, it will be fun to learn about the various types of data available for different locations on Earth. Find out how you can participate.

How It Works

NASA’s fleet of Earth-observing satellites and airborne sensors provides us with data about such vital information as carbon dioxide, carbon monoxide, global land and sea temperature, ice, sea surface salinity, and chlorophyll – just to name a few. The satellites and sensors collect these data over time and from as many perspectives as possible, allowing us to discern trends in the data.

Learn about the fleet of NASA satellites and instruments studying Earth. › Watch NASA's Earth Minute series

A snapshot of data is just one piece of a much larger puzzle because it only gives us an indication of what was happening at the exact moment that data was captured. Even data collected over a year has its limitations because local conditions may ebb and flow over longer time periods. Collecting data about multiple elements of the Earth system over decades or centuries enables us to develop correlation and causation models, powerful indicators of why trends are developing as they are. And using multiple platforms (satellite, aerial, Earth-based) to measure data enables us to validate our data sets.

Why It’s Important

Humans are dependent on a healthy and functioning Earth to survive, which means we need to keep a close eye on all Earth systems and our impacts on those systems. This process of collecting data over time from multiple perspectives, discerning trends and validating the data is crucial to understanding our planet and helping policymakers formulate actions we can take to preserve Earth for future generations.

Earth is a complex, dynamic system we do not fully understand. To learn more about it, NASA, as the agency with access to space, was tasked with launching the first weather satellite back in 1960. Today, NASA uses satellites, aircraft and even an occasional boat to study our planet's air, land and water. It's called "Earth System Science" and we are trying to answer some big questions: How is the global Earth system changing? What causes these changes? How will Earth change in the future? And what we learn benefits society through applications such as weather forecasting, freshwater availability and disaster response. › Watch NASA's Earth Minute series

Teach It

First, introduce students to the kinds of data scientists use to study Earth. Participate in NASA’s Adopt the Planet campaign to receive a snapshot of Earth science data for one patch of Earth. Then encourage students to dig deeper with these standards-aligned lessons:

Explore More

TAGS: Earth Day, Climate Change, Earth Science, Lessons, Activities, K-12, Teaching

  • Ota Lutz
READ MORE

GLOBE Observer App

At museums, people can get involved with NASA science and participate in hands-on learning, and now, thanks to a new app from the agency, they can take the experience with them through citizen science.

The GLOBE Observer app invites people of all ages around the world to contribute to the agency’s Earth-science missions by making their own observations about the planet to complement those made by satellites. Students and others have already been collecting, sharing, and analyzing Earth data on the GLOBE program website for more than 20 years through schools, museums and after-school programs. The app provides a new way for individuals to join in and add to the data sets of more than 100 million measurements.

The GLOBE Observer app will eventually feature a number of citizen-science projects, but the inaugural project, called GLOBE Clouds, will ask users to collect local data that can help scientists interpret satellite observations of clouds – a critical indicator for understanding climate and climate change. No special knowledge is needed to use the app, but participants will probably learn something new! The app walks users through recording sky conditions and cloud types, plus taking photos of what they see. Future projects on the app will let citizen scientists assist with monitoring land-cover and mosquito populations.

Museums and science organizations are getting involved too by setting up accounts that let teams of citizen scientists collect data on their behalf. In fact, in honor of International Science Center and Science Museum Day (November 10, 2016) people are encouraged to register for the app through their local science institutions to join a worldwide experiment.

Get started using GLOBE Observer by downloading the app, available for iOS and Android devices. Find out more during a Facebook Live event on the NASA Earth page on September 12 at 3:30 p.m. PDT that will introduce the project, the missions it supports and answer audience questions.

At a museum, science center, library, camp or other informal education institution? Learn how to put together your own GLOBE Observer team account here, or how you can join the more than 700 organizations participating in NASA’s Museum Alliance here.

TAGS: Citizen Science, Mobile App, Museums, Science Centers, Earth Science

  • Amelia Chapman
READ MORE

Image of Earth

UPDATE - Sept. 13, 2016: Our Earth Science Bulletin Board materials are out of stock. To download and print out the resources, click on the links next to each product.


Climate change is a hot topic and one that's become a key part of science education. Introduce students to NASA's climate-science research and Earth satellites with this free bulletin board from the Educator Resource Center at NASA's Jet Propulsion Laboratory. The set of posters, lithographs and stickers helps visually engage students while teaching them about topics such as sea-level rise, clouds and greenhouse gases. Note:Materials are available on a first-come-first-served basis.

The Earth Science Bulletin Board includes:

Sea-Level Rise Poster

Sea-Level Rise Mini Poster

This poster describes the science behind sea-level rise, who's affected and what NASA is doing to help.

Earth's Carbon is Off Balance Poster

Earth's Carbon is Off Balance Mini Poster

See what NASA scientists are doing to understand if our land and ocean can continue to absorb carbon dioxide at the current rate – and for how long.

NASA JPL Edu Mars Exploration Rovers Spirit and Opportunity lithograph poster

Earth Lithograph

Get fun facts about Earth science on this two-sided lithograph featuring a stunning image of our home planet.

A Wild World of Clouds poster

Wild World of Clouds Poster

This poster illustrates how NASA satellites study clouds from space.


Additional materials may include rulers, stickers and lithographs featuring NASA Earth science missions.

TAGS: Bulletin Board, Back-to-School, Earth Science, Resources, Educator Resource Center

  • NASA/JPL Edu
READ MORE

Animation showing sea level rise since January 1993

In the News

“Sea level rise” – we hear that phrase, but what does it mean, really? How does it affect us? Do I have to be concerned about it in my lifetime? These are all great questions!

Sea level rise is the increasing of the average global sea level. It doesn’t mean that seas are higher by the same amount everywhere. In fact, in some areas, such as the west coast of the US, sea level has actually dropped slightly … for now. But before we get into that, let’s understand the main contributors to sea level rise: 

  1. Melting mountain glaciers - Glaciers are bodies of ice on land that are constantly moving, carving paths through mountains and rock. As glaciers melt, the runoff flows into the oceans, raising their levels.
  2. Melting polar ice caps - Think of our north and south polar regions. At both locations, we have ice on land (“land ice”) and ice floating in the ocean (“sea ice”). Melting sea ice, much like ice cubes melting in a drink, does not affect the level of the oceans. Melting land ice, however, contributes to about one third of sea level rise.
  3. Thermal expansion of water - Consider that our oceans absorb over 90 percent of the heat trapped by greenhouse gasses in Earth’s atmosphere. When water heats up, its molecules become more energetic, causing the water to expand and take up more room, so that accounts for about a third of sea level rise.

Let’s take a closer look at global sea levels. Sea level is not constant everywhere. This is because it can be affected by ocean currents and natural cycles, such as the Pacific Decadal Oscillation, or PDO, a 20- to 30-year cyclical fluctuation in the Pacific Ocean’s surface temperature. Because of the PDO, right now the Eastern Pacific has higher sea levels than usual, while the Western Pacific has lower sea levels than usual. However, the global average of 3 millimeters of sea level rise per year is increasing and the rate that it’s increasing is speeding up. That means that sea level is rising, and it’s rising faster and faster. Take a look at this video for some great visuals and further explanation of how phenomena such as the Gulf Stream affect local sea level heights.


Why It's Important

You may be asking yourself, how do we know sea levels are rising? Well, a couple of ways. First, for the past 23 years we have been using data from several NASA satellites to constantly measure sea surface height around the globe. Data from these ocean altimeters is integrated to refine and calibrate measurements. Additionally, we have tide gauges on Earth to ground-truth (locally validate) our satellite measurements. As for historical data, we use sediment cores -- drillings into Earth that yield the oldest layers on the bottom and the youngest layers on top -- to examine where oceans once reached thousands of years ago.

Locally, folks are making observations – and already seeing the impacts of sea level rise on their communities. Places such as Miami are now experiencing regular flooding in downtown city streets at high tide. The South Pacific island nation of Kiribati saw a 2.6 millimeter rise in sea level between 1992 and 2010. That may not seem like much, but when you consider that the land only sits about 2 meters above sea level, that’s a big deal; some villages have already had to relocate to escape the rising tides. Residents of China's Yellow River delta are swamped by sea level rise of more than 25 centimeters (9 inches) a year. Even NASA is concerned about some of its facilities that are located in low-lying areas.

Besides wiping out dry land, encroaching salt water can pollute our fresh water supplies and damage fresh-water dependent ecosystems. It’s not just fresh water rivers and lakes that are at risk – our aquifers, or natural underground water storage, are at risk of filling with salt water as the ocean encroaches on the land above them.

Clearly, sea level rise is something that is already affecting people and will continue to do so. All three contributors to sea level rise can be attributed to the warming of the Earth system. Warming temperatures cause mountain glaciers and polar ice caps to melt, thereby increasing the volume of water in the oceans. At the same time, our oceans are getting warmer and expanding in volume as a result of this heat (thermal expansion). Since 1880, global sea level has risen 20 centimeters (8 inches); by 2100, it is projected to rise another 30 to 122 centimeters (1 to 4 feet). Watch this video for some illustrations of these facts:


Also check out the Climate Time Machine for Sea Level to see what impact a 1 meter to 6 meter rise in sea level will have on the coastal US and other areas of the world.

If we can control our contributions to the rise in greenhouse gases in Earth’s atmosphere, we can perhaps level out the warming of the Earth system and eventually stabilize our sea levels. In the meantime, we need to be prepared for the impact encroaching seas will have on our coastal communities and water supplies.

Teach It

To engage your students in analyzing real climate data and drawing their own conclusions, have them try these Next Generation Science Standards and Common Core Mathematics aligned problems.

> Download student worksheet (PDF)

Have students use these two satellite data graphs to answer the questions below. (To obtain exact data points, place your mouse on the section of the graph you would like to examine.)

  1. What is the source of the data for each graph?

  2. Which years are covered by each graph?

  3. Is one graph a better representation of global sea levels than the other? Why or why not?

  4. By approximately how many millimeters did sea level rise between:
    A) 1910 and 1930?
    55 mm – 45 mm = 10 mm (approx.)
    B) 1930 and 1950?
    120 mm – 55 mm = 65 mm (approx.)

  5. What is the approximate average rate of increase of sea level rise between 1870 and 2000?
    Note: students of various math abilities may approach and solve this problem within their capabilities. The most sophisticated approach is to find the slope of the line of best fit. The correct answer is approximately 1.5 mm per year.

  6. By how many millimeters did sea level rise between the first measurement obtained in January 1993 and the first measurement obtained in January 2013?
    (55.69)-(-16.56) = 72.25 mm

  7. What is the approximate rate of sea level rise between January 1993 and present?
    Note: The answer for this problem is directly stated at the top of the graph, 3.21 mm per year. Students of various math abilities may approach and solve this problem within their capabilities. The most sophisticated approach is to find slope of the line of best fit.
  8. Have students examine this line graph for average global temperature and use it to answer the questions below.

  9. By how much did the average global temperature change, and did it increase or decrease between 1910 and 1930? How about between 1930 and 1950?
    A) (-0.12)-(-0.46) = 0.34 (increase by 0.34 degrees C)
    B) (-0.19)-(-0.12) = -0.07 (decrease by 0.07 degrees C)

  10. Compare your answers to question number 8 with your answers to question number 4. Can you offer an explanation for the correlation or lack thereof?
    Encourage students to critically examine the graph, noting the temperature increase that occurred between 1930 and 1944, preceding the temperature decrease between 1944 and 1950. Students familiar with heat capacity should include this concept in their discussion.

  11. What is the approximate average global temperature rise per year from the first measurement taken in 1880 to present?
    Note: students of various math abilities may approach and solve this problem within their capabilities. The most sophisticated approach is to find slope of the line of best fit. The most conservative answer is 0.007°C per year, the best-fit answer is closer to 0.01°C.

Now, what can you do to be kind to Earth and do your part to control greenhouse gases in our atmosphere?

  • First, watch this video to learn more about our changing climate:


  • Next, check out this interactive feature to see what others around the globe are doing and add your ideas. 

Lesson Standards

CCSS-M 5.G.A.2 - Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.

CCSS-M 7.RP.A.2.B - Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.

CCSS-M HSF.IF.B.6 - Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

NGSS MS-ESS3-5 - Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century

NGSS MS-ESS3-3 - Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment

NGSS HS-ESS2-4 - Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate

NGSS HS-ESS3-5 - Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems

Explore More!

Activity

Videos

Images and Graphics

Interactives

News and Resources

TAGS: Sea Level Rise, Climate Change, Global Warming, Earth Science

  • Ota Lutz
READ MORE